The National Spherical Torus Experiment (NSTX) Research Program and Progress Towards High Beta, Long Pulse Operating Scenarios

PDF Version Also Available for Download.

Description

A major research goal of the National Spherical Torus Experiment is establishing long-pulse, high-beta, high-confinement operation and its physics basis. This research has been enabled by facility capabilities developed over the last two years, including neutral-beam (up to 7 MW) and high-harmonic fast-wave heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with <beta {sub T}> up to 35%. Normalized beta values often exceed the no wall limit, and studies suggest that passive wall mode stabilization is ... continued below

Physical Description

1.1 Megabytes pages

Creation Information

Synakowski, E. J.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W. et al. October 15, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Unknown Creator Role

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A major research goal of the National Spherical Torus Experiment is establishing long-pulse, high-beta, high-confinement operation and its physics basis. This research has been enabled by facility capabilities developed over the last two years, including neutral-beam (up to 7 MW) and high-harmonic fast-wave heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with <beta {sub T}> up to 35%. Normalized beta values often exceed the no wall limit, and studies suggest that passive wall mode stabilization is enabling this for broad pressure profiles characteristic of H-mode plasmas. The viability of long, high bootstrap-current fraction operations has been established for ELMing H-mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fueling are likely contributing to a reduction in H-mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary-heated plasmas examined thus far. High-harmonic fast-wave (HHFW) effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is by comparing of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. A peak heat flux of 10 MW/m superscript ''2'' has been measured in the H-mode, with large asymmetries in the power deposition being observed between the inner and outer strike points. Noninductive plasma start-up studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been driven, and studies to assess flux closure and coupling to other current-drive techniques have begun.

Physical Description

1.1 Megabytes pages

Notes

INIS; OSTI as DE00809929

Source

  • Other Information: PBD: 15 Oct 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3758
  • Grant Number: AC02-76CH03073
  • Office of Scientific & Technical Information Report Number: 809929
  • Archival Resource Key: ark:/67531/metadc739470

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 15, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 18, 2016, 2:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Synakowski, E. J.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W. et al. The National Spherical Torus Experiment (NSTX) Research Program and Progress Towards High Beta, Long Pulse Operating Scenarios, report, October 15, 2002; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc739470/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.