DEVELOPMENT OF IMPROVED BURNABLE POISONS FOR COMMERCIAL NUCLEAR POWER REACTORS Final Report on NERI Project Number 99-0074 M. L. Grossbeck, Department of Nuclear Engineering The University of Tennessee J.-P. A. Renier, Nuclear Science and Technology Division Oak Ridge National Laboratory Tim Bigelow, Theragenics Corporation September 2003 Prepared by the UNIVERSITY OF TENNESSEE for the OAK RIDGE NATIONAL LABORATORY under contract M9SF990074 and the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 ## **CONTENTS** | ACKNOWLEDGMENTS | 3 | |--|-----| | EXECUTIVE SUMMARY | 4 | | INTRODUCTION | 9 | | METHOD OF CALCULATION | 12 | | Reactor Neutronics Calculations. | | | Neutronics Performance Results for ZrB ₂ | | | Neutronics Performance Results for Gd | | | Neutronics Performance Results for Sm. | 34 | | Neutronics Performance Results for Er | 43 | | Neutronics Performance Results for Dy | 52 | | Neutronics Performance Results for Eu. | | | Neutronics Performance Results for Hf | | | Neutronics Performance Results for Other Elements | 73 | | DISCUSSION OF THE RESULTS OF THE CALCULATIONS | 76 | | Residual Reactivity | 94 | | Time Dependence | 96 | | Residual Reactivity Penalty | 101 | | METHOD OF ISOTOPE SEPARATION | 103 | | Target Fabrication. | 104 | | Modeling of Plasma Separation | 111 | | Estimated Cost for Commercial Production of ¹⁵⁷ Gd | 115 | | Separation of Dysprosium-164 | 116 | | Separation of Dysprosium-164 Estimated Cost for Commercial Production of ¹⁶⁴ Dy | 119 | | Separation of Erbium-167 Estimated Cost for Commercial Production of ¹⁶⁷ Er | 119 | | Estimated Cost for Commercial Production of ¹⁶ /Er | 121 | | Discussion of Results of Isotope Separation. | 123 | | MATERIALS ISSUES WITH BURNABLE POISONS | 124 | | Gadolinium Oxide in Fuel | 124 | | Effects of Gd ₂ 0 ₃ in UO2 | 124 | | Investigation of Zirconium and its Alloys Doped with Rare Earths | 126 | | CONCLUSIONS | 130 | | DIRECTIONS FOR FUTURE RESEARCH | 130 | | REFERENCES | 131 | | DISTRIBUTION | 133 | ## **ACKNOWLEDGMENTS** This work was supported by the U.S. Department of Energy, NERI Project Number IWO MSF 99-0074. The isotope separation was supported in part by Theragenics Corporation under contract with Oak Ridge National Laboratory. ## DEVELOPMENT OF IMPROVED BURNABLE POISONS FOR COMMERCIAL NUCLEAR POWER REACTORS #### **EXECUTIVE SUMMARY** Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution such that power is produced throughout much of the core rather than mostly in a small region where control rods have been removed. Commercial nuclear reactors commonly use B4C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and thus result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. This investigation had three objectives: In Phase I the performance of single isotope burnable poisons was studied to select candidate burnable poisons; in Phase II isotopes of three prime candidate elements were separated by the plasma separation process; in Phase III candidate burnable poisons were incorporated into fuel cladding to determine if any detrimental effects existed. In Phase I candidate burnable poisons were studied to determine the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt % ²³⁵U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized water reactor fuel core was chosen for the study, and state-of-the-art neutronic reactor core computer codes were used for analysis. Power distribution, fuel burnup, reactivity due to burnable poisons and other fission products, spectrum shift, core reactivity, moderator void coefficients, as well as other parameters were calculated as a function of time and fuel burnup. The results not only showed advantages of separation of burnable poison isotopes but revealed benefits to be achieved by careful selection of the configuration of even naturally occurring elements used as burnable poisons. The savings in terms of additional days of operation is shown in Figure 1, here the savings is plotted for each of six favorable isotopes in the four **Figure 1** Savings in full power days at the end of a four-year fuel cycle achieved by using the single isotopes specified rather than naturally occurring elements. configurations. The benefit of isotope separation is most dramatic for dysprosium, but even the time savings in the case of gadolinium is several days. For a modern nuclear plant, one day's worth of electricity is worth about one million dollars, so the resulting savings of only a few days is considerable. It is also apparent that the amount of savings depends upon the configuration of the burnable poison. The savings in cycle length is not the only factor that must be considered. The following primary factors must all be considered in the choice of a burnable poison: - 1. Rate of burnout - 2. Initial negative reactivity worth - 3. Available volume for burnable poison loading - 4. Effect of burnable poison on the moderator void coefficient of reactivity - 5. Cost of the burnable poison material - 6. Compatibility of the burnable poison with the fuel or cladding The rate of burnout of the burnable poison is perhaps the most important factor. A burnable poison that burns away in the first month of operation is not useful even if it burns so completely that its presence is not detectable at the end of the fuel cycle. Gadolinium can be distributed such that over 99% is burned in the first 120 days, but this is not ideal if a long fuel cycle is desired. Figures 2 and 3 illustrate the time dependence of six elements for the case of the burnable poison distributed in the outer one-third of the fuel for naturally occurring elements and single isotopes, respectively. In this configuration Gd might be used for a 1-year fuel cycle but not for a 4-year cycle. There is a big advantage to using ¹⁴⁹Sm over natural samarium, but the time dependence is not favorable in this configuration. However, ¹⁶⁷Er burns at an approximately linear rate over 4 years, and there is a significant advantage of separating out ¹⁶⁷Er, of which only 1% remains at the end of 4 years. Although the benefit is not as great, ¹⁶⁴Dy also demonstrates favorable performance. Six isotopes were identified as having sufficiently favorable performance to merit study of the efficiency and cost of isotope separation and compatibility with the fuel and cladding. They are ¹⁵⁷Gd, ¹⁴⁹Sm, ¹⁶⁷Er, ¹⁶⁴Dy, ¹⁷⁷Hf, and ¹⁵¹Eu. Even the lowest savings of isotope separation is on the **Figure 2** Percentage of burnable poison burned at the end of 120 days, 1 year, and 4 years for naturally occurring elements mixed in the outer third of the fuel rod volume. Eight fuel rods contain burnable poison. **Figure 3** Percentage of burnable poison burned at the end of 120 days, 1 year, and 4 years for single isotopes mixed in the outer third of the fuel rod volume. Eight fuel rods contain burnable poison. order of several million dollars over the term of one fuel cycle. For the case of dysprosium, the savings is predicted to be on the order of \$30 million. It was this large potential savings that prompted the investigation. Although six isotopes were identified as candidates for separation, not all could be separated because of cost and handling difficulties. Samarium was not selected because of its reactivity and its low boiling point, europium and hafnium were not selected because of their less favorable nuclear properties. Gadolinium-157, dysprosium-164, and erbium-167 were separated following major technical difficulties in target fabrication, which were overcome. Gadolinium-157 was separated to a level of 32% from a natural abundance of 15.7%, ¹⁶⁴Dy was separated to a level of 63% from a natural abundance of 28.2%, and ¹⁶⁷Er was separated to a level of 33% from a natural abundance of 23%. What is perhaps more important than the actual level of separation is the level of the undesirable isotopes. Considering the total isotopic distribution and evaluating the effect on fuel life, it was estimated that the ¹⁵⁷Gd material would save 0.5 days at the end of a four year fuel cycle as opposed to 6.3 for the case of pure ¹⁵⁷Gd. For the case of ¹⁶⁴Dy, a savings of 37 days would be achieved using the separated material as opposed to 64 days for pure ¹⁶⁷Er. However, considering the present state of the art with plasma separation, the costs of separation exceed the
savings achieved by using the separated isotopes by a factor of 10 to 100. This situation could change as larger PSP machines are built to separate isotopes that cannot be separated by other means. A reduction in costs by a factor of ten is estimated by increasing the magnetic field strength from 2 Tesla to 6 Tesla in the PSP machine. Other separation methods might also be explored in the future. It is possible that different methods would be used for different burnable poisons. The four burnable poison configurations were considered in terms of incorporating rare earths into the oxide fuel and fuel cladding. It was found that mixing rare earth oxides into oxide fuel had already been studied in detail. The most significant effect of incorporating the rare earth oxides was a reduction in thermal conductivity. This has been studied in detail and is well understood quantitatively. Using radial zoning is also developed, although not without some difficulties. Incorporation of rare earth metals into metallic fuel cladding has been suggested, but no details on how it was done or the results were available. For this reason, the Phase III part of the study focused on alloying rare earth metals in zirconium and Zircaloy-4. Alloys were prepared by doping zirconium with gadolinium, dysprosium, and erbium to the highest levels calculated to be relevant for burnable poison application. The primary concern with doping metals with elements of far different chemical and structural properties is that the dopant element will migrate to grain boundaries and embrittle the alloy. The alloys were bend tested for ductility and found to remain ductile despite the rare earth content. Ziracaloy-4 was then doped with similar levels of each of the previously used rare earth elements and then cold rolled into sheet, using intermediate anneals. It was found that all alloys were able to withstand 50% reduction of area with only the expected edge cracking. The conclusion to be drawn from the study is that it is not cost effective at the present time to separate ¹⁵⁷Gd gadolinium for commercial reactors. However, dysprosium and erbium can both be used for long-range fuel cycles. In this case, it may be reasonable to separate isotopes because of the fuel cycle savings of weeks through their use. As the PSP process, or another process yet to be investigated for rare earth isotope separation, becomes more efficient, the use of separated isotope burnable poisons may become cost effective. A weakness in the burnable poison production process is the throughput of the PSP process. However, a higher field magnet in the PSP device, such as the suggested 6 Tesla magnet discussed in this report, could produce isotopes a factor of ten less in cost. As Generation IV reactors come on line, a large market for separated Dy and Er could made construction of more and larger separation plants possible. Despite the present cost situation, this study has shown the path for future extended use of burnable poisons in various configurations and has identified new configurations to be used in reactor designs. #### INTRODUCTION A reactor core containing fresh fuel must have excess reactivity to compensate for fuel depletion, production of fission product poisons, and temperature effects that introduce negative reactivity. Control rods can be designed to compensate for this high beginning-of-life (BOL) excess reactivity, but this leads to the requirement of inserting the regulating control rods deeper into the core and/or inserting rods with higher control rod reactivity worths. This leads to the existence of large nonuniform power distributions throughout much of the core life. In pressurized water reactors (PWRs), a soluble boron compound is added to the coolant to compensate for excess reactivity; its concentration is reduced as the fuel is depleted. However, large concentrations of the soluble boron compound lead to an unacceptable reduction in the negative moderator void coefficient of reactivity (MVC). The amount of soluble boron that can be dissolved in the reactor coolant is limited due to the requirement that the MVC must remain negative over the fuel cycle. Too much boron, typically greater than 1,300 ppm at full power, will make the MVC positive. In order to avoid power peaking in the fuel at full power, the regulating control rods can be inserted only a small distance into the core. In order to compensate for the excess reactivity introduced by freshly loaded fuel and to increase fuel loading and enrichment to extend the fuel-cycle length, burnable poisons (BPs) such as B_4C , ZrB_2 , Gd_2O_3 , Er_2O_3 and other absorbing materials can be incorporated in the fuel rods or can be located in separate non-fueled pins. The methods of choice in most PWRs are B_4C in separate non-fueled rods and, more recently, a thin coating of ZrB_2 surrounding the fuel pellets of a number of fuel rods, or Gd_2O_3 and Er_2O_3 dispersed inside the fuel pellets of selected fuel rods. In boiling water reactors (BWRs) the method of choice is the incorporation of Gd_2O_3 homogeneously mixed in the fuel pellets of a number of fuel rods. In the proposed use of the Canadian Deuterium Uranium (CANDU) reactor for burning weapons grade plutonium as a mixed oxide (MOX), depleted uranium is used as the matrix material throughout the fuel bundle (ref 1). In the central fuel rod and in the next ring of fuel rods, Dy burnable poison is mixed with the depleted uranium of those fuel rods not containing plutonium. This increases the amount of plutonium required to achieve a given burnup (and thus increases the Pu disposition rate), reduces the local peak power after refueling, and reduces the local positive moderator void coefficient in the middle of the fuel bundle. As a result, the Dy makes the overall bundle MVC more negative. As the fuel burns, so does the absorber. Ideally, when the fuel is depleted toward the end-of-life (EOL) of the fuel, so would the combined negative reactivity worth of the burnable poison and its daughters. A BP with a high absorption cross section would be very effective in small concentrations at BOL but would deplete rapidly unless its daughters have a high absorption cross section. A poison with too low an absorption cross section would be present in too high a concentration at EOL of the fuel, thus shortening the fuel life. In a lumped configuration, a shelf-shielding effect can be achieved so that a slower depletion rate of the BP takes place. This can be achieved by incorporating the total required BP inside fewer fuel rods or using a higher concentration of the poison. One way that the depletion rate can be accelerated is by incorporating the poison over a smaller radial volume of the pellets (pellet zoning). The configuration of the BP is limited only by the creativity of the designer. In some cases, self-shielding is achieved on a microscopic scale by precipitation of an absorber-rich phase from a fuel-BP mixture (ref 2). In the present study, alloying the BP with the cladding is suggested, a new configuration, which offers several advantages. The details of self-shielding have been worked out by Radkowsky as part of the U.S. Naval Reactors Program, and the techniques have been in use for many years (ref 3). The two most commonly used BPs throughout the world are boron and gadolinium (ref 4). Both homogeneous and lumped configurations have been used. Gadolinium has been used in BWRs for many years (ref 5) and has more recently been used in PWRs (ref 6,7) and VVERs (VVER is the Russian acronym for a water-cooled, water-moderated atomic reactor). The gadolinium is dispersed homogeneously throughout the fuel pellets of a number of fuel rods. Another configuration is application of a thin coating of ZrB₂ to the perimeter of the fuel pellets (ref 6). The use of natural gadolinium as a burnable poison, as well as less commonly used absorber materials, suffers from a disadvantage in that it has seven naturally occurring isotopes, several of which have low effective absorption cross sections. These would be present in too high concentrations at EOL of the fuel. The situation is complicated by the fact that some of the burnable poison isotopes transmute or decay into other highly neutron-absorbing isotopes. The result is that the burnable poison isotopes and their daughters do not completely burn up. Some residual reactivity remains at EOL of the fuel, thus shortening the useful life of the fuel. To correct this problem either more fuel must be initially loaded or the initial fissile enrichment must be increased to compensate for this negative reactivity burden. In the case of boron used as a burnable poison, only ^{10}B has a significant absorption (n,α) cross section, and ^{10}B does not transmute into highly absorbing isotopes (ref 8). Of more concern, however, is the production of helium by the reaction $$^{10}B + n \circ ^{4}He + ^{7}Li$$ The helium increases the internal pressure of the fuel rods, and at a sufficiently high burnup, the combination of fission product gases and helium from boron transmutation can attain a pressure higher than the reactor coolant pressure. When this occurs, the cladding can creep away from the fuel, producing a gap that impedes heat transfer. This results in higher fuel temperatures, and in some cases, fuel melting can occur. The increase in internal pressure can be reduced by spreading the boron burnable absorber over more fuel rods, thus reducing the boron loading in each of the fuel rods containing the poison. This, however, increases cost and increases the burnup rate of the boron. It can be concluded that all burnable poisons in use suffer from disadvantages that limit the level of initial fissile loading and the level of fuel burnup. One solution to the problem might be to use other absorbers, but the number of useful neutron-absorbing elements is small. However, if isotopes were separated so that
only the isotopes with desirable neutron absorption cross sections were used, and the isotopes that result in residual negative reactivity burdens were removed, the disadvantages would vanish. An example of a candidate for isotope separation is samarium, which has six stable isotopes. Separation of ¹⁴⁹Sm, which constitutes 13.8% of natural samarium, would provide a high-cross section absorber that burns to a much more weakly absorbing isotope. Gadolinium has several stable isotopes, many of which are strong absorbers, but ¹⁵⁷Gd (15.8% natural isotopic abundance) has a very high thermal-absorption cross section, and it transmutes to ¹⁵⁸Gd, which has a thermal absorption cross section of only a few barns. Separation of this particular isotope has also been suggested by Hove and Spetz, whose calculations have shown significantly reduced residual negative reactivity (ref 9). Erbium presents a similar situation; ¹⁶⁷Er (22.9% natural isotopic abundance) has a 660-barn thermal-capture cross section, producing ¹⁶⁸Er with a two-barn thermal cross section. Dysprosium has eight stable isotopes, several of which are strong absorbers. Neutron capture in several of those would lead to another strong absorber, thus resulting in a substantial residual negative reactivity burden at EOL of the fuel. ¹⁶⁴Dy (28.1% natural isotopic abundance) with a 2,650-barn thermal absorption cross section transmutes to ¹⁶⁵Dy, which then decays to ¹⁶⁵Ho with a half-life of 2.3 hours. ¹⁶⁵Ho has a 65-barn capture cross section. This can transmute to ¹⁶⁶Ho, which has a large thermal cross section. A major disadvantage to using separated isotopes in the past has been the high cost of separation. As an example, using magnetic separation by a calutron, ¹⁵⁷Gd is estimated to cost about \$1000 per gram (ref 10). At this rate, the burnable poison loading for a typical BWR would cost more than the fuel. However, newer isotope separation processes are now available that are less expensive. For example, the plasma separation process (PSP), which is used in this investigation, is estimated to cost about a factor of ten less than the calutron process. In this study, three isotopes were selected for trial separation, ¹⁵⁷Gd, ¹⁶⁴Dy, and ¹⁶⁷Er, using the PSP method. The PSP requires the feed material to be in the form of a metallic target. This has an advantage over some other techniques such as gas centrifuge and gaseous diffusion which require the feed material to be in the form of a gas, which is not possible with some elements. The product material is also in the form of a metal, but it is often necessary to chemically dissolve the material to remove it from the collector plates and reduce it to metallic form or calcine it to an oxide. The form of a burnable poison can be varied in many ways, limited only by imagination. Spreading the material out into thin layers or spreading it among many rods will increase the burnout rate. Placing the burnable poison in lumps will provide self shielding and slow the burnout rate. In this study, burnable poisons were evaluated in four configurations: homogeniously mixed with oxide fuel, placed in an outer zone of each fuel pellet, coated on the periphery of the fuel pellets, and alloying a metallic burnable poison with the cladding. All locations have advantages. For a long-lived fuel cycle, more than one configuration might prove to be optimum. The method of alloying the burnable poison with the cladding received particular attention because it is a new method which uses metallurgical technology rather than the technology of ceramic powder processing. It has the added advantage that burnable poisons will burn faster and more completely in the cladding not only because of the thin layer but because they are in a higher thermal flux than exists in the fuel. The concern over embrittlement of the cladding by the addition of another element was dismissed by tests that showed that zircaloy-4 doped with Gd, Dy, and Er could be rolled to 50% reduction of area. #### METHOD OF CALCULATION The first phase of this investigation involved detailed calculations of burnable poison performance in a typical PWR core. This investigation was used to study the effect of burnable poisons in several configurations and, most important, to select the candidate isotopes for actual separation. In the first phase of this study, emphasis was placed on the neutronics performance studies of the use of different burnable poisons in PWRs. Although the results of this phase of the project are summarized in this report, details have been reported in ref. 11. To reduce the scope and extent of the studies in this project, we will concentrate on one standard reactor design. In particular, we will use the standard Westinghouse 17×17 fuel assembly design, containing 264 fuel rods, 24 guide tubes (water holes) and one instrument tube. The Zircaloy-4 clad fuel rods contain UO2-fuel pellets with a density of approximately 95% of theoretical density. When a burnable poison oxide was homogeneously mixed with the pellet, a density of 95% of the theoretical density of the combined UO₂ - burnable poison compound was used. The active fuel height was assumed to be 3.66 m (144 in.). A uniform axial fuel enrichment was used. The fuel rod pitch was 12.6 mm (0.495 in.), the clad outside diameter 9.53 mm (0.375 in.), the clad inside diameter 8.36 mm (0.329 in.), the diametrical gap (cold) 0.17 mm (0.0065 in.), and the pellet outside diameter (cold) 8.192 mm (0.3225 in.). Each fuel rod contained a plenum in the top region of several inches in height to collect fission-product gases and to reduce the buildup of the internal fuel rod pressure during fuel burnup. The plenum is pre-pressurized with argon gas to avoid densification of the fuel pellets. The initial fuel enrichment was set at 4.5 wt % ²³⁵U in order to use a fuel lifetime of 4 years at full power. Several additional studies were made for initial fuel enrichments of 6.0 wt %, together with a 5-year-long fuel lifetime at full power. This enabled us to investigate whether the residual negative reactivity worth of the burnable poisons could be further reduced with longer fuel lifetimes and thus higher burnups. The reactor core contained 193 fuel assemblies, and the rated reactor core power that was used in this study was 3,400 MWth. The average power per fuel assembly was thus 17.6 MWth. Four different types of burnable poison rods were investigated: - 1. A homogeneous mixture of the burnable poison as an oxide inside the fuel pellets of a limited number of fuel rods. - 2. A homogeneous mixture of the burnable poison inside the outer one-third volume of the fuel pellets. During this study it was found that because of self-shielding effects inside the pellets that contain burnable poisons, the required amount of burnable poisons to achieve a given initial negative reactivity was smaller than for the case where the poisons were mixed over the entire volume of the pellet. As a consequence, the residual negative reactivity worth at EOL of the fuel was smaller for the case of BP in a one-third outer volume than for the cases where the BP was homogeneously mixed over the entire pellet. However, the initial rate of depletion of the burnable absorbers was higher. Although it would make the fuel fabrication process more complex, prototype zoned fuel pellets are being made on a laboratory scale at the present time. - 3. An oxide burnable poison coating on the surface of the pellets in a limited number of fuel rods. This is similar to the technique, recently in use in several PWRs, of using a thin ZrB₂ coating on the outer radial surface of the pellets. The use of burnable poisons such as Gd₂O₃, Sm₂O₃, and others with natural isotopic abundances, might require too thick a pellet coating, which might impede heat transfer. The use of enriched burnable poisons requires a much thinner coating to achieve a given initial negative reactivity worth. - 4. A homogeneous mixture of the burnable poison in the form of a metal alloyed with the Zircaloy cladding of a number of fuel rods. The use of burnable poisons with natural isotopic abundances would require a significantly higher concentration in the clad than would single isotopes. In some cases, this level of a rare earth would exceed the solubility limit and would precipitate as a second phase, which could harden the metal and reduce its ductility. Even for the cases where the burnable poison remains in solid solution, in sufficiently high concentrations, it could harden and embrittle the clad. The use of enriched burnable poisons would require a much smaller concentration to achieve a given initial negative reactivity. This increases the probability of finding a burnable poison that does not degrade the integrity of the cladding. This issue was addressed in the final phase of the project. The use of burnable absorbers inside the cladding also changes the chemistry and compatibility issue to one of cladding rather than fuel. The results of the neutronics performance studies show that the introduction of enriched burnable poisons into the clad of selected fuel rods is indeed very promising. The layout of a standard Westinghouse 17×17 fuel assembly design is shown in Figure 4. F: Fuel rod O: Guide tube I: Instrument tube Figure 4. Diagram showing the model of a standard 17×17 fuel assembly A fuel assembly contains 264 fuel rods, 24 guide tubes (water holes), and one instrument tube. In normal PWR operation, non-fueled rods containing B₄C pellets are inserted inside a number of guide tubes of fresh fuel assemblies to compensate for the excess initial reactivity at BOL of the fresh fuel. Depending upon the location of the fuel assemblies in the reactor core, the standard burnable absorber pin configurations can contain 4, 8, 12, 16, 20, or 24 non-fueled burnable poison rods per fuel assembly. Layouts of standard fuel assemblies with 8 and 16 non-fueled burnable
