Berkeley Off-line Radioisotope Generator (BORG)

PDF Version Also Available for Download.

Description

Development of chemical separations for the transactinides has traditionally been performed with longer-lived tracer activities purchased commercially. With these long-lived tracers, there is always the potential problem that the tracer atoms are not always in the same chemical form as the short-lived atoms produced in on-line experiments. This problem is especially severe for elements in groups 4 and 5 of the periodic table, where hydrolysis is present. The long-lived tracers usually are stored with a complexing agent to prevent sorption or precipitation. Chemistry experiments performed with these long-lived tracers are therefore not analogous to those chemical experiments performed in on-line ... continued below

Physical Description

vp.

Creation Information

Sudowe, Ralf & Patin, Joshua B. July 23, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Development of chemical separations for the transactinides has traditionally been performed with longer-lived tracer activities purchased commercially. With these long-lived tracers, there is always the potential problem that the tracer atoms are not always in the same chemical form as the short-lived atoms produced in on-line experiments. This problem is especially severe for elements in groups 4 and 5 of the periodic table, where hydrolysis is present. The long-lived tracers usually are stored with a complexing agent to prevent sorption or precipitation. Chemistry experiments performed with these long-lived tracers are therefore not analogous to those chemical experiments performed in on-line experiments. One way to eliminate the differences between off-line and on-line chemistry experiments is through the use of a {sup 252}Cf fission fragment collection device. A {sup 252}Cf fission fragment collection device has already been constructed [1]. This device is limited in its capabilities. A new fission fragment device would allow the study of the chemical properties of the homologues of the heaviest elements. This new device would be capable of producing fission fragments for fast gas chemistry and aqueous chemistry experiments, long-lived tracers for model system development and neutrons for neutron activation. Fission fragment activities produced in this way should have the same chemical form as those produced in Cyclotron irradiations. The simple operation of this source will allow more rapid and reliable development of radiochemical separations with homologues of transactinide elements.

Physical Description

vp.

Notes

INIS; OSTI as DE00799532

Source

  • Other Information: PBD: 23 Jul 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL/PUB--5473
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/799532 | External Link
  • Office of Scientific & Technical Information Report Number: 799532
  • Archival Resource Key: ark:/67531/metadc739445

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 23, 2001

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 4, 2016, 3:57 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sudowe, Ralf & Patin, Joshua B. Berkeley Off-line Radioisotope Generator (BORG), report, July 23, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc739445/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.