poison rods are shown in Figures 5 and 6, respectively. ``` 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 F F F F F F F F F 2 F F F F F F F F F F F F F F 3 F F 0 F 0 F 0 F F F F F F F F (O) F F F F F F F F (O) F F F F F 5 F 6 F 0 F 0 F (0) F 0 F 0 F 8 F F F F F F F F F F F F F F F F 0 (O) F Ι F (0) F F F 10 F 11 F F F F F F F 0 F (O) F F F 0 F 12 0 F 0 F F F F F 13 F F F F F F F F F F F F F F 14 F F F (O) F F F F F F F F F (O) F F F F 15 F F F F F 0 F 0 F F 0 F F F F F F F F F F 16 F F F F F F F F F F F 17 F F F F F F F F F F F F F F F F ``` Figure 5. Diagram showing the model of a standard 17×17 fuel assembly layout with eight non-fueled burnable poison rods. F: Fuel rod O: Guide tube I: Instrument tube ⁽O) Non-fueled burnable poison rod 10 11 12 13 14 15 16 17 1 F F F F F F F F F 2 F F F F F F F F F F F F F F F F F 3 (O) F F F F F (0)F F 0 F F F F F F F 4 F F F F F F F (O) F F F F F (0)F F 5 F F F F F F F F F F F F F F 6 F F F F F F F F (O) F 0 (0)F F 0 (O) F 7 F F F F F F F F F F F F F F F F F 8 F F F F F F F F F F F F F F F 9 F F F 0 F (0)F F Ι F F (0)F F F 10 F 11 F F F F F (0) 12 F F (O) F 0 F (O) F F 0 F F F F 13 F F F F F F F F F F F F F F F F F F F (O)F F F F F F F F F (0)F F F 15 F F F F F (0)F F 0 F F (0)F 16 F F F 17 F: Fuel rod O: Guide tube I: Instrument tube (O): Non-fueled burnable poison rod Figure 6. Diagram showing the model of a standard 17×17 fuel assembly layout with 16 non-fueled burnable poison rods. In the present analyses of the advanced burnable poisons, no burnable absorber rods were inserted inside the guide tubes of the fuel assemblies. The guide tubes were left open for control-rod motion, or they were left open filled with the water coolant. The burnable poisons were placed only inside fuel rods. These are usually referred to as integral fuel burnable absorbers (IFBAs). Four different checkerboard fuel assembly models containing IFBA rods were used in this study. They contained 8, 16, 64, or 104 fuel rods with burnable absorbers. The layouts and the locations of the IFBA rods are shown in Figures 7 and 8. In the configuration with 104 IFBA rods, the fuel rods surrounding the water holes are replaced with IFBA rods to reduce power peaking. In this configuration each water hole is surrounded by seven or eight IFBA rods. During the early phases of the research, several cases containing 16 IFBA rods were explored that contained two or four extra IFBA rods. These are reported as cases containing 18 or 20 IFBA rods. Note that the presence of water holes in a fuel assembly promotes localized inner-assembly power density peaks caused by the increase in moderation. To reduce the localized power peaks, the IFBA rods are preferentially placed around the water holes. Note: The layouts displayed are non-design, nonproprietary layouts, not actual ones. 3 7 1 2 5 6 8 9 10 11 12 13 14 15 16 17 F 1 F F F F F F F F F F F F F F F 2 F F F F F F F F F F F F F F F F F 3 F F F F F F F 0 F F 0 F F F F F 0 (*) 4 F F F 0 F F F F F F F F F F F 0 5 F F F F (*) F F F F F F F (*) F F F F 6 F F F F F 0 0 F F F F F F 7 F F F F F F F F F F F F F F F F F F 8 F F F F F F F F F F F F F F F F (*) 9 F F Ο F 0 F F Ι F F 0 F F F 10 F F F F F F F F F F F F F F F F 11 F F F F F F F F F F F F F F F 0 F F F F 12 0 0 F F 0 0 F F F (*) (*) 13 F F F F F F F F F F F F F F F F F 14 0 F F F F F F F F F 15 F F F F F 0 F F 0 F 0 F F F F 16 F F F F F F F F F F F F F F F F F 17 F F F F F F F F F F: Fuel rod O: Guide tube I: Instrument tube (*): Fuel rod with burnable absorber (IFBA) Figure 7. Diagram showing the model of a standard 17×17 fuel assembly layout with eight integral fuel burnable absorbers (IFBAs). | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |----|---|---|-----|---|-----|---|-----|-----|---|-----|-----|----|-----|----|-----|----|----| | 1 | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | | 2 | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | | 3 | F | F | F | F | F | 0 | (*) | F | 0 | F | (*) | 0 | F | F | F | F | F | | 4 | F | F | F | 0 | F | F | F | F | F | F | F | F | F | 0 | F | F | F | | 5 | F | F | F | F | (*) | F | F | F | F | F | F | F | (*) | F | F | F | F | | 6 | F | F | 0 | F | F | 0 | F | F | 0 | F | F | 0 | F | F | 0 | F | F | | 7 | F | F | (*) | F | F | F | F | F | F | F | F | F | F | F | (*) | F | F | | 8 | F | F | F | F | F | F | F | (*) | F | (*) | F | F | F | F | F | F | F | | 9 | F | F | 0 | F | F | 0 | F | F | Ι | F | F | 0 | F | F | 0 | F | F | | 10 | F | F | F | F | F | F | F | (*) | F | (*) | F | F | F | F | F | F | F | | 11 | F | F | (*) | F | F | F | F | F | F | F | F | F | F | F | (*) | F | F | | 12 | F | F | 0 | F | F | 0 | F | F | 0 | F | F | 0 | F | F | 0 | F | F | | 13 | F | F | F | F | (*) | F | F | F | F | F | F | F | (*) | F | F | F | F | | 14 | F | F | F | 0 | F | F | F | F | F | F | F | F | F | 0 | F | F | F | | 15 | F | F | F | F | F | 0 | (*) | F | 0 | F | (*) | 0 | F | F | F | F | F | | 16 | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | | 17 | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F: Fuel rod O: Guide tube I: Instrument tube (*): Fuel rod with burnable absorber Figure 8. Diagram showing the model of a standard 17×17 fuel assembly layout with 16 integral fuel burnable absorbers (IFBAs). #### REACTOR NEUTRONICS CALCULATIONS Detailed neutronics calculations were performed using state-of-the-art computer codes such as the TALLY-MCNP4C-ORIGEN2.5 (ref 12) Monte Carlo sequence. Following initial calculations using HELIOS (ref 13,14), we switched to the three-dimensional TALLY-MCNP4C-ORIGEN2.5 sequence of computer codes (hereafter called the GP-TALLY code) because the cross sections for some of the isotopes of interest were unavailable. The generation of pointwise cross sections of the burnable poison isotopes of interest can be performed with the NJOY code (ref 15). This provided more flexibility in investigating the neutronic performance of different burnable poison isotopes. In addition, full three-dimensional models of the fuel assemblies and reactor core could be set up. The MCNP4C code (ref 16) is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport, including the capability to calculate eigenvalues for critical systems. The MCNP4C code can treat any arbitrary three-dimensional geometry configuration bounded by first- and second-degree surfaces. Pointwise cross sections for different reaction types, such as (n,fission), (n, γ), (n,2n), (n,3n), (n,p), (n, α) and others, derived from particular cross-section evaluations such as ENDF/B-VI, are available or can be generated with the NJOY code (ref 15). The thermal scattering S(α , β) data as a function of temperature are available for water and other moderators of interest. The ORIGEN2.5 code is an advanced and updated version of ORIGEN2.1 (ref 12,17). The ORIGEN code is widely used in calculations of the depletion, buildup, and decay of materials during neutron irradiation. It uses the matrix exponential method for burnup and decay. It uses spectrum-weighted one-group cross sections for a variety of neutron reaction types such as (n,fission), (n, γ), (n,2n), (n,3n), (n,p), (n, α) and others. Using different neutron spectra for each of the different regions in the fuel, the burnable poison, and fuel assemblies, region-dependent spectrum-weighted cross sections were used during depletion. The different isotopes in ORIGEN are subdivided into three distinct groups: activation, actinides, and fission products. In order to differentiate the depletion, transmutation, and reactivity worths of the burnable absorbers such as samarium, gadolinium, erbium, and others from the fission products, all the burnable poison isotopes and their decay daughters were placed into the activation products group. In the burnable absorber performance studies, each of the fuel and burnable-absorber regions was individually modeled. The depletion of the fuel and burnable poison isotopes was individually followed for each of the different regions of each fuel rod as a function of burnup time. The reactivity worths of the poisons and their daughters were also determined as a function of time. The fuel pellets of the rods containing burnable poison were radially subdivided into three or six equal volume regions. This enabled us to follow the self-shielding effects and depletion in the fuel pellets of each fuel rod due to the presence of the burnable poison isotopes. Typically 27 depletion time points for each full-power-year (FPY) were used. However, in the first year, additional depletion steps were used to better track the larger depletion rates of the burnable poisons at BOL. In most cases a fuel lifetime of 4 years at full power was used. Several additional studies were made for longer fuel lifetimes (5 years at full power). At BOL of the fuel, four small depletion time steps of 6 hours each were taken in order to account for equilibrium xenon. The time steps were chosen such that, by doubling the total number of time steps (each time was further subdivided into two equal parts), the change in the residual reactivity worth fraction was less than 2%. Because of the massive amounts of data that were generated at each depletion time step, and in order to reduce the size of the burnup-dependent data files, only the data for every nine time points were kept to make tables and figures for this report. While typically 27 depletion time points were used for each FPY, only the data for 3 points were kept per FPY. The GP-TALLY code keeps track of approximately 1,100 individual nuclides
for each depletion zone at each depletion time step. The TALLY module can be considered as a driver, a pre-processor, and a post-processor for the MCNP4C and ORIGEN2.5 modules. It sets up all the necessary inputs to the MCNP4C code that are used for the calculations of the eigenvalue, neutron fluxes, and neutron reaction rates. TALLY also updates all the number densities in the inputs to the MCNP4C and ORIGEN2.5 modules at each burnup time step and for each depletion zone. Typically, the TALLY module sets up the necessary MCNP4C "tally" input for each depletion zone and for approximately 200 individual isotopes. This includes all the actinides and all the important fission products. In addition, TALLY sets up the tally input for each of the burnable poison isotopes and their daughters in each of the burnable absorber regions. The MCNP4C calculated fluxes and spectrum-weighted one-group reaction rates for each of the different fuel and burnable absorber zones are placed into a "tally" data file. This file is then read by the TALLY module. Using the fission rates and their associated power densities and volumes, the TALLY module then normalizes the fluxes to achieve a "user requested" reactor or fuel assembly power, which can be changed at each depletion time step. The neutron fluxes and reaction rates for each isotope and for each depletion zone are then used by TALLY to calculate the regiondependent (n, fission), (n, γ), (n,p), (n,2n), (n,3n), (n, α) neutron spectrum-weighted cross sections. If available, the (n,γ) neutron spectrum-weighted cross section into the metastable state of the daughter nuclide was also calculated in TALLY for use in ORIGEN2.5. If needed, TALLY recalculates the spectrum-weighted fission product yields for each of the actinides and for each of the fuel regions. The different one-group weighted cross sections for six reaction types are then used by the TALLY module to set up the ORIGEN cross-section libraries and the inputs for a multitude of different ORIGEN2.5 runs, including isotope concentrations (approximately 1,600 isotopes for each depletion zone). After depletion and/or decay, the ORIGEN2.5 code generates updated isotope concentrations for the fuel and burnable absorbers for each of the depletion zones. These are then used by TALLY to update the MCNP4C input of the isotope concentrations. For a fuel assembly with 264 fuel rods, 104 of them containing burnable poisons and a radial subdivision of the fuel into three radial depletion zones, and if fuel assembly material symmetry can be taken into account, a total of approximately 150 depletion zones (each containing more than 200 isotopes) are followed per fuel assembly for each axial zone. Thus at each depletion time step, typically a total of 150 ORIGEN 2.5 runs were performed for each axial zone. Assuming six different reaction types for each isotope, TALLY typically sets up the input for approximately $150 \times 200 \times 6 = 180,000$ different tallies. Because of the limitation on the number of individual tallies that can be set up in one input deck to the MCNP4C code, the input for all the requested tallies is placed within one major neutron tally, into which the sub-tallies for each depletion zone, each isotope, and each reaction type are staged. This TALLY-MCNP4C-ORIGEN2.5 procedure is then repeated for each of the different depletion time steps. Although TALLY has the capability to set up the necessary inputs for photon tallies, this option was not used in the neutronics performance studies of the burnable absorbers. The photon option was previously implemented in 238 Pu production studies, in which the effect of the (γ,n) reactions in generating parasitic 236 Pu was investigated. It was found that the calculation of 180,000 sub-tallies increased the MCNP4C computer times substantially. In some cases the eigenvalue calculations required central processing unit (CPU) times that were an order of magnitude greater than the CPU times for the same MCNP case but with no tallies. To circumvent this major disadvantage, a new feature was added to the TALLY code. At each depletion time step, TALLY accessed the point-wise cross sections for each of the different isotopes and depletion zones in the model. A unified energy structure was then set up that included all the point-wise energy points, including all the energies that describe the cross sections and each of the resonances for the different reaction types of interest. Typically, a unified neutron energy grid contained approximately 15,000 energy points. The TALLY code then added to the MCNP input a neutron flux tally input containing these 15,000 energy groups. The MCNP4C CPU requirements with this very fine neutron group tally was only slightly higher than the CPU requirements for the MCNP4C cases with no tallies. After completion of an MCNP4C eigenvalue calculation, the TALLY code accessed the MCNP4C tally file, and each of the MCNP4C cross-section files that were used in the MCNP4C problem. TALLY then generated spectrum-weighted one-group cross sections for each reaction type, each isotope, and each depletion zone. This feature also enabled us to determine the reactivity worths of each of the burnable absorber isotopes and their daughters. In this study, we have not analyzed the change in the control rod worth due to the presence of burnable poisons. The loading of burnable poisons result in a shift of the maxwellian spectrum to higher energies, which might change the effective absorption cross section of control rods. In addition, if the control rod worth depends to a considerable extent upon resonance absorption, then the worths might also change with the loading of burnable absorbers. We strictly performed assembly lattice calculations. The reactor core was filled with the same fuel assemblies, and fuel assembly reshuffling in the reactor core was not performed. An average soluble boron content of 550 ppm was used. The density of the coolant at power was 0.7795 g/cm^3 . Typically, the number of source particles per generation was 3,000 to 25,000, and the number of generations was 250 to 500. The statistical standard deviation (STD) for k_{eff} was approximately 0.1% (at one sigma confidence level). The STD for the weighted cross sections was approximately 1 to 3%. The MVCs were calculated by decreasing the water coolant density by 10%. The one-sigma STDs of the eigenvalues were better than 0.03%. The MVCs were determined using two different approaches. In the first approach, the "generation" eigenvalues were followed for the MCNP4C run containing the nominal water density at full-power conditions and 2,200 psia, and in the second MCNP4C run the "generation" eigenvalues were followed for the same MCNP4C case, but with a water density reduction of 10%. In the second approach, the "perturbation" option in MCNP4C was used, in which the water density was reduced by 10%. The MCNP4C option with first- and second-order perturbation was used. The differences between the two approaches were usually small and within one STD. #### NEUTRONICS PERFORMANCE RESULTS FOR ZrB₂ In the cases where boron is used as a burnable poison in fuel rods, only the isotope ^{10}B has a significant absorption (n,α) cross section, and ^{10}B does not transmute into high absorbing isotopes. Of more concern, however, is the production of helium via the ^{10}B (n,α) ^{7}Li reaction. The production of helium gas increases the internal pressure of the fuel rods. It is this disadvantage that provides part of the incentive for this project. The methods of choice in most PWRs are the use of B_4C in separate non-fueled rods, and more recently, the use of a thin coating of ZrB_2 surrounding the radial surface of the fuel pellets in a number of fuel rods. Neutronic performance calculations for ZrB₂ burnable absorber were done as part of this project so they could be used for comparison with the proposed burnable absorbers. A summary of the results for ZrB₂ is shown in Table 1. Note that the dimensions and concentrations for ZrB₂ are non-design values, since the actual values used in commercial reactors are proprietary. The table displays the initial reactivity worth of the burnable absorber for the entire reactor core. The table also displays the residual reactivity worth fraction of the burnable poison at EOL of the fuel. The fraction is defined as the ratio of the negative reactivity worth of the burnable absorber isotopes and their daughters after 4 years at full power, to the initial negative reactivity worth of the burnable poison at EOL of the fuel. For a fuel assembly with 104 IFBA rods and 30 wt % 10 B-enriched boron, the residual reactivity ratio is 2.404×10^{-4} . The initial reactivity worth ($\delta k_{eff}/k_{eff}$) of the ZrB_2 was -1.279×10^{-1} . The residual reactivity worth is mostly due to the zirconium in the ZrB_2 compound. This residual reactivity worth ratio is very small, and thus negligible. Table 1 also shows the effect of using the same ZrB_2 coating over a smaller number of IFBA rods, but the residual reactivity ratios are similar even though the initial reactivities are smaller. However, if there is a requirement of having the same total initial reactivity worth spread over a smaller number of rods, then the ratio becomes larger, since the poison rods would have been more self-shielded, and the burnout rate would thus have been smaller. The use of natural boron increases the residual reactivity ratio only very slightly $(3.29 \times 10^{-4} \text{ vs } 2.40 \times 10^{-4})$. Note that the residual reactivity ratios are very small for all the cases that use ZrB_2 as BP. Further details of the calculations and the results are given in the Phase I Report for this project, (ref 11). Table 1. Boron Burnable Poison in a ZrB2 Coating between the UO2 Fuel Pellet and the Zr-4 Cladding of
Selected Fuel Rods - Summary Results | Initial | Enrich- | Thickness | Initial | Initial | Number | BP Mass | Initial | Reactivi | ty Ratio | Re | activity | Ratios | BP | He4 | MVC | |----------------|--------------|------------|--------------|------------|-----------|--------------------|--|-----------------|------------------------------------|---------------------------|--------------------------|---------|---------------------|--------------------|---| | BP | ment BP | BP Layer | Density | Fuel | Fuel Rods | | BP | 120 FPD vs.BOL | 1 FPY vs. BOL | 4 | FPY vs. | BOL | Penalty | Production | at BOL | | Isotope | (wt%B10) | (mills) | BP ZrB2 | ment | (per Fuel | Assembly) | Reactivity
Worth for
Reactor Cor-
-dkeff/keff | | BP-tot
per
B(BOL) | ZrB2-tot
per
B(BOL) | He3+He4
per
B(BOL) | | at 4 FPY
) (FPD) | at 4 FPY
(gram) | dkeff per -10%
water density
change (STD) | | B-none | | | | | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.66-3 (2.7-4) | | B-nat | 19.8 | 1.5 | 0.25 | 4.5 | 104 | 2.034+0 | 9.340-2 | 4.777-1 (52.2%) | 1.045-1 (89.6%) | 3.288-4 | 3.135-9 | 3.137-4 | 0.15 | 9.552+0 | -1.44-3 (4.3-4) | | B-010 | 30.0 | 1.5 | 0.25 | 4.5 | 08 | 2.364+0 | 1.099-2 | 4.925-1 (50.8%) | 1.119-1 (88.8%) | 2.162-4 | 6.408-9 | 2.007-4 | 0.01 | 2.334+0 | -1.27-3 (2.9-4) | | B-010 | 30.0 | 1.5 | 0.25 | 4.5 | 18 | 5.318+0 | 2.410-2 | 4.978-1 (50.2%) | 1.152-1 (88.5%) | 2.243-4 | 4.409-9 | 2.070-4 | 0.03 | 3.517+0 | | | B-010
B-010 | 30.0
30.0 | 1.5
2.0 | 0.25
0.25 | 4.5
4.5 | 64
64 | 1.891+1
2.517+1 | 8.344-2
1.056-1 | | 1.117-1 (88.8%)
1.218-1 (87.8%) | 2.289-4
2.428-4 | | | 0.08
0.14 | 8.974+0
1.148+1 | -1.51-3 (7.5-4)
-2.01-3 (3.5-4) | | B-010 | 30.0 | 1.5 | 0.25 | 4.5 | 104 | 3.073+1 | 1.280-1 | 5.020-1 (49.8%) | 1.191-1 (88.1%) | 2.404-4 | 3.235-9 | 2.251-1 | 0.11 | 1.372+1 | -1.50-3 (3.7-4) | #### NEUTRONICS PERFORMANCE RESULTS FOR GADOLINIUM The method of choice for adding burnable poisons in most PWRs is through the use of B_4C in separate non-fueled rods, and more recently, the through the application of a thin coating of ZrB_2 surrounding the fuel pellets, or the homogeneous dispersal of Gd_2O_3 or Er_2O_3 inside the fuel pellets of selected fuel rods (ref 6,7). In BWRs the method of choice is the incorporation of Gd_2O_3 homogeneously mixed in the UO_2 pellets of a number of fuel rods. In this section, we will investigate the potential benefits of using enriched gadolinium as a burnable absorber in PWRs. Four different configurations of the gadolinium burnable poison were investigated. - 1. A homogeneous mixture of the burnable poison as an oxide [gadolinia (Gd₂O₃)] inside the fuel pellets of a limited number of fuel rods. A summary of the results is given in Table 5. - 2. A homogeneous mixture of the burnable poison gadolinia inside the outer one-third volume of the fuel pellets. A summary of the results is given in Table 6. This configuration of the BP was used to show the effect of zoning the burnable poisons on the burnout times. - 3. A coating of the burnable poison gadolinia on the surface of the fuel pellets, similar to the ZrB₂ coatings. A summary of the results is given in Table 7. - 4. A homogeneous mixture of the burnable poison gadolinium in the form of a metal alloyed with the Zircaloy cladding of a number of fuel rods. A summary of the results is given in Table 8. Further details and graphs are given in ref. 11. In all the neutronics calculations presented in this section, a theoretical density of 7.41 g/cm³ was used for gadolinia (Gd_2O_3), and 7.95 g/cm³ for metallic gadolinium. A theoretical density of 10.97 g/cm³ was used for UO_2 . The actual density fraction of the fuel pellets and of the burnable poison pellets was 95% of theoretical density. The half-lives, natural isotopic abundances, and burnup chains related to the depletion and transmutation of gadolinium are given below. Note that the adjacent bands of isotopes such as the Dy isotopes (decay from Tb isotopes) and Sm isotopes (decay from Eu isotopes) are not shown. Also, the isomeric states of certain isotopes are not shown. However, the generation of these daughters was taken into account in the BP depletion and decay calculations. | Half-life | | | | | 110y
¹⁵⁷ Tb | 180y
¹⁵⁸ Tb | stable 159Tb β- | 72.3d
¹⁶⁰ Tb | 6.9d
161Tb
β- | ¹⁶² Tb | |----------------|--------------------------|-------------------|-----------------|---------------------------|----------------------------|---------------------------|----------------------------|----------------------------|---------------------|-------------------| | Nat.
Abund. | 0.20% | 241.6d | 2.2% | 14.8% | 20.5% | 15.7% | 24.8% | 18.5h | 21.9% | 3.66m | | Abuild. | ¹⁵² Gd | ¹⁵³ Gd | 154 Gd | ¹⁵⁵ Gd | ¹⁵⁶ Gd | ¹⁵⁷ Gd | 158 Gd | ¹⁵⁹ Gd | 160 Gd | ¹⁶¹ Gd | | | | EC | | | | β - | | | | | | Half-life | stable ¹⁵¹ Eu | 13.5 y | stable
153Eu | 8.6y
¹⁵⁴ Eu | 4.75y
¹⁵⁵ Eu | 15.2d | 15.2h
¹⁵⁷ Eu | | | | Table 5. Gd203 Burnable Poison Integrally mixed with the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial Loading BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | | | eactivity
4 FPY v | s. BOL | | BP
Penalty | MVC
at BOL | |--------------------------|--------------------|----------------------------|--------------------------------|---------|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|---------------|---| | Isocope | (wt%Gd203 | ment | (per Fuel
Assembly) | | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Gd(BOL) | BP-tot
per
Gd(BOL) | Gd-tot
per
Gd(BOL) | Eu-tot
per
Gd(BOL) | Tb-tot
per
Gd(BOL) | BP-totat
per
Gd(BOL) | | dkeff per -10%
water density
change (STD) | | Gd-nat | 2.0 | 4.5 | 08 | 2.876+2 | 5.101-2 | 5.147-1 (49.2%) | 2.618-2 (98.8%) | | 1.318-4 | | 1.472-2 | 3.3 | -1.62-3 (2.8-4) | | Gd-nat | 4.0 | 4.5 | 08 | 5.697+2 | 5.844-2 | 6.957-1 (31.8%) | 2.072-1 (81.2%) | | 2.273-4 | | 2.395-2 | 5.3 | -2.06-3 (2.7-4) | | Gd-nat | 8.0 | 4.5 | 80 | 1.118+3 | 6.626-2 | 7.942-1 (21.4%) | 4.806-1 (53.9%) | 3.276-2 | 3.894-4 | 3.648-3 | 3.680-2 | 10.4 | -2.67-3 (2.7-4) | | Gd-nat | 0.5 | 4.5 | 16 | 1.448+2 | 6.852-2 | 6.210-2 (94.3%) | 7.577-3 (99.8%) | 5.101-3 | 4.955-5 | 6.541-4 | 5.805-3 | 1.5 | | | Gd-nat | 1.0 | 4.5 | 16 | 2.890+2 | 8.237-2 | | 1.237-2 (99.7%) | 8.379-3 | 8.243-5 | 1.039-3 | 9.500-3 | 3.2 | | | Gd-nat | 2.0 | 4.5 | 16 | 5.752+2 | 9.733-2 | 5.220-1 (48.5%) | 2.913-2 (98.6%) | 1.349-2 | 1.378-4 | 1.620-3 | 1.525-2 | 6.4 | -9.6-4 (2.7-4) | | Gd-nat | 4.0 | 4.5 | 16 | 1.140+3 | 1.104-1 | 7.057-1 (30.2%) | 2.134-1 (80.7%) | 2.218-2 | 2.422-4 | 2.634-3 | 2.505-2 | 11.3 | -2.63-3 (2.6-4) | | Gd-nat | 8.0 | 4.5 | 16 | 2.237+3 | 1.246-1 | 8.028-1 (20.5%) | 4.778-1 (54.3%) | 3.443-2 | 4.178-4 | 3.922-3 | 3.877-2 | 20.1 | -2.49-3 (2.7-4) | | Gd-nat | 4.0 | 4.5 | 20 | 1.424+3 | 1.341-1 | 6.989-1 (30.9%) | 2.141-1 (80.6%) | 2.237-2 | 2.469-4 | 2.706-3 | 2.532-2 | 15.6 | | | Gd-nat | 0.1 | 4.5 | 64 | 1.161+2 | 1.182-1 | 8.159-3 (99.5%) | 3.838-3 (99.9%) | 2 508-3 | 2.498-5 | 3 530-4 | 2.977-3 | 1.3 | +2.21-3 (3.4-4) | | Gd-nat | 0.2 | 4.5 | 64 | 2.321+2 | 1.700-1 | 1.357-2 (99.0%) | 5.061-3 (99.9%) | | 3.277-5 | | 3.813-3 | 2.5 | +3.41-3 (3.2-4) | | Gd-nat | 0.5 | 4.5 | 64 | 5.793+2 | 2.285-1 | | 9.011-3 (99.8%) | | 6.089-5 | | 6.996-3 | 6.1 | +4.41-3 (2.8-4) | | ou nuc | 0.5 | 1.5 | 01 | 3.733.2 | 2.203 1 | 0.075 2 (54.00) | 3.011 3 (33.00) | 0.133 3 | 0.003 3 | 7.021 1 | 0.550 5 | 0.1 | 71.11 5 (2.0 1) | | Gd-155 | 1.0 | 4.5 | 08 | 1.442+2 | 4.889-2 | | 1.105-1 (90.0%) | | 3.609-8 | | 1.210-2 | 2.5 | -1.48-3 (2.8-4) | | Gd-155 | 2.0 | 4.5 | 08 | 2.870+2 | 5.812-2 | 7.754-1 (22.9%) | 3.884-1 (62.3%) | 1.760-2 | 5.935-8 | 1.527-4 | 1.775-2 | 4.75 | -2.68-3 (2.6-4) | | Gd-155 | 4.0 | 4.5 | 08 | 5.686+2 | 6.858-2 | 8.237-1 (18.1%) | 5.865-1 (42.4%) | 2.427-2 | 9.734-8 | 1.946-4 | 2.447-2 | 7.0 | -3.66-3 (2.7-4) | | Gd-155 | 1.0 | 4.5 | 16 | 2.884+2 | 9.292-2 | 3.748-1 (63.3%) | 1.109-1 (90.1%) | 1.256-2 | 3.706-8 | 1.183-4 | 1.268-2 | 5.3 | -1.65-3 (3.3-4) | | Gd-155 | 2.0 | 4.5 | 16 | 5.740+2 | 1.095-1 | 7.717-1 (23.3%) | 3.954-1 (61.6%) | 1.871-2 | 6.170-8 | 1.629-4 | 1.887-2 | 8.6 | -2.61-3 (3.1-4) | | Gd-155 | 2.0 | 4.5 | 20 | 7.175+2 | 1.326-1 | 7.733-1 (23.1%) | 4.036-1 (60.9%) | 1.983-2 | 6.468-8 | 1.738-4 | 2.000-2 | 10.0 | | | al 155 | 1.0 | 4.5 | | 1 444.0 | 5 F30 0 | F 040 1 (00 F0) | 1 405 1 (06 10) | 0.053.3 | 4 505 0 | 1 500 3 | 4 524 2 | | 1 52 2 (0 0 4) | | Gd-157 | 1.0 | 4.5 | 08 | 1.444+2 | 5.738-2 | | 1.425-1 (86,1%) | | 4.585-9 | | 4.534-3 | 1.1 | -1.53-3 (2.8-4) | | Gd-157 | 2.0 | 4.5 | 08 | 2.875+2 | 6.309-2 | | 4.149-1 (59.0%) | | 6.175-9 | | 7.600-3 | 1.7 | -2.28-3 (2.7-4) | | Gd-157 | 4.0 | 4.5 | 80 | 5.696+2 | 6.963-2 | 8.290-1 (17.3%) | 6.281-1 (37.6%) | 7.625-3 | 9.895-9 | 3.769-3 | 1.139-2 | 3.5 | -2.89-3 (2.6-4) | | Gd-157 | 0.1 | 4.5 | 16 | 2.901+1 | 6.847-2 | | 8.877-4(100.0%) | | | 3.058-4 | 8.657-4 | 0.25 | | | Gd-157 | 0.2 | 4.5 | 16 | 5.800+1 | 8.174-2 | 7.513-2 (92.6%) | 1.507-3(100.0%) | 9.335-4 | 2.085-9 | 5.064-4 | 1.440-3 | 0.5 | | | Gd-157 | 0.5 | 4.5 | 16 | 1.448+2 | 9.799-2 | 3.543-1 (64.7%) | 2.164-3(100.0%) | 1.404-3 | 1.905-9 | 7.463-4 | 2.150-3 | 0.8 | -1.00-3 (2.7-4) | | Gd-157 | 1.0 | 4.5 | 16 | 2.889+2 | 1.075-1 | 7.075-1 (29.4%) | 1.472-1 (85.7%) | 3.386-3 | 3.495-9 | 1.670-3 | 5.056-3 | 2.3 | -1.34-3 (2.5-4) | | Gd-157 | 2.0 | 4.5 | 16 | 5.750+2 | 1.178-1 | 8.054-1 (19.6%) | 4.220-1 (58.3%) | 5.494-3 |
5.776-9 | 2.696-3 | 8.190-3 | 3.9 | -2.58-3 (2.7-4) | | Gd-157 | 4.0 | 4.5 | 16 | 1.139+3 | 1.295-1 | 8.486-1 (15.3%) | 6.297-1 (37.5%) | 8.303-3 | 9.675-9 | 4.005-3 | 1.231-2 | 6.2 | -3.53-3 (2.6-4) | | Gd-157 | 1.0 | 4.5 | 20 | 3.611+2 | 1.312-1 | 7.142-1 (28.7%) | 1.184-1 (88.6%) | 3.440-3 | 3.580-9 | 1.752-3 | 5.191-3 | 2.7 | | | Gd-157 | 0.05 | 4.5 | 64 | 5.804+1 | 1.868-1 | 6.857-4(100.0%) | 6.558-4(100.0%) | 4 217-4 | 9.180-10 | 2 305-4 | 6.522-4 | 0.5 | +4.30-3 (3.1-4) | | Gd-157 | 0.05 | 4.5 | 64 | 1.161+2 | 2.287-1 | | 1.075-3(100.0%) | | 9.600-10 | | 1.040-3 | 1.0 | +4.47-3 (2.8-4) | | Gu-137 | 0.1 | 4.5 | 04 | T.10172 | 2.201-1 | 1.2/0-3(100.0%) | 1.0/3-3(100.0%) | 3.710-4 | J.000-10 | J. UJJ-4 | 1.040-3 | 1.0 | . 1. 1/-3 (2.0-4) | Table 6. Gd203 Burnable Poison Integrally mixed with the Outer One Third Part of the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
Loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | : | Reactivit
4 FPY v | | | BP
Penalty
at 4 FPY | MVC
at BOL | |----------------------------|--------------------------|----------------------------|--------------------------------|-------------------------------|--|--------------------------|---|--------------------------|-------------------------------|--------------------------|-------------------------------|---------------------------|---| | Ibooopo | (wt%Gd203 | ment | | Assembly) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Gd(BOL) | BP-tot
per
Gd(BOL) | Gd-tot
per
Gd(BOL) | Eu-tot
per
Gd(BOL) | Tb-tot
per
Gd(BOL) | BP-tot
per
Gd(BOL) | (FPD) | dkeff per -10%
water density
change (STD) | | Gd-nat
Gd-nat
Gd-nat | 4.0
8.0
12.0 | 4.5
4.5
4.5 | 08
08
08 | 1.899+2
3.728+2
5.490+2 | 4.752-2
5.458-2
5.900-2 | 6.022-1 (40.5%) | 1.430-2 (99.7%)
3.233-2 (98.5%)
1.082-1 (91.3%) | | 9.992-5
1.666-4
2.304-4 | 1.879-3 | 1.079-2
1.731-2
2.287-2 | 4.0 | | | Gd-nat | 2.0 | 4.5 | 16 | 1.917+2 | 7.575-2 | 1.004-1 (90.6%) | 8.869-3 (99.8%) | 6.010-3 | 6.260-5 | 7.653-4 | 6.838-3 | 2.3 | | |--------|------|-----|----|---------|---------|-----------------|-----------------|---------|---------|---------|---------|------|-----------------| | Gd-nat | 4.0 | 4.5 | 16 | 3.798+2 | 8.955-2 | 3.213-1 (68.7%) | 1.511-2 (99.6%) | 9.986-3 | 1.034-4 | 1.252-3 | 1.134-2 | 3.9 | -1.28-3 (2.8-4) | | Gd-nat | 8.0 | 4.5 | 16 | 7.456+2 | 1.028-1 | | 3.432-2 (98.4%) | | 1.757-4 | | 1.838-2 | 7.9 | -1.36-3 (2.6-4) | | Gd-nat | | 4.5 | 16 | 1.098+3 | 1.109-1 | | 1.134-1 (90.8%) | | 2.427-4 | | 2.384-2 | | -1.78-3 (2.6-4) | | Gu-nac | 12.0 | 4.5 | 10 | 1.030+3 | 1.109-1 | 7.101-1 (29.1%) | 1.134-1 (90.0%) | 2.102-2 | 2.42/-4 | 2.3/6-3 | 2.304-2 | 10.5 | -1.78-3 (2.6-4) | | Gd-nat | 4.0 | 4.5 | 18 | 4.273+2 | 1.007-1 | 3.234-1 (68.5%) | 1.491-2 (99.7%) | 1.029-2 | 1.039-4 | 1.252-3 | 1.164-2 | 4.5 | | | Gd-nat | 1.0 | 4.5 | 64 | 3.853+2 | 2.063-1 | 2.535-2 (98.0%) | 7.208-3 (99.8%) | 4.723-3 | 4.687-5 | 5.885-4 | 5.358-3 | 5.0 | | | Gd-155 | 4.0 | 4.5 | 08 | 1.895+2 | 5.344-2 | 7.235-1 (28.0%) | 1.448-1 (86.7%) | 1.334-2 | 4.300-8 | 1.300-4 | 1.347-2 | 2.8 | | | Gd-155 | 1.0 | 4.5 | 16 | 9.613+1 | 6.820-2 | 3.062-1 (69.8%) | 8.724-3 (99.8%) | 6.249-3 | 1.790-8 | 6.330-5 | 6.313-3 | 1.8 | | | Gd-155 | 2.0 | 4.5 | 16 | 1.913+2 | 8.409-2 | | 1.739-2 (99.3%) | 9.896-3 | 2.728-8 | 9.712-5 | 9.993-3 | 3.5 | -1.01-3 (2.6-4) | | Gd-155 | 4.0 | 4.5 | 16 | 3.791+2 | 1.014-1 | | 1.513-1 (86.1%) | | 4.409-8 | | 1.447-2 | 6.3 | -1.66-3 (2.6-4) | | Gd-155 | 8.0 | 4.5 | 16 | 7.441+2 | 1.172-1 | 8.085-1 (19.6%) | | | 7.470-8 | | 2.102-2 | 9.4 | -2.67-3 (2.5-4) | | Ga-155 | 0.0 | 4.5 | 10 | 7.44172 | 1.1/2-1 | 0.005-1 (19.0%) | 3.11/-1 (30.0%) | 2.003-2 | 7.470-8 | 1.912-4 | 2.102-2 | 7.4 | -2.67-3 (2.5-4) | | Gd-155 | 2.0 | 4.5 | 18 | 2.153+2 | 9.387-2 | 5.751-1 (42.9%) | 1.584-2 (99.4%) | 9.804-3 | 2.788-8 | 9.764-5 | 9.901-3 | 3.8 | | | Gd-155 | 1.0 | 4.5 | 64 | 3.845+2 | 2.283-1 | 3.190-1 (68.6%) | 1.032-2 (99.7%) | 7.468-3 | 2.016-8 | 7.963-5 | 7.548-3 | 7.2 | | | Gd-157 | 4.0 | 4.5 | 08 | 1.899+2 | 6.076-2 | 7.703-1 (23.1%) | 2.216-2 (98.3%) | 3.781-3 | 4.921-9 | 1.917-3 | 5.698-3 | 1.3 | | | Gd-157 | 0.2 | 4.5 | 16 | 1.933+1 | 6.151-2 | 6.950-4(100.0%) | 6.687-4(100.0%) | 4.452-4 | 2.215-9 | 2.327-4 | 6.779-4 | 0.2 | -1.02-3 (2.8-4) | | Gd-157 | 0.5 | 4.5 | 16 | 4.826+1 | 8.017-2 | 4.573-3 (99.7%) | | | 1.992-9 | 4.406-4 | 1.217-3 | 0.4 | | | Gd-157 | 1.0 | 4.5 | 16 | 9.629+1 | 9.198-2 | | 2.118-3(100.0%) | | 2.239-9 | 7.393-4 | 2.043-3 | 0.7 | -1.18-3 (2.8-4) | | Gd-157 | 2.0 | 4.5 | 16 | 1.917+2 | 1.033-1 | 6.244-1 (37.7%) | | | 3.025-9 | 1.252-3 | 3.646-3 | 1.6 | -1.64-3 (2.7-4) | | | | | | | | | | | | | | | | | Gd-157 | 4.0 | 4.5 | 16 | 3.797+2 | 1.132-1 | 7.717-1 (23.9%) | 3.265-2 (97.3%) | 3.806-3 | 4.280-9 | 2.068-3 | 5.874-3 | 2.7 | -1.78-3 (2.5-4) | | Gd-157 | 0.5 | 4.5 | 64 | 1.931+2 | 2.594-1 | 3.689-1 (63.2%) | 1.549-3(100.0%) | 1.019-3 | 1.154-9 | 5.440-4 | 1.563-3 | 1.5 | | Table 7. Gd203 Burnable Poison coating between the U02 Fuel Pellets and the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | BP | Thickness
BP Layer
(mills) | Density | Fuel | Number
Fuel Rods
with BP | BP Mass | | | y Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | s. BOL | | BP
Penalty | MVC
at BOL | |--------------------------------------|----------------------------------|------------------------------|--------------------------|--------------------------------|--|--|---|--|--------------------------|---|--------------------|--|--------------------------|--| | Твосорс | (MIII) | BP Gd203 | ment | (per Fuel
Assembly) | Assembly) (gram) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per | BP-tot
per
Gd(BOL) | Gd-tot
per
Gd(BOL) | Eu-tot
per | Tb-tot
per | | (FPD) | dkeff per -10%
water density
change (STD) | | Gd-nat | 4.0 | 1.00 | 4.5 | 80 | 4.709+2 | 5.690-2 | 6.794-1 (32.7%) | 6.434-2 (95.5%) | 1.774-2 | 2.209-4 | 2.155-3 | 2.011-2 | 4.6 | | | Gd-nat
Gd-nat
Gd-nat
Gd-nat | 1.0
2.0
4.0
8.0 | 1.00
1.00
1.00
1.00 | 4.5
4.5
4.5
4.5 | 16
16
16
16 | 2.376+2
4.738+2
9.418+2
1.860+3 | 8.035-2
9.371-2
1.075-1
1.221-1 | 4.214-1 (58.7%)
6.793-1 (32.8%) | 1.022-2 (99.8%)
1.807-2 (99.6%)
6.955-2 (95.1%)
3.883-1 (63.3%) | 1.205-2
1.904-2 | 7.878-5
1.348-4
2.330-4
4.046-4 | 1.454-3
2.298-3 | 8.031-3
1.364-2
2.157-2
3.366-2 | | -9.20-4 (2.7-4)
-1.00-3 (2.8-4)
-2.05-3 (2.6-4)
-2.92-3 (2.5-4) | | Gd-nat
Gd-nat
Gd-nat | 0.2
0.5
1.0 | 1.00
1.00
1.00 | 4.5
4.5
4.5 | 64
64
64 | 1.906+2
4.760+2
9.505+2 | 2.203-1 | 1.028-2 (99.3%)
4.187-2 (96.4%)
1.653-1 (84.3%) | 7.764-3 (99.8%) | 5.482-3 | 3.326-5
5.933-5
9.987-5 | 6.816-4 | 3.494-3
6.223-3
1.011-2 | 2.3
6.1
11.1 | +3.15-3 (3.3-4)
+4.65-3 (2.7-4)
+4.42-3 (2.7-4) | | Gd-nat | 0.5 | 0.10 | 4.5 | 104 | 7.435+1 | 1.053-1 | 4.377-3 (99.8%) | 2.771-3(100.0%) | 1.873-3 | 1.991-5 | 2.387-4 | 2.132-3 | 0.9 | | | Gd-155 | 4.0 | 1.00 | 4.5 | 08 | 4.700+2 | 6.621-2 | 8.126-1 (19.2%) | 5.705-1 (44.0%) | 2.276-2 | 8.709-8 | 1.942-4 | 2.296-2 | 6.5 | | | Gd-155
Gd-155
Gd-155 | 1.0
2.0
4.0 | 1.00
1.00
1.00 | 4.5
4.5
4.5 | 16
16
16 | 2.372+2
4.729+2
9.400+2 | 8.882-2
1.057-1
1.233-1 | 7.623-1 (24.2%) | 2.906-2 (97.1%)
2.901-1 (72.2%)
5.752-1 (43.6%) | 1.663-2 | 3.210-8
5.362-8
8.875-8 | 1.560-4 | 1.063-2
1.678-2
2.462-2 | 4.0
7.1
12.4 | -1.50-3 (2.8-4)
-2.23-3 (2.8-4)
-2.90-3 (2.6-4) | | Gd-155
Gd-155 | 2.0
4.0 | 1.00
1.00 | 4.5
4.5 | 18
18 | 5.320+2
1.058+3 | 1.176-1
1.364-1 | | 2.861-1 (72.7%)
5.809-1 (43.0%) | | 5.299-8
9.323-8 | | 1.732-2
2.483-2 | | | | Gd-155
Gd-155 | 0.2
0.5 | 1.00
1.00 | 4.5
4.5 | 64
64 | 1.902+2 | 1.743-1 | 2.743-1 (72.9%) | 6.854-3 (99.8%) | 5.051-3 | 1.324-8 | 5.378-5 | 5.105-3 | 4.2 | +2.91-3 (3.0-4)
+3.54-3 (2.7-4) | | Gd-155
Gd-155 | 0.5
1.0 | 0.10
0.10 | 4.5
4.5 | 104
104 | 7.720+1
1.542+2 | 1.222-1
1.821-1 | | 4.129-3(100.0%)
5.441-3 (99.8%) | | 8.193-9
1.067-8 | | 2.904-3
3.868-3 | | | | Gd-157 | 4.0 | 1.00 | 4.5 | 80 | 4.708+2 | 6.742-2 | 8.445-1 (15.7%) | 6.421-1 (36.2%) | 7.217-3 | 8.615-9 | 3.452-3 | 1.067-2 | 2.7 | | | Gd-157
Gd-157
Gd-157 | 0.5
1.0
2.0 | 1.00
1.00
1.00 | 4.5
4.5
4.5 | 16
16
16 | 1.190+2
2.376+2
4.737+2 | 9.541-2
1.062-1
1.168-1 | 6.942-1 (30.7%) | 2.447-3(100.0%)
4.207-3(100.0%)
2.065-1 (79.9%) | 2.747-3 | 2.410-9
3.137-9
4.797-9 | 1.452-3 | 2.543-3
4.200-3
6.872-3 | 0.9
1.9
3.2 | -1.35-3 (2.7-4)
-2.04-3 (2.4-4) | | Gd-157
Gd-157 | 1.0
2.0 | 1.00
1.00 | 4.5
4.5 | 18
18 | 2.673+2
5.329+2 | 1.173-1
1.286-1 | | 4.189-3(100.0%)
2.170-1 (78.9%) | | 3.041-9
4.584-9 | | 4.205-3
7.011-3 | 2.3 | | | Gd-157
Gd-157
Gd-157
Gd-157 | 0.2
0.5
1.0
0.1 | 0.10
0.10
0.10
1.00 | 4.5
4.5
4.5
4.5 | 64
64
64 | 1.905+1
4.759+1
9.503+1
9.529+1 | 1.121-1
1.752-1
2.215-1
2.187-1 | 5.818-4(100.0%)
9.686-4(100.0%) |
3.684-4(100.0%)
5.872-4(100.0%)
9.298-4(100.0%)
9.449-4(100.0%) | 3.623-4
5.749-4 | 1.202-9
9.052-10
8.998-10
9.218-10 | 2.095-4
3.225-4 | 3.625-4
5.718-4
8.974-4
9.388-4 | 0.2
0.4
0.6
0.8 | +1.92-3 (3.6-4)
+3.89-3 (3.0-4)
+4.29-3 (2.9-4) | | Gd-157
Gd-157 | 0.2
0.5 | 0.10
0.10 | 4.5
4.5 | 104
104 | 3.096+1
7.733+1 | 1.636-1
2.430-1 | | 4.112-4(100.0%)
7.156-4(100.0%) | | 8.930-10
7.822-10 | | 4.024-4
6.912-4 | 0.3
1.0 | | Table 8. Gd Burnable Poison Integrally mixed with the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | | | BP
Penalty | MVC
at BOL | |--|--|---------------------------------|--------------------------------|--|--|--|---|--|--|--|--|-------------------|---| | IBOCOPO | (wt%Gd in
Zr-4) | n ment | (per Fuel
Assembly) | Assembly) | | BP-tot
per | BP-tot
per
Gd(BOL) | Gd-tot
per
Gd(BOL) | Eu-tot
per
Gd(BOL) | Tb-tot
per
Gd(BOL) | BP-tot
per
Gd(BOL) | (FPD) | dkeff per -10%
water density
change (STD) | | Gd-nat
Gd-nat
Gd-nat
Gd-nat | 1.0
2.0
4.0
8.0 | 4.5
4.5
4.5
4.5 | 16
16
16
16 | 5.753+1
1.153+2
2.314+2
4.665+2 | 5.172-2
6.921-2
8.611-2
1.010-1 | 9.340-3 (99.4%)
2.783-2 (97.7%)
1.227-1 (87.7%)
3.719-1 (63.6%) | 6.120-3(100.0%) | 2.857-3
4.269-3
6.570-3
1.113-2 | 3.097-5
4.884-5
7.318-5
1.269-4 | 5.106-4
7.469-4 | 3.216-3
4.828-3
7.387-3
1.250-2 | 1.35
2.8 | -1.08-3 (2.9-4)
-6.9-3 (2.8-4)
-1.16-3 (2.6-4)
-1.77-4 (2.7-4) | | Gd-nat | 0.20 | 4.5 | 104 | 7.467+1 | 1.103-1 | 3.773-3 (99.8%) | 2.655-3(100.0%) | 1.758-3 | 1.912-5 | 2.091-4 | 1.986-3 | 0.80 | +1.79-3 (4.2-4) | | Gd-155
Gd-155
Gd-155
Gd-155
Gd-155 | 1.0
2.0
4.0
8.0
0.05
0.20 | 4.5
4.5
4.5
4.5
4.5 | 16
16
16
16
104 | 5.753+1
1.153+2
2.314+2
4.665+2
1.866+1
7.468+1 | 5.778-2
7.646-2
9.502-2
1.134-1
4.391-2
1.269-1 | 1.251-1 (87.9%)
3.483-1 (65.6%)
5.994-1 (40.5%)
7.408-1 (26.4%)
7.161-3 (99.5%)
1.509-2 (98.8%) | 9.236-3 (99.8%)
2.054-2 (99.0%)
2.258-1 (78.7%) | 6.651-3
1.022-2
1.619-2 | 1.328-8
1.884-8
2.890-8
4.850-8
7.472-9
7.700-9 | 6.331-5
9.310-5
1.371-4
2.055-5 | 4.580-3
6.714-3
1.032-2
1.632-2
2.045-3
2.800-3 | 2.0
3.9
8.1 | -1.08-3 (2.8-4)
-9.3-4 (2.7-4)
-1.10-3 (2.7-4)
-2.02-3 (2.7-4) | | Gd-157
Gd-157 | 1.0
2.0 | 4.5
4.5 | 08
08 | 2.877+1
5.764+1 | 4.710-2
5.462-2 | 6.485-3 (99.5%)
2.615-1 (74.0%) | | 8.286-4
1.430-3 | 3.059-9
3.084-9 | 4.226-4
6.868-4 | 1.251-3
2.116-3 | | | | Gd-157
Gd-157
Gd-157
Gd-157
Gd-157 | 0.20
0.50
1.0
2.0
4.0 | 4.5
4.5
4.5
4.5
4.5 | 16
16
16
16
16 | 1.149+1
2.874+1
5.753+1
1.153+2 | 5.270-2
7.460-2
8.959-2
1.025-1 | 4.681-4(100.0%)
8.145-4(100.0%)
7.855-3 (99.3%)
2.734-1 (72.8%) | 8.402-4(100.0%)
1.411-3(100.0%) | 5.351-4
8.703-4 | 2.431-9
1.911-9
1.881-9
2.146-9 | 2.618-4
4.357-4 | 4.545-4
7.969-4
1.306-3
2.219-3 | 0.26 | -1.21-3 (2.7-4)
-1.25-3 (2.5-4)
-1.85-3 (2.6-4) | | Gd-157
Gd-157 | 0.05
0.10 | 4.5
4.5 | 104
104 | 1.866+1
3.733+1 | 1.303-1
1.892-1 | 3.221-4(100.0%)
4.339-4(100.0%) | | | 1.044-9
8.052-10 | | 3.028-4
4.173-4 | | +2.84-3 (9.7-4)
+4.40-3 (8.2-4) | The capture cross sections for the gadolinium isotopes are given in ref. 11. The ¹⁵⁵Gd and ¹⁵⁷Gd stable isotopes of gadolinium exhibit very large neutron capture cross sections. The natural isotopic abundances are 14.8% for ¹⁵⁵Gd and 15.7% for ¹⁵⁷Gd. Other stable isotopes of gadolinium exhibit small capture cross sections. In the use of gadolinium with natural isotopic abundances as a burnable absorber, their presence will cause a residual negative reactivity worth at EOL of the fuel. The removal of these stable isotopes by enriching gadolinium in ¹⁵⁵Gd or ¹⁵⁷Gd, will thus reduce the residual negative reactivity worths. In addition, in order to achieve a given initial negative reactivity worth and for a given number of IFBA rods, the percentage of gadolinium enriched in ¹⁵⁵Gd or ¹⁵⁷Gd that has to be mixed in the UO₂ fuel, coating or cladding will be much smaller. Because of the very large thermal neutron capture cross section of ¹⁵⁵Gd and especially of ¹⁵⁷Gd, a larger self-shielding effect of the poison can be achieved with the same weight percent of gadolinia in the fuel. If the weight percent of gadolinia in the UO₂ pellets is limited due to material considerations, then the use of enriched gadolinium could lead to longer burnout times of the burnable poisons. Note that the 158 Gd (n, γ) 159 Gd reaction produces 159 Gd with a half-life of 18.5 days, which then decays into 159 Tb. The neutron capture cross section of 159 Tb is approximately 23 barns at 0.0253 eV and that 159 Tb exhibits large resonances in the epithermal energy region [resonance integral (RI) 420 barns]. For the same initial reactivity worth of the BP, the relative residual reactivity worth at EOL due to 159 Tb will thus be larger for 157 Gd than for natural Gd or 155 Gd. Table 5 displays the results of using Gd_2O_3 mixed homogeneously with the fuel pellets of a number of fuel rods. For three different cases containing 16 IFBA rods per fuel assembly and having a similar initial reactivity worth of the burnable poison $(1.10\times10^{-1}\ \text{for natural Gd}\ \text{and 4}\ \text{wt}\ \%\ Gd_2O_3$, $1.095\times10^{-1}\ \text{for}\ ^{155}\text{Gd}\ \text{and 2}\ \text{wt}\ \%\ Gd_2O_3$, $1.075\times10^{-1}\ \text{for}\ ^{157}\text{Gd}\ \text{and 1.0}\ \text{wt}\ \%\ Gd_2O_3$), the residual reactivity worth fraction was $2.51\times10^{-2}\ \text{for natural Gd}$, $1.89\times10^{-2}\ \text{for}\ ^{155}\text{Gd}\ \text{and }5.06\times10^{-3}\ \text{for}\ ^{157}\text{Gd}$. The use of $^{155}\text{Gd}\ \text{gave}\ \text{a}\ \text{slight}\ \text{improvement}\ \text{over natural Gd}$, and the use of $^{157}\text{Gd}\ \text{gave}\ \text{an}\ \text{improvement}\ \text{by}\ \text{a}\ \text{factor}\ \text{of}\ \text{approximately}\ \text{five}$. The residual reactivity worth of the BP at EOL of the fuel can be given as an equivalent penalty in FPDs of operation of the reactor: 11.3 FPD for the natural Gd case, 8.6 FPDs for the $^{155}\text{Gd}\ \text{case}$, and 2.3 FPDs for the $^{157}\text{Gd}\ \text{case}$. Note also that for these cases (which have a similar initial reactivity worth of the burnable poison), the use of $^{157}\text{Gd}\ \text{decreased}$ the required mass of gadolinia by a factor of four. The residual negative reactivity worth due to the buildup of Tb in the BP is 10% of the total for natural Gd, 1% for $^{155}\text{Gd}\ \text{and}\ ^{157}\text{Gd}\ \text{burnable}$ poison cases and less than 1% for the natural Gd case. Note that for each case, all the BP isotopes and their daughters (which are not present in the initial loading of the BP) have been added as traces to the BP with a number density of 1.0×10^{-15} instead of zero. This is to avoid problems with the calculations at the beginning of cycle (BOC) with the MCNP4C code and to avoid computer exception errors (division by zero) when calculating spectrum-weighted cross sections in the GP-TALLY code. Figure 9 shows the reactivity worths for a representative case that has 16 IFBA rods per fuel assembly and 4.0 wt% gadolinia homogeneously with the fuel. The worths displayed are for a reactor core containing 193 fuel assemblies at a total power level of 3,400 MWth. Values of the fuel assembly lattice k_{inf} with and without BP are also shown. Note that during the calculations with the GP-TALLY code, nine depletion time steps were taken between each of the symbols displayed. The figure exhibits several interesting features. For example, the case with 16 IFBA rods whose fuel pellets contain 4.0 wt % Gd₂O₃ with natural Gd exhibits several interesting effects. The reactivity worth of the burnable poison isotope ¹⁵⁷Gd decreases rapidly with depletion time and reaches a nearly constant value at approximately 600 FPDs [approximately 22 gigawatt days per metric ton of uranium (GWD/MTU) burnup]. The reactivity worth of ¹⁵⁶Gd increases slightly with depletion time, due the production of 156 Gd through the 155 Gd (n, γ) 156 Gd reaction, and it reaches a nearly equilibrium value. Since the neutron capture cross section of ¹⁵⁷Gd is much greater than that of ¹⁵⁶Gd, the capture reaction rate (and thus the reactivity worth) of ¹⁵⁷Gd reaches a secular equilibrium with the capture reaction rate of ¹⁵⁶Gd. After most of the original ¹⁵⁷Gd nuclei have burned out, ¹⁵⁷Gd nuclei are produced through the 156 Gd (n, γ) 157 Gd reaction. Since the neutron capture cross section of ¹⁵⁷Gd is much larger than that of ¹⁵⁶Gd, these ¹⁵⁷Gd nuclei will burn away at a much higher rate than the ¹⁵⁶Gd nuclei, essentially immediately after they were created. This effect is similar to the
secular equilibrium effect in the decay of a parent isotope that has a very long half-life, together with its daughter, which has a very short half-life. In the case of 156Gd/157Gd we reach a secular equilibrium between a parent isotope that has a small neutron capture cross section (156Gd), together with its daughter, which has a very large cross section (157Gd). Another secular equilibrium of the reactivity worths is reached between the burnable poison isotopes ¹⁵⁴Gd (small absorption cross section) and ¹⁵⁵Gd (large absorption cross section). Another interesting effect is the increase of the reactivity worth of ¹⁵⁵Gd as a function of depletion time at the beginning of the fuel cycle, even though the mass of ¹⁵⁵Gd decreases (see BP masses in figure 23). This can be explained as follows: The natural isotopic abundances for ¹⁵⁵Gd and ¹⁵⁷Gd are similar (14.8% vs 15.7%). However, the neutron capture cross section of ¹⁵⁷Gd is much larger than the capture cross section of ¹⁵⁵Gd. Due to the higher cross section of ¹⁵⁷Gd, the total mass of ¹⁵⁷Gd decreases faster with depletion time than the mass of ¹⁵⁵Gd. The faster reduction of the amount of ¹⁵⁷Gd will make the neutron spectrum softer and thus the spectrum-weighted capture cross section of ¹⁵⁵Gd will increase even though the mass of ¹⁵⁵Gd decreases. However, after approximately 100 days (approximately 4 GWD/MTU burnup), a sufficient amount of ¹⁵⁵Gd has been burned out that the reactivity worth of the ¹⁵⁵Gd starts to decrease. The use of 0.5 wt % Gd_2O_3 fully enriched with ^{157}Gd gives an initial reactivity worth of the BP of 9.800×10^{-2} (see Table 5). Doubling the content to 1.0 wt % Gd_2O_3 with ^{157}Gd increases only slightly the initial reactivity worth to 1.075×10^{-1} , an increase of 9.5%. Increasing the content to 2 wt % Gd_2O_3 increases the initial worth to 0.118, an increase of only 12%. The large neutron capture cross section of ^{157}Gd makes the IFBA pellets virtually "black," and adding more BP only slightly changes the initial reactivity worth of the BP. In Table 5 we also have displayed the relative BP reactivity ratios at 120 FPD and 1 FPY. The burnout times of the BP for the 1.0 wt % loading are substantially **Figure 9** Negative reactivity of BP for Gd-nat and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 16 poison rods, $4.0 \text{ wt.}\% \text{ Gd}_2\text{O}_3$ poison homogeneously mixed in the UO₂ pellets. Reactor power, 3400 MWth, 193 fuel assemblies, initial enrichment, $4.5 \text{ wt}\% ^{235}\text{U}$ longer than for the 0.5 wt % loading. The burnout rates of the BP can be controlled with the loading and thus with the "blackness" of the BP. Note however that the residual negative reactivity worth at 4 FPY increases from 2.150×10^{-3} to 5.055×10^{-3} . Comparison of the total worth of the burnable poison for the 0.5 wt %, 1.0 wt %, and 2.0 wt % Gd_2O_3 loadings clearly show that the burnout times are much longer for the 1.0 wt % loading than for the 0.5 wt % loading, and even longer for the 2.0 wt % loading. Comparison of the cases containing 64 IFBA rods with the cases containing 16 or 8 IFBA rods clearly show that, for a given initial reactivity worth, the burnout rates are much greater for 64 IFBA rods than for 16 or 8 IFBA rods. This is clearly due to the self-shielding effect of the neutrons inside the IFBA pellets. The residual BP reactivity worths are smaller for the 64 IFBA cases. The MVCs were calculated by decreasing the water coolant density by 10%. The one-sigma STDs of the fuel assembly lattice k_{inf} were better than 0.03%. Note that for all the cases containing 8 and 16 IFBA rods, the MVCs remain negative. For the cases with 64 IFBA rods, the MVC becomes positive for the lattices containing identical standard 17×17 fuel assemblies with the same BP loadings. Calculations of the MVC were not performed for checkerboard loadings of fuel assemblies containing 64 IFBA rods in selected reactor core locations, or for fuel assemblies with different fuel-to-water ratios. Figure 10 displays the initial reactivity worths of the BP as a function the equivalent penalty (given in FPDs of reactor operation) for several configurations containing 16 IFBA rods. The FPD penalty is directly related to the residual negative reactivity worth of the BPs and their daughters at EOL of the fuel. The trend for the four different forms of the BPs are very similar. Note also the clear advantage of using gadolinium enriched in ¹⁵⁷Gd over gadolinium with natural isotopic abundances. Figure 11 displays the initial reactivity worths vs FPD penalty for fuel assembly configurations containing 64 IFBA rods. For the cases where the BP is mixed uniformly with the cladding of a number of fuel rods, the required loading using natural gadolinium might be too high (e.g., 8 wt %). In order to achieve a given initial reactivity worth of the BP, the use of gadolinium enriched in ¹⁵⁷Gd substantially reduces the required loading in the cladding. Figure 10 Burnable poison initial reactivity worth as a function of FPD Penalty -- Gd in 16 IFBA rods Figure 11 Burnable poison initial reactivity worth as a function of FPD penalty -- Gd in 64 IFBA rods #### **Neutronics Performance Results for Samarium** The use of samarium with natural isotopic abundances as a burnable poison has been previously discarded because of the large residual negative reactivity worth of the samarium burnable poison isotopes and their daughters at EOL of the fuel. The use of samarium enriched in ¹⁴⁹Sm greatly reduces this residual absorber burden. In this section, we will investigate the potential benefits of using enriched samarium as a burnable absorber in PWRs. Four different configurations of the samarium burnable poison, similar to those of the case of Gd, were investigated. The results for each configuration are summarized in Tables 9-12. In all the neutronics calculations presented in this section, a theoretical density of 7.43 g/cm³ was used for Sm_2O_3 , and 7.7 g/cm³ for metallic samarium. For UO_2 a theoretical density of 10.97 g/cm³ was used. The actual density fraction of the fuel pellets and of the burnable poison pellets was 95% of theoretical density. The half-lives, natural isotopic abundances, and burnup chains related to the depletion and transmutation of samarium are given below. Note that the adjacent bands of isotopes such as the Gd isotopes (decay from Eu isotopes) and Nd isotopes (decay from Pm isotopes) are not shown. Also the isomeric states of certain isotopes are not shown. However, the generation of these daughters was taken into account in the BP depletion and decay calculations. The ¹⁴⁹Sm stable isotope (13.8% natural isotopic abundance) exhibits a very large neutron capture cross section (thermal cross section of 40.150 barns and an RI of 3.400 barns). The 149 Sm (n,γ) 150 Sm reaction leads to ¹⁵⁰Sm, which is stable and has a thermal capture cross section of 104 barns. ¹⁴⁴Sm (3%) and ¹⁴⁸Sm (11%) have small capture cross sections (thermal values of 0.7 and 2.5 barns, respectively). ¹⁵⁴Sm (27%) has a capture cross section of approximately 10 barns at 0.0253 eV. The other stable isotopes, such as ¹⁴⁷Sm (15%) and ¹⁵⁰Sm (7%), have thermal capture cross sections of the order of 57 and 104 barns, respectively. The 150 Sm (n,γ) 151 Sm reaction leads to 151 Sm, which has a very large neutron capture cross section (thermal value of 15,200 barns and RI of 3,520 barns). ¹⁵¹Sm decays to ¹⁵¹Eu with a half-life of 93 years. Because of the long half-life, only very small amounts of ¹⁵¹Eu will be generated. Note that ¹⁵¹Eu exhibits a very large capture cross section. (thermal value of 9,200 barns and RI of 3,300 barns). Because of the long half-life of ¹⁵¹Sm and the very large thermal capture cross section of ¹⁵¹Sm, the preferential path will be the transmutation of ¹⁵¹Sm into ¹⁵²Sm. The stable isotope ¹⁵²Sm (26.7%) has a large neutron capture cross section (thermal value of 206 barns and RI 2,970 barns). The 152 Sm (n, γ) 153 Sm reaction leads to 153 Sm which decays to ¹⁵³Eu with a half-life of 46.7 hours. Because of the relatively short half-life of ¹⁵³Sm, most of the generated ¹⁵³Sm will be converted into ¹⁵³Eu. ¹⁵³Eu is stable and exhibits a very large capture cross section. Transmutation to ¹⁵⁴Eu (8.6 year half-life) and ¹⁵⁵Eu (4.76 year half-life) will still result in an appreciable combined residual capture. Because of the presence of isotopes with small to medium capture cross sections in samarium with natural isotopic abundances, and because of the generation of ¹⁵³Eu, enriching samarium in ¹⁴⁹Sm should lead to a smaller residual neutron absorption of the BP. | Half-life | | | | | 93.1d
¹⁴⁹ Eu | 36y
¹⁵⁰ Eu | stable
151Eu | 13.54y
¹⁵² Eu | stable
153Eu | 8.59y
¹⁵⁴ Eu | 4.75y
¹⁵⁵ Eu | 15.2d
¹⁵⁶ Eu | |--------------|-------------------|-------------------|-------------------|---------------------|----------------------------|--------------------------|-------------------|-----------------------------|-------------------|----------------------------|----------------------------|----------------------------| | | | | | | EC | EC | β- | EC/β+ | β- | | β- | | | Nat. Abund | 3.1% | 340d | 1.0×10 | 15.0% | 11.3% | 13.8% | 7.4% | 90y | 26.7% | 1.93d | 22.7% | 22.2m | | rvat. Tround | | | ^{8}y | | • | • | | • | | | | | | | ¹⁴⁴ Sm | ¹⁴⁵ Sm | ¹⁴⁶ Sm | ¹⁴⁷ Sm | ¹⁴⁸ Sm | ¹⁴⁹ Sm | ¹⁵⁰ Sm | ¹⁵¹ Sm | ¹⁵² Sm | ¹⁵³ Sm | ¹⁵⁴ Sm | ¹⁵⁵ Sm | | | | EC | | β- | β- | β- | β- | β- | β- | B | , b- | | | Half-life | 165d | 360d | 17.7y | 5.53y | 2.62y | 5.4d \ | 2.2d | 2.68h | 1.18d | 4.1m | 5.4m | 1.7m | | | ¹⁴³ Pm | ¹⁴⁴ Pm | ¹⁴⁵ Pm | ¹⁴⁶ Pm \ | ¹⁴⁷ Pm \ | ¹⁴⁸ Pm | ¹⁴⁹ Pm | ¹⁵⁰ Pm \ | ¹⁵¹ Pm | ¹⁵² Pm | ¹⁵³ Pm | ¹⁵⁴ Pm | Table 9 displays the results of using Sm₂O₃, mixed homogeneously with the fuel pellets of a number of fuel rods, and Tables 10-12
summarize similar data for the other three configurations. Note that for the same initial reactivity worth of the BP, the residual negative reactivity worth of samarium enriched in ¹⁴⁹Sm is smaller than the residual worth of samarium with natural isotopic abundances. The relative contribution from the europium daughters is also smaller. The reactivity worths of the BP isotopes, for a 4.0 wt % loading of Sm₂O₃ with natural isotopic abundances, homogeneously mixed inside the fuel pellets of 16 IFBA rods per fuel assembly, are shown in Figure 35. The initial reactivity worth of the BP is 0.112 and the residual reactivity ratio is 16.1%. For a 1.0 wt % homogeneous loading in 16 IFBA rods containing Sm₂O₃ fully enriched in ¹⁴⁹Sm, the results are shown in Figure 37. The initial reactivity worth of the BP is 0.114, and the residual reactivity ratio is 5.5%. While for these two cases the initial reactivity worth of the BP is the same, the use of samarium enriched in ¹⁴⁹Sm requires a loading that is four times smaller than a BP containing samarium with natural isotopic abundances. If the weight percentage loading of the BP is a limiting factor due to material considerations, then the use of ¹⁴⁹Sm will produce an added benefit, such as increased allowable amounts of BP in each of the IFBA rods. Longer burnout times with the same initial reactivity worth of the BP can then be achieved, which are needed for long fuel cycles. In Table 9 the residual reactivity worths, due to the Pm daughters of the BP containing samarium enriched in 149 Sm, should essentially be zero, since only the decay of 145 Sm leads to 145 Pm. There are essentially no paths from the transmutation of 149 Sm to any of the Pm isotopes. However, the table shows residual reactivity worths of the order of 1.0×10^{-10} . This is because for each case, all the BP isotopes and their daughters (which are not present in the initial loading of the BP) have been added as traces to the BP with a number density of 1.0×10^{-15} instead of zero. This is to avoid problems at the BOC in the input to the MCNP4C code and to avoid computer exception errors (division by zero) when calculating spectrum-weighted cross sections in the TALLY code. Comparison of the cases containing 64 IFBA rods with the cases containing 16 or 8 IFBA rods clearly show that, for a given initial reactivity worth, the burnout rates are greater for 64 IFBA rods than for 16 or 8 IFBA rods. This is clearly due to the self-shielding effect of the neutrons in the IFBA rods. Note that the residual BP reactivity worths are smaller for the 64 IFBA cases. Figure 12 exhibits several interesting features. The reactivity worth of the burnable poison isotope 149 Sm decreases rapidly with depletion time, and reaches a nearly constant value at approximately 350 FPDs (approximately 13 GWD/MTU burnup). The reactivity worth of 148 Sm increases slightly with depletion time, due the production of 148 Sm through the 147 Sm (n, γ) 148 Sm reaction, and it reaches a nearly equilibrium value. Since the neutron capture cross section of 149 Sm is much greater than that of 148 Sm, the capture reaction rate (and thus the reactivity worth) of 149 Sm reaches a secular equilibrium with the capture reaction rate of 148 Sm. After most of the original 149 Sm nuclei have burned out, 149 Sm nuclei are produced through the 148 Sm (n, γ) 149 Sm reaction. Since the neutron capture cross section of 149 Sm is much larger than that of 148 Sm, these 149 Sm nuclei will burn away at a much higher rate than the 148 Sm nuclei, essentially immediately after they were created. This effect is similar to the secular equilibrium effect in the decay of a parent isotope that has a very long **Figure 12** Negative reactivity of BP for Sm-nat and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 16 poison rods, 4.0wt% Sm₂0₃ poison homogeneously mixed in the UO₂ pellets. Reactor power is 3400 MWth, 193 fuel assemblies, initial enrichment is $4.5\text{wt}\%^{235}\text{U}$. half-life together with its daughter, which has a very short half-life. In the case of ¹⁴⁸Sm/¹⁴⁹Sm, we reach a secular equilibrium between a parent isotope that has a small neutron capture cross section (¹⁴⁸Sm), together with its daughter, which has a very large cross section (¹⁴⁹Sm). Table 9. Sm Burnable Poison Integrally mixed with the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
Loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivity
120 FPD vs.BOL | Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | | | BP
Penalty
at 4 FPY | MVC
at BOL | |--------------------------|--------------------------|----------------------------|--------------------------------|------------------|--|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---| | | (wt%Sm2O3 | ment | (per Fuel
Assembly) | Assembly) (gram) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Sm(BOL) | BP-tot
per
Sm(BOL) | Sm-tot
per
Sm(BOL) | Pm-tot
per
Sm(BOL) | Eu-tot
per
Sm(BOL) | BP-tot
per
Sm(BOL) | (FPD) | dkeff per -10%
water density
change (STD) | | | | | | | (-dkell/kell) | SIII(BOII) | SIII(BOH) | SM(BOH) | SIII(BOII) | SIII (BOII) | SIII (BOL) | | change (515) | | Sm-nat | 4.0 | 4.5 | 80 | 5.664+2 | 5.922-2 | | 1.587-1 (99.4%) | | 5.209-9 | | 1.534-1 | 39.7 | -1.64-3 (2.7-4) | | Sm-nat | 8.0 | 4.5 | 80 | 1.112+3 | 6.740-2 | 7.595-1 (31.3%) | 3.344-1 (86.5%) | 1.070-1 | 9.464-9 | 1.234-1 | 2.304-1 | 68.5 | -2.96-3 (2.7-4) | | Sm-nat | 0.5 | 4.5 | 16 | 1.440+2 | 6.090-2 | 5.762-2 (98.7%) | 5.941-2 (98.5%) | 1.572-2 | 1.502-9 | 2.937-2 | 4.509-2 | 11.7 | -1.21-3 (2.8-4) | | Sm-nat | 1.0 | 4.5 | 16 | 2.873+2 | 7.942-2 | 8.153-2 (98.5%) | 8.057-2 (98.6%) | | 2.000-9 | | 6.773-2 | 22.6 | -9.70-4 (2.7-4) | | Sm-nat | 2.0 | 4.5 | 16 | 5.718+2 | 9.567-2 | 2.441-1 (84.5%) | 1.156-1 (98.9%) | | 3.254-9 | | 1.055-1 | 41.3 | -2.19-3 (2.5-4) | | Sm-nat | 4.0 | 4.5 | 16 | 1.133+3 | 1.120-1 | 5.684-1 (51.5%) | 1.635-1 (99.7%) | | 5.422-9 | | 1.612-1 | 79.7 | -2.45-3 (2.5-4) | | Sm-nat | 8.0 | 4.5 | 16 | 2.224+3 | 1.274-1 | 7.580-1 (21.7%) | | | 9.710-9 | | 2.363-1 | | -3.41-3 (2.6-4) | | | 2.0 | 4.5 | 20 | 7.147+2 | 1 100 1 | 0 407 1 (04 00) | 1 160 1 (00 00) | 4 056 0 | 2 000 0 | | 1.068-1 | 49.1 | | | Sm-nat | | | | | 1.172-1 | 2.427-1 (84.8%) | | | 3.276-9 | | | | | | Sm-nat | 4.0 | 4.5 | 20 | 1.416+3 | 1.371-1 | 5.744-1 (50.4%) | 1.686-1 (99.3%) | 7.095-2 | 5.547-9 | 9.189-2 | 1.628-1 | 105.8 | | | Sm-nat | 0.1 | 4.5 | 64 | 1.154+2 | 8.483-2 | 4.132-2 (98.4%) | 3.918-2 (98.6%) | 8.543-3 | 8.995-10 | 1.684-2 | 2.540-2 | 9.5 | | | Sm-nat | 0.2 | 4.5 | 64 | 2.307+2 | 1.328-1 | 4.947-2 (98.2%) | 4.847-2 (98.3%) | 1.089-2 | 9.765-10 | 2.157-2 | 3.245-2 | 21.1 | +8.6-4 (3.4-4) | | Sm-nat | 0.5 | 4.5 | 64 | 5.759+2 | 2.083-1 | 6.786-2 (98.3%) | 6.865-2 (98.2%) | 1.797-2 | 1.403-9 | 3.354-2 | 5.151-2 | 37.8 | , | | Sm-nat | 1.0 | 4.5 | 64 | 1.149+3 | 2.580-1 | 9.751-2 (98.3%) | 9.811-2 (98.2%) | 3.053-2 | 2.182-9 | 5.133-2 | 8.186-2 | 90.0 | | | | | | | | | | | | | | | | | | Sm-149 | 1.0 | 4.5 | 08 | 1.434+2 | 6.039-2 | 6.964-1 (32.0%) | 1.323-1 (91.5%) | 3.569-2 | 4.825-10 | 1.637-2 | 5.205-2 | 13.1 | -1.77-3 (2.6-4) | | Sm-149 | 2.0 | 4.5 | 08 | 2.855+2 | 6.820-2 | 7.970-1 (22.1%) | 4.109-1 (64.0%) | 5.784-2 | 5.724-10 | 2.143-6 | 7.926-2 | 22.5 | -2.72-3(2.7-4) | | Sm-149 | 4.0 | 4.5 | 08 | 5.657+2 | 7.587-2 | 8.408-1 (19.1%) | 6.200-1 (45.6%) | 9.300-2 | | | 1.667-1 | 35.5 | , | | Sm-149 | 0.1 | 4.5 | 16 | 2.881+1 | 6.889-2 | 7.476-3(100.3%) | 8.755-3(100.2%) | 6 957 3 | 3.285-10 | 4 272-2 | 1.113-2 | 2.7 | -9.7-4 (2.8-4) | | Sm-149 | 0.1 | 4.5 | 16 | 5.759+1 | 8.404-2 | 5.113-2 (96.6%) | | 1.122-2 | | | 1.790-2 | 6.8 | -8.4-4 (2.8-4) | | Sm-149 | 0.5 | 4.5 | 16 | 1.437+2 | 1.013-1 | 4.746-1 (54.4%) | 2.610-2(100.4%) | | 2.765-10 | | 3.404-2 | 12.8 | -1.63-3 (2.7-4) | | Sm-149 | 1.0 | 4.5 | 16 | 2.869+2 | 1.136-1 | 7.022-1 (31.5%) | 1.343-1 (91.6%) | | 3.200-10 | | 5.477-2 | 23.4 | -2.11-3 (2.5-4) | | Sm-149 | 2.0 | 4.5 | 16 | 5.710+2 | 1.273-1 | 7.921-1 (22.7%) | 4.238-1 (62.9%) | | | | 8.384-2 | 43.0 | -3.63-3 (2.4-4) | | Sm-149 | 4.0 | 4.5 | 16 | 1.131+3 | 1.413-1 | 8.408-1 (18.1%) | 6.197-1 (43.3%) | | 7.464-10 | | 1.216-1 | 65.9 | -5.34-3 (2.6-4) | | 3III-143 | 4.0 | 4.5 | 10 | 1.131+3 | 1.413-1 | 0.400-1 (10.1%) | 0.137-1 (43.3%) | J.000-Z | 7.404-10 | 2.4/1-2 | 1.210-1 | 03.3 | -3.31-3 (2.0-1) | | Sm-149 | 1.0 | 4.5 | 20 | 3.586+2 | 1.397-1 | 6.914-1 (32.7%) | 1.140-1 (93.9%) | 3.839-2 | | | 5.611-2 | 34.9 | | | Sm-149 | 2.0 | 4.5 | 20 | 7.138+2 | 1.537-1 | 8.006-1 (21.8%) | 4.250-1 (63.0%) | 6.368-2 | | | 8.694-2 | 56.1 | | | Sm-149 | 4.0 | 4.5 | 20 | 1.414+3 | 1.716-1 | 8.388-1 (18.4%) | 6.220-1 (43.2%) | | 7.266-10 | | 1.258-1 | 85.0 | | | Sm-149 | 8.0 | 4.5 | 20 | 2.777+3 | 1.905-1 | 8.663-1 (16.2%) | 7.180-1 (34.2%) | 1.527-1 | 1.447-9 | 2.188-2 | 1.746-1 | 225.1 | | | Sm-149 | 0.05 | 4.5 | 64 | 5.763+1 | 1.757-1 | 5.892-3(100.3%) | 7.036-3(100.2%) | 5.448-3 | 1.344-10 | 3.532-3 | 8.980-3 | 2.1 | +1.91-3 (3.0-4) | | Sm-149 | 0.1 | 4.5 | 64 | 1.152+2 | 2.261-1 | 9.340-3(100.5%) | 1.108-2(100.3%) | | 1.155-10 | | 1.388-2 | 15.7 | +3.11-3 (2.7-4) | | Sm-149 | 0.2 | 4.5 | 64 | 2.304+2 | 2.678-1 | | 1.784-2(100.5%) | | 1.160-10 | | 2.278-2 | 24.7 | | | Dm .T43 | 0.2 | 1.5 | 0.2 | 2.30472 | 2.070-1 | 3.003 2 (37.1%) | 1.,01 2(100.5%) | 1.111-2 | 1.130-10 | 0.000-3 | 2.2/0-2 | 44.7 | | Table 10. Sm Burnable Poison Integrally mixed with the Outer One Third Part of the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope |
Initial
Loading | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | 1 FPY vs.BOL | | Reactivit
4 FPY v | s. BOL | | BP
Penalty | MVC
at BOL | |--------------------------|--------------------|----------------------------|--------------------------------|---------------------|--|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------|---| | Isotope | (wt%Sm2O3 | ment | (per Fuel
Assembly) | Assembly)
(gram) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Sm(BOL) | BP-tot
per
Sm(BOL) | Sm-tot
per
Sm(BOL) | Pm-tot
per
Sm(BOL) | Eu-tot
per
Sm(BOL) | BP-tot
per
Sm(BOL) | (FPD) | dkeff per -10%
water density
change (STD) | | Sm-nat | 4.0 | 4.5 | 08 | 1.888+2 | 4.621-2 | 9.087-2 (98.7%) | | | | 4.896-2 | 7.869-2 | | | | Sm-nat
Sm-nat | 8.0
12.0 | 4.5
4.5 | 08
08 | 3.707+2
5.460+2 | 5.454-2
5.924-2 | 2.966-1 (80.0%)
5.388-1 (54.4%) | | | 3.960-9
5.106-9 | 7.171-2
8.739-2 | 1.209-1
1.529-1 | 25.4
36.7 | | | Sm-nat | 1.0 | 4.5 | 16 | 9.575+1 | 5.094-2 | 5.187-2 (98.5%) | 5.113-2 (98.5%) | | 1.345-9 | | 3.643-2 | | -1.16-3 (2.8-4) | | Sm-nat | 2.0 | 4.5 | 16 | 1.906+2 | 7.014-2 | 6.519-2 (98.7%) | | | 1.613-9 | | 5.254-2 | | -1.32-3 (2.7-4) | | Sm-nat | 4.0 | 4.5 | 16 | 3.776+2 | 8.731-2 | 9.762-2 (98.3%) | | | 2.435-9 | | 8.211-2 | | -1.55-3 (2.804) | | Sm-nat | 8.0 | 4.5 | 16 | 7.414+2 | 1.040-1 | 2.928-1 (80.9%) | 1.315-1 (99.3%) | 5.176-2 | 3.927-9 | 7.365-2 | 1.254-1 | 59.2 | -1.80-3 (2.8-4) | | Sm-nat | 2.0 | 4.5 | 18 | 2.144+2 | 7.848-2 | 6.687-2 (98.6%) | 6.735-2 (98.5%) | 1.903-2 | 1.575-9 | 3.412-2 | 5.315-2 | 15.2 | | | Sm-nat | 4.0 | 4.5 | 18 | 4.248+2 | 9.754-2 | 9.737-2 (98.3%) | 9.366-2 (98.7%) | | 2.365-9 | | 8.168-2 | | | | Sm-nat | 0.1 | 4.5 | 64 | 3.846+1 | 3.535-2 | 3.640-2 (98.4%) | 3.367-2 (98.7%) | | 1.125-9 | | 2.060-2 | 2.8 | | | Sm-nat | 0.2 | 4.5 | 64 | 7.689+1 | 6.372-2 | 3.927-2 (98.3%) | | | 9.150-10 | | 2.276-2 | 6.8 | | | Sm-nat | 0.5 | 4.5 | 64 | 1.920+2 | 1.229-1 | 4.714-2 (98.2%) | 4.522-2 (98.4%) | 1.010-2 | 9.319-10 | 1.998-2 | 3.008-2 | 15.3 | | | Sm-nat | 1.0 | 4.5 | 64 | 3.830+2 | 1.780-1 | 5.854-2 (98.2%) | 5.855-2 (98.2%) | 1.406-2 | 1.156-9 | 2.727-2 | 4.133-2 | 31.6 | | | Sm-nat | 2.0 | 4.5 | 64 | 7.624+2 | 2.328-1 | 7.894-2 (98.2%) | 8.032-2 (98.1%) | 2.212-2 | 1.672-9 | 4.020-2 | 6.232-2 | 63.1 | | | Sm-149 | 2.0 | 4.5 | 08 | 9.517+1 | 5.779-2 | 5.855-1 (43.2%) | 3.167-2(101.0%) | 2.681-2 | 4.526-10 | 1.445-2 | 4.126-2 | 9.9 | | | Sm-149 | 4.0 | 4.5 | 08 | 1.886+2 | 6.414-2 | 7.706-1 (24.5%) | 5.845-2(100.5%) | | 4.902-10 | | 6.340-2 | 17.2 | | | Sm-149 | 8.0 | 4.5 | 08 | 3.702+2 | 7.171-2 | 8.300-1 (18.8%) | 5.531-1 (49.5%) | 7.175-2 | 6.168-10 | 2.589-2 | 9.704-2 | 30.3 | | | Sm-149 | 12.0 | 4.5 | 08 | 5.453+2 | 7.638-2 | 8.333-1 (18.9%) | 6.431-1 (40.5%) | 9.143-2 | 7.555-10 | 2.626-2 | 1.177-1 | 38.6 | | | Sm-149 | 16.0 | 4.5 | 08 | 7.142+2 | 8.054-2 | 8.461-1 (17.8%) | | 1.083-1 | 9.717-10 | 2.482-2 | 1.331-1 | 45.0 | | | Sm-149 | 0.2 | 4.5 | 16 | 1.920+1 | 5.845-2 | 6.172-3(100.3%) | 7.545-3(100.2%) | | 3.830-10 | | 9.479-3 | 2.4 | -9.9-4 (2.9-4) | | Sm-149 | 0.5 | 4.5 | 16 | 4.793+1 | 8.227-2 | 1.547-2(100.1%) | 1.295-2(100.3%) | | 2.860-10 | | 1.633-2 | 5.6 | -1.05-3 (2.6-4) | | Sm-149 | 1.0 | 4.5 | 16 | 9.562+1 | 9.582-2 | 1.695-1 (85.3%) | | | 2.680-10 | | 2.664-2 | 9.9 | -1.63-3 (2.7-4) | | Sm-149 | 2.0 | 4.5 | 16 | 1.903+2 | 1.085-1 | 6.005-1 (41.8%) | 3.352-2(101.0%) | 2.823-2 | 2.833-10 | 1.524-2 | 4.347-2 | 20.9 | -1.75-3 (2.5-4) | | Sm-149 | 1.0 | 4.5 | 18 | 1.076+2 | 1.065-1 | 1.717-1 (85.1%) | | | 2.462-10 | | 2.667-2 | | | | Sm-149 | 2.0 | 4.5 | 18 | 2.141+2 | 1.205-1 | 5.998-1 (41.9%) | 3.424-2(101.0%) | 2.902-2 | 2.657-10 | 1.524-2 | 4.426-2 | 21.9 | | | Sm-149 | 0.05 | 4.5 | 64 | 1.921+1 | 9.585-2 | 4.136-3(100.2%) | 4.921-3(100.1%) | 3.551-3 | 2.330-10 | 2.451-3 | 6.003-3 | 2.2 | | | Sm-149 | 0.1 | 4.5 | 64 | 3.841+1 | 1.469-1 | 5.269-3(100.3%) | 6.346-3(100.1%) | 4.638-3 | 1.578-10 | | 7.806-3 | 5.9 | | | Sm-149 | 0.25 | 4.5 | 64 | 7.679+1 | 2.006-1 | 7.661-3(100.4%) | | | 1.229-10 | | 1.117-2 | 7.8 | | | | | | | | | | | | | | | | | Table 11. Sm Burnable Poison in a Sm203 Coating between the UO2 Fuel Pellet and the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | BP | Thickness
BP Layer
(mills) | Density | Fuel | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | 120 FPD vs.BOL | y Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | s. BOL | | BP
Penalty | MVC
at BOL | |---------|----------------------------------|----------|------|--------------------------------|---------------------|-----------------------------|--------------------------|--------------------------|--------------------------|----------------------|---------------|---------|---------------|---| | твосоре | (MIII) | BP Sm2O3 | ment | (per Fuel
Assembly) | Assembly)
(gram) | | BP-tot
per
Sm(BOL) | BP-tot
per
Sm(BOL) | Sm-tot
per
Sm(BOL) | Pm-tot
per | Eu-tot
per | | (FPD) | dkeff per -10%
water density
change (STD) | | Sm-nat | 2.0 | 1.00 | 4.5 | 08 | 2.362+2 | 4.627-2 | | 1.082-1 (98.8%) | | 3.333-9 | | 9.720-2 | | | | Sm-nat | 4.0 | 1.00 | 4.5 | 80 | 4.696+2 | 5.416-2 | 4.729-1 (62.1%) | 1.593-1 (99.1%) | 6.447-2 | 5.319-9 | 8.717-2 | 1.516-1 | 34.7 | | | Sm-nat | 1.0 | 1.00 | 4.5 | 16 | 2.369+2 | 7.127-2 | 7.907-2 (98.7%) | 8.158-2 (98.4%) | 2.477-2 | 1.969-9 | 4.223-2 | 6.700-2 | 16.9 | | | Sm-nat | 2.0 | 1.00 | 4.5 | 16 | 4.724+2 | 8.716-2 | 1.415-1 (95.7%) | 1.145-1 (98.8%) | 4.049-2 | 3.101-9 | 6.283-2 | 1.033-1 | 40.5 | | | Sm-nat | 4.0 | 1.00 | 4.5 | 16 | 9.391+2 | 1.019-1 | 4.807-1 (61.7%) | 1.669-1 (98.9%) | 6.693-2 | 5.119-9 | 9.070-2 | 1.576-1 | 64.6 | | | Sm-nat | 1.0 | 1.00 | 4.5 | 18 | 2.666+2 | 7.886-2 | 8.150-2 (98.6%) | 8.309-2 (98.4%) | 2.534-2 | 1.994-9 | 4.286-2 | 6.820-2 | 25.2 | | | Sm-nat | 2.0 | 1.00 | 4.5 | 18 | 5.315+2 | 9.753-2 | 1.420-1 (95.6%) | | | 2.969-9 | | 1.023-1 | 49.3 | | | Sm-nat | 0.2 | 1.00 | 4.5 | 64 | 1.900+2 | 1.147-1 | 5.084-2 (98.2%) | 4.970-2 (98.3%) | 1.135-2 | 9.939-10 | 2.177-2 | 3.312-2 | 14.8 | | | Sm-nat | 0.5 | 1.00 | 4.5 | 64 | 4.746+2 | 1.818-1 | | 7.145-2 (98.0%) | | 1.388-9 | | 5.205-2 | | | | Sm-nat | 1.0 | 1.00 | 4.5 | 64 | 9.478+2 | 2.330-1 | | 9.927-2 (97.9%) | | 2.081-9 | | 7.963-2 | | | | Sm-nat | 1.0 | 0.10 | 4.5 | 104 | 1.540+2 | 1.109-1 | 4.540-2 (98.2%) | 4.390-2 (98.4%) | 9.483-3 | 8.606-10 | 1.837-2 | 2.785-2 | 16.1 | | | Sm-nat | 0.1 | 1.00 | 4.5 | 104 | 1.544+2 | 1.080-1 | 4.677-2 (98.1%) | 4.516-2 (98.3%) | 9.518-3 | 8.907-10 | 1.867-2 | 2.819-2 | 12.4 | | | | | | | | | | | | | | | | | | | Sm-149 | 0.5 | 1.00 | 4.5 | 08 | 5.925+1 | 5.296-2 | | 2.579-2(100.7%) | | 4.600-10 | | 3.216-2 | | | | Sm-149 | 1.0 | 1.00 | 4.5 | 08 | 1.183+2 | 5.960-2 | | 4.058-2(101.0%) | | 4.680-10 | | 5.090-2 | | | | Sm-149 | 2.0 | 1.00 | 4.5 | 08 | 2.359+2 | 6.646-2 | | 1.931-1 (87.5%) | | 5.258-10 | | 7.735-2 | | | | Sm-149 | 4.0 | 1.00 | 4.5 | 08 | 4.689+2 | 7.423-2 | | 6.223-1 (42.5%) | | 7.115-10 | | 1.122-1 | | | | Sm-149 | 8.0 | 1.00 | 4.5 | 08 | 9.263+2 | 8.355-2 | 8.588-1 (16.7%) | 7.123-1 (34.0%) | 1.293-1 | 1.151-9 | 2.327-2 | 1.526-1 | 46.7 | | | Sm-149 | 0.1 | 1.00 | 4.5 | 16 | 2.373+1 | 6.322-2 | 8.368-3(100.3%) | 9.977-3(100.2%) | | 3.580-10 | | 1.183-2 | | -9.2-4 (2.8-4) | | Sm-149 | 0.2 | 1.00 | 4.5 | 16 | 4.744+1 | 8.072-2 | 1.772-2(100.0%) | 1.490-2(100.3%) | | 2.940-10 | | 1.802-2 | | -8.0-4 (2.7-4) | | Sm-149 | 0.5 | 1.00 | 4.5 | 16 | 1.185+2 | 9.977-2 | 3.063-1 (71.7%) | 2.691-2(100.6%) | | 2.738-10 | | 3.310-2 | | -1.55-3 (2.6-4) | | Sm-149 | 1.0 | 1.00 | 4.5 | 16 | 2.366+2 | 1.122-1 | 6.728-1 (34.6%) | 4.258-2(101.1%) | | 3.027-10 | | 5.306-2 | | -2.18-3 (2.6-4) | | Sm-149 | 2.0 | 1.00 | 4.5 | 16 | 4.718+2 | 1.239-1 | 8.040-1 (21.4%) | 1.896-1 (88.3%) | | 3.996-10 | | 8.216-2 | | -3.02-3 (2.5-4) | | Sm-149 | 4.0 | 1.00 | 4.5 | 16 | 9.379+2 | 1.371-1 | 8.448-1 (17.7%) | 6.297-1 (42.1%) | | 6.206-10 | | 1.205-1 | | -4.30-3 (2.5-4) | | Sm-149 | 8.0 | 1.00 | 4.5 | 16 | 1.853+3 | 1.540-1 | 8.654-1 (16.0%) | 7.149-1 (33.9%) | 1.347-1 | 1.150-9 | 2.503-2 | 1.597-1 | 108.0 | -5.44-3 (2.6-4) | | Sm-149 | 1.0 | 1.00 | 4.5 | 18 | 2.662+2 | 1.236-1 | 6.887-1 (32.9%) | 4.268-1 (60.6%) | | 2.885-10 | | 5.446-2 | | | | Sm-149 | 2.0 | 1.00 | 4.5 | 18 | 5.308+2 | 1.372-1 | | 1.949-1 (87.7%) | | 3.822-10 | | 8.223-2 | | | | Sm-149 | 4.0 | 1.00 | 4.5 | 18 | 1.055+3 | 1.525-1 | 8.370-1 (18.5%) | 6.307-1 (42.0%) | | 6.055-10 | | 1.206-1 | | | | Sm-149 | 8.0 | 1.00 | 4.5 | 18 | 2.084+3 | 1.701-1 | 8.681-1 (15.8%) | 7.170-1 (33.8%) | 1.369-1 | 1.165-9 | 2.534-2 | 1.632-1 | 109.2 | | | Sm-149 | 0.5 | 0.10 | 4.5 | 64 | 4.740+1 | 1.584-1 | 7.238-3(100.3%) | 8.492-3(100.2%) | 5.817-3 | 1.506-10 | 4.275-3 | 1.009-2 | 7.2 | | | Sm-149 | 1.0 | 0.10 | 4.5 | 64 | 9.465+1 | 2.126-1 | 1.030-2(100.5%) | 1.227-2(100.3%) | | 1.226-10 | | 1.474-2 | | | | Sm-149 | 0.1 | 1.00 | 4.5 | 64 | 9.491+1 | 2.119-1 | 1.034-2(100.4%) | 1.222-2(100.2%) | 8.511-3 | 1.223-10 | 5.933-3 | 1.445-2 | 11.9 | | | Sm-149 | 0.2 | 0.10 | 4.5 | 104 | 3.084+1 | 1.372-1 | 5.387-3(100.2%) | 6.465-3(100.1%) | 4.409-3 | 1.673-10 | 3.218-3 | 7.628-3 | 3.7 | | | Sm-149 | 0.5 | 0.10 | 4.5 | 104 | 7.702+1 | 2.236-1 | | 9.808-3(100.2%) | | | 4.875-3 | 1.164-2 | | | | | | | | | | | | | | | | | | | Table 12. Sm Burnable Poison Integrally mixed with the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit
120 FPD
vs.BOL | y Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | | | BP
Penalty
at 4 FPY | MVC
at BOL | |--|--------------------------------------|---------------------------------|--------------------------------|---|---|---|---|---|--|-------------------------------|---|-----------------------------------|---| | Isocope | (wt%Sm in
Zr-4) | | (per Fuel | Assembly) | | BP-tot
per
5) Sm(BOL) | BP-tot
per
Sm(BOL) | Sm-tot
per
Sm(BOL) | Pm-tot
per
Sm(BOL) | Eu-tot
per
Sm(BOL) | BP-tot
per
Sm(BOL) | (FPD) | dkeff per -10%
water density
change (STD) | | Sm-nat
Sm-nat | 2.0
4.0 | 4.5
4.5 | 16
16 | 1.152+2
2.312+2 | 5.916-2
7.988-2 | 5.471-2 (98.4%)
7.290-2 (98.5%) | 5.564-2 (98.3%)
7.465-2 (98.3%) | | 1.319-9
1.694-9 | 2.585-2
3.748-2 | 3.967-2
5.855-2 | 11.1
21.5 | -1.24-3 (2.9-4)
-1.17-3 (2.7-4) | | Sm-nat
Sm-nat
Sm-nat | 0.10
0.50
1.00 | 4.5
4.5
4.5 | 104
104
104 | 3.733+1
1.868+2
3.739+2 | 3.691-2
1.333-1
2.001-1 | 3.601-2 (98.4%)
4.609-2 (98.2%)
5.827-2 (97.9%) | 3.364-2 (98.6%)
4.408-2 (98.4%)
5.622-2 (98.1%) | 6.932-3
9.548-3
1.297-2 | 1.079-9
8.327-10
1.034-9 | 1.865-2 | 2.022-2
2.819-2
3.783-2 | 2.8
19.5
35.7 | -4.8-4 (4.6-4) | | Sm-nat | 1.00 | 6.0 | 104 | 3.739+2 | 1.766-1 | 6.378-2 (97.3%) | 6.258-2 (97.4%) | 1.280-2 | 9.739-10 | 2.454-2 | 3.734-2 | 25.0 | | | Sm-149
Sm-149
Sm-149
Sm-149
Sm-149 | 0.1
0.2
0.5
1.0
2.0 | 4.5
4.5
4.5
4.5 | 16
16
16
16 | 5.743+0
1.149+1
2.874+1
5.752+1
1.152+2 | 3.036-2
4.761-2
7.359-2
9.226-2
1.076-1 | 4.826-3(100.2%)
5.967-3(100.2%)
9.351-3(100.4%)
2.236-2 (99.8%)
2.321-1 (79.4%) | 5.497-3(100.1%)
6.870-3(100.1%)
1.093-2(100.2%)
1.658-2(100.4%)
2.595-2(100.6%) | 3.775-3
4.772-3
7.548-3
1.212-2
1.975-2 | 7.187-10
4.633-10
3.115-10
2.635-10
2.540-10 | 3.472-3
5.424-3
8.093-3 | 6.567-3
8.244-3
1.297-2
2.021-2
3.218-2 | 0.8
1.6
3.9
7.4
14.8 | -1.18-3 (3.0-4)
-8.8-4 (2.8-4)
-9.5-4 (2.8-4)
-1.34-3 (2.7-4)
-1.75-3 (2.6-4) | | Sm-149
Sm-149
Sm-149
Sm-149
Sm-149 | 0.05
0.10
0.20
0.10
0.20 | 4.5
4.5
4.5
6.0
6.0 | 104
104
104
104 | 1.866+1
3.733+1
7.468+1
3.733+1
7.468+1 | 1.035-1
1.645-1
2.319-1
1.396-1
2.056-1 | 4.656-3(100.2%)
5.843-3(100.2%)
8.120-3(100.3%)
5.969-3(100.3%)
8.119-3(100.4%) | 5.570-3(100.1%)
6.929-3(100.1%)
9.528-3(100.2%)
7.464-3(100.2%)
9.789-3(100.2%) | 3.713-3
4.574-3
6.380-3
4.919-3 | 2.172-10
1.422-10
1.087-10
6.054-11
4.926-11 | 3.472-3
4.825-3
4.103-3 | 6.503-3
8.046-3
1.121-2
9.022-3
1.203-2 | 2.8
6.4
11.7
9.3
14.4 | +3.8-4 (4.2-4)
+2.13-3 (3.8-4)
+3.16-3 (3.3-4) | The MVCs were calculated by decreasing the water coolant density by 10%. Note that for all the cases containing 8 and 16 IFBA rods, the MVCs remain negative. For the cases with 64 IFBA rods, the MVC becomes positive for the lattices containing identical standard 17×17 fuel assemblies with the same BP loadings. Calculations of the MVC were not performed for checkerboard loadings of selected fuel assemblies containing 64 IFBA rods. Figure 13 displays the initial reactivity worths of the samarium-based BP as a function of the residual BP penalty in FPDs for several configurations containing 16 IFBA rods. The trend for the four different forms of BP are very similar. Note also the clear advantage of using samarium enriched in ¹⁴⁹Sm over samarium with natural isotopic abundances. Figure 14 displays the initial reactivity worths of the BP vs FPD penaltyfor fuel assembly configurations containing 64 IFBA rods. **Figure 13** Burnable poison initial reactivity worth as a function of FPD penalty -- Sm in 16 IFBA rods ## NEUTRONICS PERFORMANCE RESULTS FOR ERBIUM Erbia (Er_2O_3) as a burnable poison has been used in designs of the modular high temperature reactors (MHTRs). More recently Er_2O_3 has also been used as burnable poisons in System-80 PWRs. In this section, we will investigate the potential benefits of using enriched erbium as a burnable absorber in PWRs. Four different types of burnable poison rods containing erbium, similar to those of the cases of Gd, were investigated. In all the neutronics calculations presented in this section, a theoretical density of 8.64 g/cm^3 was used for Er_2O_3 , and 9.00 g/cm^3 for metallic erbium. For UO_2 , a theoretical density of 10.97 g/cm^3 was used. The actual density fraction of the fuel pellets and of the burnable poison pellets was 95% of theoretical density. The half-lives, natural isotopic abundances, and burnup chains related to the depletion and transmutation of erbium are given below. Note that the adjacent bands of isotopes such as the Yb isotopes (decay from Tm isotopes) and Dy isotopes (decay from Ho isotopes) are not shown. Also the isomeric states of certain isotopes are not shown. However, the generation of these daughters was taken into account in the BP depletion and decay calculations. | | | | | 9.24d | 93.1d | stable | 129d | 1.92y | 2.65d | |-------------------|----------------------------|--------------------------|------------------------------------|---|--|--|---|---|--| | | | | | ¹⁶⁷ Tm | ¹⁶⁸ Tm | 169
Tm | 170
Tm | 171
Tm | 172 Tm | | | | | | | | β- | 1 1111 | β- | 1 111 | | | | | | | | K | | K | | | 0.14% | 1.25hr | 1.61% | 10.4hr | 33.6% | 22.95% | 26.8% | > 9.40d | 14.9% | 7.5hr | | ¹⁶² Er | ¹⁶³ Er | ¹⁶⁴ Er | ¹⁶⁵ Er | ¹⁶⁶ Er | ¹⁶⁷ Er | ¹⁶⁸ Er | ¹⁶⁹ Er | ¹⁷⁰ Er | ¹⁷¹ Er | | | \ β+ | | \ EC | | | | | | | | | \. | | | | | | | | | | 2.48h | 15m | 4600y | 29m | stable | 1200y | 3.1h | | | | | ¹⁶¹ Ho | ¹⁶² Ho | ¹⁶³ Ho | ¹⁶⁴ Ho | ¹⁶⁵ Ho | ¹⁶⁶ Ho | ¹⁶⁷ Ho | | | | | | ¹⁶² Er
2.48h | 162Er 163Er β+ 2.48h 15m | 162Er 163Er 164Er 2.48h 15m 4600y | 162Er 163Er 164Er 165Er EC 2.48h 15m 4600y 29m | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | The erbium stable isotope ¹⁶⁷Er (22.9% natural isotopic abundance) exhibits a large neutron capture cross section (thermal cross section of 660 barns and a RI of 2,970 barns). The isotopes ¹⁶²Er (0.14% natural isotopic abundance), ¹⁶⁴Er (1.6%), ¹⁶⁶Er (33.4%), and ¹⁷⁰Er (14.9%) have smaller capture cross sections: ¹⁶²Er (thermal 19 barns, RI 480 barns), ¹⁶⁴Er (thermal 13 barns, RI 105 barns), ¹⁶⁶Er (thermal 19.6 barns, RI 96 barns), and ¹⁷⁰Er (thermal 5.8 barns, RI 45 barns). Because of the small cross sections, these isotopes are difficult to burn out and they will thus leave a residual negative reactivity burden at EOL of the BP. ¹⁶⁸Er (27.1% natural isotopic abundance) has a small neutron capture cross section (thermal 2.7 barns, RI 37 barns). The 167 Er (n, γ) 168 Er reaction, together with the use of erbium fully enriched in ¹⁶⁷Er, will thus mainly lead to ¹⁶⁸Er. The residual burden of the BP enriched in 167 Er should thus be small. The 168 Er (n,γ) 169 Er reaction leads to 169 Er, which decays into ¹⁶⁹Tm with a half-life of 9.4 days. The ¹⁶⁹Tm capture cross section is large (thermal 105 barns, RI 1,720 barns). In erbium with natural isotopic abundances, ¹⁶⁸Er has an isotopic abundance of 26.8%. Even though the capture cross section of 168 Er is small, the 168 Er (n,γ) 169 Er reaction will lead to ¹⁶⁹Tm. Also, ¹⁷⁰Er (14.9% natural isotopic abundance) has a small neutron capture cross section (thermal 5.8 barns, RI 45 barns), but the 170 Er (n, γ) 171 Er reaction will lead to 171 Er, which decays with a half-life of 7.5 hours to ¹⁷¹Tm. The capture cross section of ¹⁷¹Tm is large (thermal 160 barns, RI 118 barns). Note that the use of ¹⁶⁷Er will not create any of the holmium isotopes. The use of erbium with natural isotopic abundances will lead to ¹⁶³Ho and ¹⁶⁵Ho. These have large capture cross sections. However, since the natural isotopic abundances of ¹⁶²Er and ¹⁶⁴Er are small, they will only slightly contribute to the residual reactivity burden at EOL of the BP. Table 13 displays the results of using Er_2O_3 mixed homogeneously with the fuel pellets of a number of fuel rods. Note that for the same initial reactivity worth of the BP, the residual negative reactivity worth of erbium fully enriched in ^{167}Er is smaller than for erbium with natural isotopic abundances. The relative contribution from the thulium daughters is also smaller. The reactivity worths of the BP isotopes, for a 4.0 wt % loading of Er_2O_3 with natural isotopic abundances, homogeneously mixed inside the fuel pellets of 64 IFBA rods per fuel assembly, are shown in Figure 15. The initial reactivity worth of the BP is 0.141 and the residual reactivity ratio is
9.0%. For a 1.0 wt % homogeneous loading in 64 IFBA rods of Er_2O_3 fully enriched in ^{167}Er , the results are shown in Figure 16. The initial reactivity worth of the BP is 0.140 and the residual reactivity ratio is 1.6%. The use of erbium enriched in ^{167}Er , instead of with natural isotopic abundances, will thus lead to a substantial reduction of the residual reactivity burden at EOL of the fuel. Note that the trends of the fuel assembly lattice k_{inf} 's are fairly flat for almost 2 years of reactor operation. Figure 16 also displays a secular equilibrium between the ^{166}Er and ^{167}Er neutron capture reaction rates. However, since the cross section of ^{167}Er is smaller than in the case of gadolinium or samarium, the secular equilibrium happens much later (approximately 4 years). In Tables 13 through 16 the residual reactivity worths, due to the Ho daughters of the BP containing erbium enriched in 167 Er, should essentially be zero, since only the decay of 163 Er and 165 Er leads to 163 Ho and 165 Ho, respectively. There are essentially no paths from the transmutation of 167 Er to any of the Ho isotopes. However, the tables show residual reactivity worths of the order of 1.0×10^{-10} . This is because for each case, all the BP isotopes and their daughters (which are not present in the initial loading of the BP) have been added as traces to the BP with a number density of 1.0×10^{-15} instead of zero. This is to avoid problems at the BOC in the input to the MCNP4C code and to avoid computer exception errors (division by zero) when calculating spectrum-weighted cross sections. The MVCs were calculated by decreasing the water coolant density by 10% (see Tables 13–16). Note that for all the cases containing 8, 16, and 64 IFBA rods, the MVCs remain negative. This is in contrast to the use of 64 IFBA rods containing gadolinium or samarium as the BP. Figure 17 displays the initial reactivity worths of the erbium based BP as a function the residual BP penalty in FPDs for several configurations containing 16 IFBA rods. Figure 18 displays the initial reactivity worths of the BP vs FPD penalty for fuel assembly configurations containing 64 IFBA rods. The trends for the four different forms of BPs are very similar. Note also the clear advantage of using enriched erbium (enriched in ¹⁶⁷Er) over erbium with natural isotopic abundances. Table 13. Er Burnable Poison Integrally mixed with the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
Loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | 120 FPD vs.BOL | y Ratio
1 FPY vs.BOL | | Reactivity
4 FPY v | s. BOL | | BP
Penalty | MVC
at BOL | |--------------------------------------|---------------------------|----------------------------|--------------------------------|--|--|--|--|--------------------------|--|--------------------------|--|-----------------|---| | | (wt%Er2O3 | ment | (per Fuel
Assembly) | Assembly) (gram) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Er(BOL) | BP-tot
per
Er(BOL) | Er-tot
per
Er(BOL) | Ho-tot
per
Er(BOL) | Tm-tot
per
Er(BOL) | BP-tot
per
Er(BOL) | (FPD) | dkeff per -10%
water density
change (STD) | | Er-nat | 4.0 | 4.5 | 08 | 5.790+2 | 1.935-2 | 7.306-1 (29.3%) | 4.084-1 (64.3%) | 6.718-2 | 8.335-4 | 1.197-2 | 7.999-2 | 5.8 | | | Er-nat
Er-nat
Er-nat
Er-nat | 2.0
4.0
8.0
12.0 | 4.5
4.5
4.5
4.5 | 16
16
16
16 | 5.822+2
1.158+3
2.292+3
3.402+3 | 2.307-2
3.783-2
5.913-2
7.449-2 | 6.748-1 (35.0%)
7.326-1 (29.2%)
7.851-1 (24.0%)
8.109-1 (21.5%) | 3.302-1 (72.1%)
4.162-1 (63.7%)
5.092-1 (54.8%)
5.681-1 (49.2%) | 6.908-2
8.579-2 | 7.543-4
8.997-4
1.113-3
1.256-3 | 1.658-2 | 7.087-2
8.318-2
1.035-1
1.223-1 | 12.6
25.0 | -3.48-3 (2.9-4)
-3.62-3 (2.704)
-4.69-3 (2.9-4) | | Er-nat
Er-nat | 4.0
8.0 | 4.5
4.5 | 20
20 | 1.448+3
2.865+3 | 4.644-2
7.270-2 | 7.370-1 (28.8%)
7.833-1 (24.2%) | 4.150-1 (63.9%)
5.173-1 (53.9%) | | 9.236-11
1.121-3 | | 8.511-2
1.049-1 | | | | Er-nat
Er-nat
Er-nat | 1.0
2.0
4.0 | 4.5
4.5
4.5 | 64
64
64 | 1.167+3
2.329+3
4.632+3 | 5.084-2
8.678-2
1.405-1 | 6.360-1 (38.9%)
6.955-1 (33.0%)
7.461-1 (27.9%) | 3.391-1 (71.6%) | 6.349-2 | 7.147-4
8.184-4
9.870-4 | 1.225-2 | 6.531-2
7.656-2
9.045-2 | 25.4 | -3.62-3 (3.6-4)
-6.05-3 (3.8-4)
-7.12-3 (3.4-4) | | Er-167 | 4.0 | 4.5 | 08 | 5.789+2 | 4.407-2 | 8.015-1 (20.6%) | 5.764-1 (44.1%) | 2.884-2 | 4.242-10 | 9.533-3 | 3.837-2 | 6.6 | | | Er-167
Er-167
Er-167
Er-167 | 1.0
2.0
4.0
8.0 | 4.5
4.5
4.5
4.5 | 16
16
16
16 | 2.918+2
5.820+2
1.158+3
2.291+3 | 3.833-2
5.879-2
8.457-2
1.154-1 | 7.090-1 (29.5%)
7.659-1 (23.9%)
8.100-1 (19.8%)
8.450-1 (17.4%) | | 1.269-2
2.820-2 | 4.900-10
3.195-10
2.216-10
1.603-10 | 7.614-3
1.021-2 | 1.449-2
2.031-2
3.841-2
1.111-1 | 2 4.7
2 14.1 | -3.75-3 (2.9-4)
-4.25-3 (2.8-4)
-5.21-3 (2.7-4) | | Er-167 | 4.0 | 4.5 | 20 | 1.447+3 | 1.042-1 | 8.050-1 (20.3%) | 5.765-1 (44.1%) | 2.885-2 | 1.796-10 | 1.027-2 | 3.912-2 | 17.6 | | | Er-167
Er-167
Er-167 | 0.2
0.5
1.0 | 4.5
4.5
4.5 | 64
64
64 | 2.339+2
5.844+2
1.167+3 | 4.314-2
8.770-2
1.396-1 | 6.055-1 (39.9%)
6.770-1 (32.7%)
7.265-1 (27.8%) | | 6.725-3 | 4.375-10
2.160-10
1.357-10 | 5.555-3 | 1.006-2
1.228-2
1.611-2 | 5.3 | -3.65-3 (4.0-4)
-5.78-3 (3.7-4)
-6.85-3 (3.5-4) | Table 14. Er Burnable Poison Integrally mixed with the Outer One Third Part of the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
Loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | | | Reactivit | s. BOL | | BP
Penalty | MVC
at BOL | |--------------------------|--------------------------|----------------------------|--------------------------------|---------------------|--|------------------------------------|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------|---| | | (wt%Er203 | ment | (per Fuel
Assembly) | Assembly)
(gram) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Er(BOL) | BP-tot
per
Er(BOL) | Er-tot
per
Er(BOL) | Ho-tot
per
Er(BOL) | Tm-tot
per
Er(BOL) | BP-tot
per
Er(BOL) | | dkeff per -10%
water density
change (STD) | | Er-nat | 4.0 | 4.5 | 08 | 1.930+2 | 8.453-3 | 6.502-1 (37.4%) | 2.918-1 (75.8%) | | 7.025-4 | | 6.579-2 | 2.3 | | | Er-nat
Er-nat | 8.0
12.0 | 4.5
4.5 | 08
08 | 3.820+2
5.669+2 | 1.452-2
1.928-2 | 7.103-1 (31.3%)
7.304-1 (29.4%) | 3.463-1 (70.6%)
3.953-1 (65.9%) | | 7.935-4
9.435-4 | | 7.353-2
8.184-2 | 4.3
6.4 | | | | | | | | | | | | | | | | | | Er-nat | 16.0 | 4.5 | 80 | 7.481+2 | 2.335-2 | 7.477-1 (27.7%) | 4.466-1 (60.6%) | 7.213-2 | 9.403-4 | 1.435-2 | 8.742-2 | 8.8 | | | Er-nat | 1.0 | 4.5 | 16 | 9.729+1 | 4.866-3 | 5.902-1 (43.5%) | 2.392-1 (80.8%) | | 6.317-4 | | 5.825-2 | 1.2 | -1.99-3 (4.2-4) | | Er-nat | 2.0 | 4.5 | 16 | 1.941+2 | 9.138-3 | 6.219-1 (40.3%) | 2.604-1 (78.8%) | | 6.780-4 | | 6.106-2 | 2.4 | -2.36-3 (3/1-4) | | Er-nat | 4.0 | 4.5 | 16 | 3.860+2 | 1.674-2 | 6.489-1 (37.6%) | 2.902-1 (76.1%) | | 7.162-4 | | 6.693-2 | 5.2 | -2.38-3 (3.2-4) | | Er-nat | 8.0 | 4.5 | 16 | 7.639+2 | 2.850-2 | 7.057-1 (31.9%) | 3.520-1 (70.2%) | 6.300-2 | 8.158-4 | 1.263-2 | 7.644-2 | 9.2 | -3.10-3 (3.1-40 | | Er-nat | 1.0 | 4.5 | 18 | 1.095+2 | 5.465-3 | 5.868-1 (44.0%) | 2.391-1 (80.9%) | 4.920-2 | 6.251-4 | 1.004-2 | 5.986-2 | 1.7 | | | Er-nat | 4.0 | 4.5 | 18 | 4.343+2 | 1.862-2 | 6.589-1 (36.5%) | 2.955-1 (75.4%) | 5.473-2 | 7.213-4 | 1.041-2 | 6.586-2 | 4.2 | | | Er-nat | 0.5 | 4.5 | 64 | 1.948+2 | 1.013-2 | 5.742-1 (45.1%) | 2.244-1 (82.2%) | 4.665-2 | 6.141-4 | 9.325-3 | 5.659-2 | 2.8 | -1.99-3 (4.2-4) | | Er-nat | 1.0 | 4.5 | 64 | 3.891+2 | 1.937-2 | 5.965-1 (42.9%) | 2.403-1 (80.7%) | 4.881-2 | 6.267-4 | 9.505-3 | 5.894-2 | 4.0 | -2.79-3(3.9-4) | | Er-nat | 2.0 | 4.5 | 64 | 7.762+2 | 3.631-2 | 6.147-1 (41.1%) | 2.592-1 (79.0%) | 5.166-2 | 6.686-4 | 1.015-2 | 6.248-2 | 9.3 | -3.39-3 (4.0-4) | | Er-nat | 4.0 | 4.5 | 64 | 1.544+3 | 6.464-2 | 6.578-1 (36.8%) | 2.969-1 (75.6%) | | 7.652-4 | | 6.970-2 | | -3.69-3 (3.8-4) | | Er-nat | 8.0 | 4.5 | 64 | 3.056+3 | 1.074-1 | 7.135-1 (31.2%) | 3.639-1 (69.2%) | 6.705-2 | 8.853-4 | 1.322-2 | 8.116-2 | 33.5 | -5.88-3 (3.9-4) | | Er-167 | 4.0 | 4.5 | 08 | 1.930+2 | 2.349-2 | 7.418-1 (26.1%) | 4.071-1 (60.0%) | 9.387-3 | 7.984-10 | 2.101-3 | 1.149-2 | 1.0 | | | Er-167 | 8.0 | 4.5 | 08 | 3.819+2 | 3.593-2 | 7.901-1 (21.5%) | 5.032-1 (50.9%) | 1.523-2 | 5.224-10 | 8.377-3 | 2.361-2 | 3.6 | | | Er-167 | 12.0 | 4.5 | 80 | 5.668+2 | 4.410-2 | 8.109-1 (19.6%) | 5.717-1 (44.4%) | 2.521-2 | 4.269-10 | 9.614-3 | 3.482-2 | 6.6 | | | Er-167 | 0.2 | 4.5 | 16 | 1.949+1 | 4.119-3 | 5.543-1 (45.0%) | 1.834-1 (82.4%) | 4.914-3 | 4.560-9 | 4.069-3 | 9.984-3 | 0.15 | -1.75-3 (3/2-4) | | Er-167 | 0.5 | 4.5 | 16 | 4.870+1 | 9.593-3 | 5.931-1 (41.1%) | 2.038-1 (80.4%) | 5.358-3 | 1.920-9 | 4.171-3 | 9.529-3 | 0.4 | -2.21-3 (2.9-4) | | Er-167 | 1.0 | 4.5 | 16 |
9.726+1 | 1.707-2 | 6.453-1 (35.9%) | 2.442-1 (76.4%) | 5.940-3 | 1.100-9 | 4.800-3 | 1.074-2 | 0.75 | -2.45-3 (3.0-4) | | Er-167 | 2.0 | 4.5 | 16 | 1.940+2 | 2.916-2 | 6.873-1 (31.7%) | 3.098-1 (69.9%) | 7.152-3 | 6.420-10 | 5.641-3 | 1.279-2 | 1.5 | -3.14-3 (3/1-4) | | Er-167 | 4.0 | 4.5 | 16 | 3.859+2 | 4.655-2 | 7.365-1 (26.8%) | 4.064-1 (60.3%) | 9.780-3 | 4.035-10 | 6.468-3 | 1.625-2 | 3.35 | -3.00-3 (2.9-4) | | Er-167 | 4.0 | 4.5 | 18 | 4.342+2 | 5.224-2 | 7.416-1 (26.3%) | 4.080-1 (60.2%) | 1.035-2 | 3.587-10 | 6.921-3 | 1.727-2 | 3.8 | | | Er-167 | 0.5 | 4.5 | 64 | 1.948+2 | 3.775-2 | 5.946-1 (40.9%) | 2.081-1 (80.0%) | 5.230-3 | 5.000-10 | 4.548-3 | 9.778-3 | 1.55 | -3.70-3 (4.1-4) | | Er-167 | 1.0 | 4.5 | 64 | 3.891+2 | 6.657-2 | 6.362-1 (36.8%) | 2.460-1 (76.2%) | 6.106-3 | 2.816-10 | | 1.107-2 | 2.8 | -4.92-3 (3.9-4) | | Er-167 | 2.0 | 4.5 | 64 | 7.760+2 | 1.097-1 | 6.916-1 (31.3%) | 3.160-1 (69.4%) | | 1.708-10 | | 1.374-2 | 5.6 | -6.23-3 (3.6-4) | | Er-167 | 4.0 | 4.5 | 64 | 1.544+3 | 1.676-1 | 7.516-1 (25.3%) | 4.181-1 (59.3%) | 1.009-2 | 1.119-10 | 7.772-3 | 1.786-2 | 12.9 | -7.18-3 (3.3-4) | Table 15. Er Burnable Poison in a Er203 Coating between the U02 Fuel Pellet and the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | BP | Thickness BP Layer (mills) | Density | Fuel | Number
Fuel Rods
with BP | BP Mass | BP | 120 FPD vs.BOL | Ratio
1 FPY vs.BOL | | Reactivity
4 FPY v | s. BOL | | Penalty | | |---------|----------------------------|----------|------|--------------------------------|---------------------|-----------|-----------------|-----------------------|--------------------------|-----------------------|---------|--------------------------|---------|---| | 1500070 | (111111) | BP Er203 | ment | (per Fuel
Assembly) | Assembly)
(gram) | Worth for | BP-tot
per | BP-tot | Er-tot
per
Er(BOL) | | | BP-tot
per
Er(BOL) | (FPD) | dkeff per -10%
water density
change (STD) | | Er-nat | 2.0 | 1.00 | 4.5 | 16 | 5.571+2 | 2.165-2 | 6.955-1 (32.9%) | 3.323-1 (72.1%) | 6.073-2 | 7.838-4 | 1.171-2 | 7.323-2 | 6.5 | | | Er-nat | 4.0 | 1.00 | 4.5 | 16 | 1.107+3 | 3.621-2 | 7.491-1 (27.5%) | 4.162-1 (64.0%) | | 9.264-4 | | 8.783-2 | 13.5 | | | Er-nat | 8.0 | 1.00 | 4.5 | 16 | 2.187+3 | 5.639-2 | 8.106-1 (21.2%) | 5.190-1 (53.9%) | 8.943-2 | 1.157-3 | 1.769-2 | 1.083-1 | 26.0 | | | Er-nat | 2.0 | 1.00 | 4.5 | 18 | 6.267+2 | 2.421-2 | | 3.400-1 (71.4%) | | 7.933-4 | | | | | | Er-nat | 4.0 | 1.00 | 4.5 | 18 | 1.246+3 | 4.019-2 | 7.614-1 (26.1%) | 4.200-1 (63.5%) | 7.127-2 | 9.418-4 | 1.397-2 | 8.618-2 | 14.0 | | | Er-nat | 1.0 | 1.00 | 4.5 | 64 | 1.118+3 | 4.850-2 | 6.491-1 (37.6%) | 2.852-1 (76.6%) | 5.582-2 | 7.213-4 | 1.082-2 | 6.736-2 | 10.5 | | | Er-nat | 2.0 | 1.00 | 4.5 | 64 | 2.228+3 | 8.316-2 | | 3.454-1 (71.0%) | | 8.377-4 | | | | | | Er-nat | 4.0 | 1.00 | 4.5 | 64 | 4.429+3 | 1.330-1 | 7.680-1 (25.6%) | 4.292-1 (62.9%) | 7.640-2 | 1.039-3 | 1.552-2 | 9.295-2 | 51.9 | | | Er-nat | 1.0 | 1.00 | 4.5 | 104 | 1.816+3 | 7.517-2 | 6.638-1 (36.2%) | 2.952-1 (75.9%) | 5.888-2 | 7.851-4 | 1.185-2 | 7.151-2 | 28.0 | | | Er-167 | 1.0 | 1.00 | 4.5 | 16 | 2.793+2 | 3.701-2 | 7.218-1 (28.2%) | 3.658-1 (64.4%) | 8.352-3 | 5.075-10 | 6.276-3 | 1.463-2 | 2.3 | | | Er-167 | 2.0 | 1.00 | 4.5 | 16 | 5.569+2 | 5.738-2 | | 4.727-1 (53.8%) | | 3.268-10 | | | | | | Er-167 | 4.0 | 1.00 | 4.5 | 16 | 1.107+3 | 8.322-2 | | 5.810-1 (43.4%) | | 2.248-10 | | 3.503-2 | | | | Er-167 | 1.0 | 1.00 | 4.5 | 18 | 3.142+2 | 4.148-2 | 7.168-1 (28.8%) | 3.678-1 (64.2%) | 8.574-3 | 4.514-10 | 6.312-3 | 1.489-2 | 2.4 | | | Er-167 | 2.0 | 1.00 | 4.5 | 18 | 6.265+2 | 6.370-2 | 7.733-1 (23.1%) | 4.776-1 (53.3%) | 1.216-2 | 2.953-10 | 8.322-3 | 2.048-2 | 6.6 | | | Er-167 | 4.0 | 1.00 | 4.5 | 18 | 1.245+2 | 9.300-2 | 8.081-1 (19.9%) | 5.717-1 (44.3%) | 2.386-2 | 2.015-10 | 1.016-2 | 3.402-2 | 13.9 | | | Er-167 | 0.2 | 1.00 | 4.5 | 64 | 2.240+2 | 4.141-2 | | 2.239-1 (78.4%) | | 4.543-10 | | | | | | Er-167 | 0.5 | 1.00 | 4.5 | 64 | 5.595+2 | 8.540-2 | | 2.930-1 (71.6%) | | 2.197-10 | | 1.252-2 | | | | Er-167 | 1.0 | 1.00 | 4.5 | 64 | 1.117+3 | 1.368-1 | 7.221-1 (28.3%) | 3.781-1 (63.2%) | 9.237-3 | 1.378-10 | 6.936-3 | 1.617-2 | 13.6 | | | Er-167 | 0.2 | 1.00 | 4.5 | 104 | 3.640+2 | 6.548-2 | | 2.410-1 (76.7%) | | 2.864-10 | | | | | | Er-167 | 0.5 | 1.00 | 4.5 | 104 | 9.091+2 | 1.301-1 | 6.853-1 (31.9%) | 3.037-1 (70.6%) | 7.244-3 | 1.452-10 | 6.130-3 | 1.337-2 | 12.1 | | Table 16. Er Burnable Poison Integrally mixed with the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivit | | | BP
nalty
4 FPY | MVC
at BOL | |----------------------------|--------------------------|----------------------------|--------------------------------|-------------------------------|-------------------------------|---|---|--------------------------|----------------------------------|--------------------------|--------------------|----------------------|---| | | (wt%Er in
Zr-4) | ment | (per Fuel | Assembly | | BP-tot
per
Er(BOL) | BP-tot
per
Er(BOL) | Er-tot
per
Er(BOL) | Ho-tot
per
Er(BOL) | Tm-tot
per
Er(BOL) | | FPD) | dkeff per -10%
water density
change (STD) | | Er-nat
Er-nat | 1.0
4.0 | 4.5
4.5 | 104
104 | 3.743+2
1.510+3 | 1.972-2
6.943-2 | 5.776-1 (44.8%)
6.274-1 (39.9%) | 2.228-1 (82.5%)
2.618-1 (79.0%) | 4.721-2
5.347-2 | | 9.551-3
1.059-2 | 5.755-2
6.494-2 | 4.2
22.7 | | | Er-167
Er-167
Er-167 | 0.5
1.0
2.0 | 4.5
4.5
4.5 | 104
104
104 | 1.869+2
3.743+2
7.507+2 | 3.857-2
7.054-2
1.204-1 | 5.740-1 (43.0%)
6.040-1 (40.0%)
6.487-1 (35.6%) | 1.878-1 (82.0%)
2.120-1 (79.6%)
2.623-1 (74.7%) | 5.479-3 | 4.910-10
2.702-10
1.574-10 | 4.849-3 | 1.033-2 | 1.5
3.2
6.3 | | | Er-167 | 2.0 | 6.0 | 104 | 7.507+2 | 1.132-1 | 6.990-1 (30.5%) | 3.351-1 (67.4%) | 6.567-3 | 1.970-10 | 6.148-3 | 1.272-2 | 6.9 | | **Figure 15** Negative reactivity of BP for Er-167 and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 64 poison rods, 4.0wt% Er₂0₃ poison homogeneously mixed in the UO₂ pellets. Reactor power is 3400 MWth, 193 fuel assemblies, initial enrichment is $4.5wt\%^{235}U$. **Figure 16** Negative reactivity of BP for Er-167 and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 64 poison rods, 1.0wt% Er_2O_3 poison homogeneously mixed in the UO_2 pellets. Reactor power is 3400 MWth, 193 fuel assemblies, initial enrichment is 4.5wt%²³⁵U. Figure 17 displays the initial reactivity worths of the erbium based BP as a function the residual BP penalty in FPDs for several configurations containing 16 IFBA rods. Figure 18 displays the initial reactivity worths of the BP vs FPD penalty for fuel assembly configurations containing 64 IFBA rods. The trends for the four different forms of BPs are very similar. Note also the clear advantage of using enriched erbium (enriched in ¹⁶⁷Er) over erbium with natural isotopic abundances. ## NEUTRONICS PERFORMANCE RESULTS FOR DYSPROSIUM In the proposed use of the CANDU reactor for burning ex-weapons plutonium as MOX, depleted uranium is used as the matrix material throughout the fuel bundle (ref 1). In the central fuel rod and in the next ring of fuel rods, dysprosium burnable poison is mixed with the depleted uranium of those fuel rods not containing plutonium. This increases the amount of plutonium required to achieve a given burnup (and thus increases the Pu disposition rate), reduces the local peak power after refueling, and reduces the local positive MVC in the middle of the fuel bundle (and thus the dysprosium makes the overall bundle MVC more negative). In this case the residual reactivity worth should remain high throughout the life of the fuel. **Figure 17** Burnable poison initiao reactivity worth as a function of FPD penalty--Er in 16 IFBA rods **Figure 18** Burnable poison initial reactivity worth as a function of FPD penalty --Er in 64 IFBA rods In this section, we will show that the use of enriched dysprosium (fully enriched in ¹⁶⁴Dy) will improve the performance of dysprosium-based BPs in PWRs. The residual reactivity worth ratio for BPs containing dysprosium with natural isotopic abundances is high, between 30 and 40%, depending on the dysprosium initial loading and the number of IFBA rods per fuel assembly. The use of dysprosium fully enriched in ¹⁶⁴Dy reduces the residual reactivity worth ratio of the BPs to between 8 and 18%. The same four configurations as used for the previously studied elements will be used for dysprosium In all the neutronics calculations presented in this section, a theoretical density of 7.81 g/cm³ was used for Dy_2O_3 , and 8.56 g/cm³ for metallic dysprosium. For UO_2 a theoretical density of 10.97 g/cm³ was used. The actual density fraction of the fuel pellets and of the burnable poison pellets was 95% of theoretical density. The half-lives, natural isotopic abundances and burnup chains related to the depletion and transmutation of dysprosium are given below. Note that the adjacent bands of isotopes such as the Er isotopes (decay from Ho isotopes) are not shown. Also, the isomeric states of certain isotopes are not shown. However, the generation of these daughters was taken into account in the BP depletion and decay calculations. | Half-life | | | | | | | | 29m
¹⁶⁴ Ho | stable Ho β- | 26.8h
Ho | |-------------|----------------------------|---------------------|---------------------------|---------------------------|----------------------------
----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Nat. Abund. | 0.06%
¹⁵⁶ Dy | 8.1h
157Dy
EC | 0.10%
158Dy | 144.4d
159Dy
EC | 2.34%
¹⁶⁰ Dy | 18.9%
¹⁶¹ Dy | 25.5%
¹⁶² Dy | 24.9%
¹⁶³ Dy | 28.2%
¹⁶⁴ Dy | 2.33h
¹⁶⁵ Dy | | Half-life | 5.3d
155Tb | 5.3d
156Tb | 110y
¹⁵⁷ Tb | 180y
¹⁵⁸ Tb | stable ¹⁵⁹ Tb | 72.3d ¹⁶⁰ Tb | 6.91d
¹⁶¹ Tb | 7.6m
¹⁶² Tb | | | The capture cross sections for Dy and its transmutants are shown in ref. 11. The generation of Tb isotopes is essentially zero, since the natural isotopic abundances of 156 Dy (0.06%) and 158 Dy (0.1%) are very small. The stable isotopes 156 Dy (0.06% natural isotopic abundance, thermal cross section 33 barns, RI 884 barns), 158 Dy (0.1%, thermal 43 barns, RI 120 barns), 160 Dy (2.3%, thermal 56 barns, RI 1,160 barns), 162 Dy (25.5%, thermal 194 barns, RI 2,755 barns) and 163 Dy (24.9%, thermal 124 barns, RI 1,470 barns) exhibit medium-sized capture cross sections, while 161 Dy (18.9%, thermal 600 barns, RI 1,200 barns) and 164 Dy (28.1%, thermal 2,650 barns, RI 340 barns) have large capture cross sections. Since the majority of the stable dysprosium isotopes (160 Dy through 164 Dy) are adjacent to each other (in the chart of the nuclides), and since they have medium to large capture cross sections, the residual reactivity ratio of BPs containing dysprosium with natural isotopic abundances will be high. Also, the 164 Dy (165 Dy reaction leads to 165 Dy, which decays to 165 Ho with a half-life of 2.33 hours. The thermal capture cross section of 165 Ho is approximately 65 barns, and the RI is 670 barns. Dysprosium with natural isotopic abundances is thus attractive if the burnout of the BP has to be minimized (such as for use in the Pu-burner CANDU). Since the thermal capture cross section of ¹⁶⁴Dy is much larger than that for ¹⁶⁵Ho, enriching dysprosium in ¹⁶⁴Dy will thus reduce the residual reactivity ratio of the BP. The neutronics calculations for Dy are summarized in Tables 17-20 for the four configurations of the burnable poison. Table 17 displays the results of using Dy_2O_3 , mixed homogeneously with the fuel pellets of a number of fuel rods. For the same initial reactivity worth of the BP, the residual negative reactivity worth ratio of dysprosium, fully enriched in ^{164}Dy , is more than two times smaller than the residual worth of dysprosium with natural isotopic abundances. The relative contribution to the residual reactivity ratio from ^{165}Ho is higher for BP containing enriched ^{164}Dy . The reactivity worths of the BP isotopes, for a 4.0 wt % loading of Dy_2O_3 with natural isotopic abundances, homogeneously mixed in the fuel pellets of 16 IFBA rods per fuel assembly, are shown in Figure 19. The initial reactivity worth of the BP is 6.08×10^{-2} and the residual reactivity ratio is 38.5%. The residual reactivity worth of the Tb daughters is essentially zero, since the natural isotopic abundances of ¹⁵⁶Dy and ¹⁵⁸Dy are very small, 0.06% and 0.10%, respectively. For a 4.0 wt % homogeneous loading of Dy_2O_3 (fully enriched in ^{164}Dy) in 16 IFBA rods, the results of the reactivity worths are shown in Figure 20. The initial reactivity worth of the BP is 6.75×10^{-2} and the residual reactivity ratio is 18.0%. The total loading of ^{164}Dy per fuel assembly is 1,150 grams of ^{164}Dy . Most of the residual reactivity burden of the enriched dysprosium BP comes from the buildup of ^{165}Ho . Figure 20 also displays the masses of the burnable poison isotopes. The use of dysprosium as a BP, enriched in ^{164}Dy instead of with natural isotopic abundances, thus leads to a reduction of the residual reactivity burden at EOL of the fuel. For cases of a greater number of IFBA rods, the results show that the shape of the fuel assembly lattice k_{inf} 's is flatter. The BP burnout rate is also slower, which might be useful in applications requiring longer fuel cycles. Table 17. Dy Burnable Poison Integrally mixed with the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
Loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivity
4 FPY vs | | BP
Penalty | MVC
at BOL | |----------------------------|--------------------------|----------------------------|--------------------------------|-------------------------------|--|---|---|-------------------------------|----------------------------------|--------------------------|--|---| | isocope | (wt%Dy2O3 | ment | (per Fuel
Assembly) | Assembly)
(gram) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Dy(BOL) | BP-tot
per
Dy(BOL) | Dy-tot
per
Dy(BOL) | per | Ho-tot
per
Dy(BOL) | BP-tot (FPD) per Dy(BOL) | dkeff per -10%
water density
change (STD) | | Dy-nat | 4.0 | 4.5 | 08 | 5.730+2 | 3.179-2 | 8.326-1 (26.9%) | 6.955-1 (49.0%) | 3.032-1 | 1.146-10 | 7.541-2 | 3.786-1 56.2 | -2.28-3 (2.8-4) | | Dy-nat
Dy-nat
Dy-nat | 2.0
4.0
8.0 | 4.5
4.5
4.5 | 16
16
16 | 5.776+2
1.146+3
2.256+3 | 3.691-2
6.082-2
9.182-2 | 8.430-1 (24.5%)
8.484-1 (24.7%)
8.661-1 (23.3%) | 6.980-1 (47.2%)
7.100-1 (47.2%)
7.378-1 (45.7%) | 2.823-1
3.108-1
3.548-1 | 5.880-11 | 7.425-2 | 3.594-1 61.8
3.850-1 106.4
4.259-1 180.6 | -2.24-3 (2.9-4)
-3.94-3 (2.8-4)
-5.01-3 (2.6-4) | | Dy-nat | 4.0 | 4.5 | 20 | 1.433+3 | 7.509-2 | 8.484-1 (24.6%) | 7.093-1 (47.2%) | 3.102-1 | 4.704-11 | 7.318-2 | 3.834-1 135.0 | | | Dy-nat
Dy-nat
Dy-nat | 0.5
1.0
2.0 | 4.5
4.5
4.5 | 64
64
64 | 5.811+2
1.159+3
2.310+3 | 4.550-2
8.118-2
1.363-1 | 8.253-1 (25.2%)
8.347-1 (24.8%)
8.429-1 (24.6%) | 6.660-1 (48.2%)
6.815-1 (47.8%)
6.937-1 (43.8%) | 2.301-1
2.544-1
2.830-1 | | 7.960-2 | 3.077-1 92.3
3.340-1 135.0
3.608-1 200.0 | -2.29-3 (3.5-4)
-3.58-3 (3.6-4)
-4.26-3 (3.4-4) | | Dy-161 | none | | | | | | | | | | | | | Dy-164 | 4.0 | 4.5 | 08 | 5.745+2 | 3.547-2 | 8.386-1 (19.5%) | 6.636-1 (40.7%) | 5.895-2 | 1.036-10 | 1.134-1 | 1.729-1 29.6 | -1.98-3 (2.8-4) | | Dy-164
Dy-164
Dy-164 | 2.0 | 4.5
4.5
4.5 | 16
16
16 | 2.907+2
5.791+2
1.149+3 | 2.934-2
4.745-2
6.747-2 | 7.606-1 (26.5%)
7.995-1 (22.8%)
8.453-1 (18.9%) | 5.062-1 (54.6%)
5.780-1 (47.9%)
6.785-1 (39.2%) | 1.448-2
2.522-2
6.308-2 | 1.260-10
7.750-11
5.390-11 | 9.327-2 | 9.495-2 11.1
1.185-1 20.9
1.804-1 55.1 | -1.56-3 (3.0-4)
-1.35-3 (2.9-4)
-2.06-3 (2.7-4) | | Dy-164 | 4.0 | 4.5 | 20 | 1.436+3 | 8.347-2 | 8.385-1 (19.7%) | 6.640-1 (41.0%) | 6.357-2 | 4.339-11 | 1.174-1 | 1.810-1 82.8 | | | Dy-164
Dy-164 | | 4.5
4.5 | 64
64 | 5.826+2
1.163+3 | 6.520-2
1.085-1 | 7.282-1 (29.6%)
7.633-1 (26.3%) | 4.584-1 (59.0%)
5.100-1 (54.5%) | 9.654-3
1.473-2 | 5.620-11
3.365-11 | | 8.187-2 25.2
1.011-1 56.4 | -1.07-3 (3.4-4) | Table 18. Dy Burnable Poison Integrally mixed with the Outer One Third Part of the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
Loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit
120 FPD vs.BOL | y Ratio
1 FPY vs.BOL | | Reactivity
4 FPY vs | | | BP
enalty
at 4 FPY | MVC
at BOL | |----------------------------|--------------------------|----------------------------|--------------------------------|-------------------------------|-------------------------------|---|---|--------------------------|----------------------------------|--------------------------|-------------------------------|--------------------------|---| | 1500070 | (wt%Dy203 | ment | (per Fuel
Assembly) | Assembly)
(gram) | | BP-tot
per
Dy(BOL) | BP-tot
per
Dy(BOL) | Dy-tot
per
Dy(BOL) | per | Ho-tot
per
Dy(BOL) | | (FPD) | dkeff per -10%
water density
change (STD) | | Dy-nat
Dy-nat | 4.0
8.0 | 4.5
4.5 | 08
08 | 1.910+2
3.760+2 | 1.382-2
2.372-2 | 8.302-1 (25.4%)
8.403-1 (24.9%) | 6.829-1 (47.4%)
6.911-1 (48.2%) | 2.535-1
2.840-1 | 2.659-10
1.547-10 | | 3.310-1
3.588-1 | | | | Dy-nat | 1.0 | 4.5 | 64 | 3.866+2 | 3.299-2 | 8.134-1 (26.2%) | ,, | | 1.109-10 | | 2.867-1 | | | | Dy-161 | 4.0 | 4.5 | 08 | 1.911+2 | 1.279-2 | 9.010-1 (19.5%) | 7.745-1 (44.4%) | 4.577-1 | 2.865-10 | 3.498-2 | 4.926-1 | 24.5 | | | Dy-164
Dy-164
Dy-164 | 4.0
8.0
12.0 | 4.5
4.5
4.5 | 08
08
08 | 1.915+2
3.770+2
5.568+2 | 1.884-2
2.910-2
3.541-2 | 7.691-1 (25.5%)
8.237-1 (20.2%)
8.535-1 (17.5%) | 5.256-1 (52.3%)
6.068-1 (45.1%)
6.691-1 (39.5%) | 2.814-2 | 1.963-10
1.266-10
1.040-10 | 9.923-2 | 9.370-2
1.274-1
1.623-1 | 14.4 | | | Dy-164 | 1.0 | 4.5 | 64 | 3.876+2 | 4.839-2 | 7.088-1 (31.4%) | 4.274-1 (61.8%) | 6.785-3 | 7.623-11 | 6.657-2 | 7.335-2 | 17.0 | | Table 19. Dy Burnable Poison in a Dy203 Coating between the UO2 Fuel Pellet and the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Thickness
BP Layer
(mills) | Initial
Density
Fraction | Initial
Fuel | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | | y Ratio
1 FPY vs.BOL | | Reactivity
4 FPY v | | BP
Penalty | MVC
at BOL
Y | |----------------------------
----------------------------------|--------------------------------|-------------------|--------------------------------|-------------------------------|-------------------------------|---|---|--------------------------|----------------------------------|--------------------------|---|---| | Isocope | (MIIIS) | BP Dy203 | ment | (per Fuel
Assembly) | Assembly)
(gram) | | BP-tot
per | BP-tot
per
Dy(BOL) | Dy-tot
per
Dy(BOL) | Tb-tot
per
Dy(BOL) | Ho-tot
per
Dy(BOL) | BP-tot (FPD) per Dy(BOL) | dkeff per -10%
water density
change (STD) | | Dy-nat | 2.0 | 1.00 | 4.5 | 18 | 5.636+2 | 3.770-2 | 8.450-1 (23.8%) | 6.756-1 (49.8%) | 2.727-1 | 9.651-11 | 7.584-2 | 3.485-1 60.0 | | | Dy-nat | 1.0 | 1.00 | 4.5 | 64 | 1.005+3 | 7.397-2 | 8.295-1 (25.0%) | 6.736-1 (47.8%) | 2.409-1 | 4.804-11 | 7.590-2 | 3.168-1 107.4 | | | Dy-161 | 1.0 | 1.00 | 4.5 | 64 | 1.005+3 | 6.892-2 | 8.925-1 (21.1%) | 7.664-1 (45.9%) | 4.535-1 | 5.102-11 | 3.747-2 | 4.910-1 138.4 | | | Dy-164
Dy-164 | 4.0
8.0 | 1.00
1.00 | 4.5
4.5 | 08
08 | 4.992+2
9.861+2 | 3.329-2
4.513-2 | 8.382-1 (19.1%)
8.752-1 (17.0%) | 6.594-1 (40.2%)
7.455-1 (34.8%) | | 1.105-10
8.082-11 | | 1.525-1 21.8
2.676-1 61.2 | | | Dy-164
Dy-164 | 2.0
4.0 | 1.00
1.00 | 4.5
4.5 | 18
18 | 5.651+2
1.123+2 | 4.824-2
7.114-2 | 7.977-1 (22.8%)
8.378-1 (19.3%) | 5.620-1 (49.3%)
6.587-1 (40.7%) | | 7.629-11
5.121-11 | | 1.106-1 25.2
1.605-1 52.8 | | | Dy-164
Dy-164
Dy-164 | 0.5
1.0
2.0 | 1.00
1.00
1.00 | 4.5
4.5
4.5 | 64
64
64 | 5.046+2
1.008+3
2.009+3 | 5.947-2
9.868-2
1.523-1 | 7.261-1 (29.7%)
7.634-1 (26.1%)
7.990-1 (22.9%) | 4.470-1 (59.9%)
5.035-1 (54.7%)
5.758-1 (48.4%) | 1.088-2 | 6.170-11
3.716-11
2.371-11 | 8.165-2 | 7.688-2 16.5
9.254-2 46.0
1.229-1 112.2 | | | Dy-164 | 0.5 | 1.00 | 4.5 | 104 | 8.199+2 | 8.981-2 | 7.392-1 (28.5%) | 4.617-1 (58.7%) | 8.151-3 | 4.091-11 | 7.534-2 | 8.349-2 30.5 | | Table 20. Dy Burnable Poison Integrally mixed with the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | loading | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass (per Fuel | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivit | | | BP
Penalty
at 4 FPY | MVC
at BOL | |--------------------------|--------------------|----------------------------|--------------------------------|--------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---| | ТВОСОРС | (wt%Dy
in Zr-4) | ment | (per Fuel | Assembly
(gram) | | BP-tot
per
Dy(BOL) | BP-tot
per
Dy(BOL) | Dy-tot
per
Dy(BOL) | Tb-tot
per
Dy(BOL) | Ho-tot
per
Dy(BOL) | BP-tot
per
Dy(BOL) | (FPD) | dkeff per -10%
water density
change (STD) | | Dy-nat | 4.0 | 4.5 | 104 | 3.041+3 | 1.856-1 | 8.365-1 (25.2%) | 6.820-1 (49.0%) | 2.718-1 | 7.610-10 | 7.956-2 | 3.513-1 | 342.0 | | | Dy-161 | None | | | | | | | | | | | | | | Dy-164 | 2.0 | 4.5 | 64 | 4.616+2 | 5.805-2 | 7.129-1 (30.9%) | 4.245-1 (62.0%) | 5.631-3 | 9.595-11 | 6.587-2 | 7.150-2 | 19.0 | | | Dy-164 | 2.0 | 4.5 | 104 | 7.501+2 | 8.907-2 | 7.209-1 (30.2%) | 4.367-1 (61.0%) | 6.415-3 | 7.935-11 | 6.962-2 | 7.604-2 | 28.3 | | | Dy-164 | 2.0 | 6.0 | 104 | 7.501+2 | 7.492-2 | 7.838-1 (23.5%) | 5.390-1 (50.1%) | 6.642-3 | 9.823-11 | 7.362-2 | 8.026-2 | 19.6 | | In Tables 17 through 20 the residual reactivity worths, due to the Tb daughters of the BP containing dysprosium enriched in 164 Dy, should be zero, since there are essentially no paths from the transmutation of 164 Dy to any of the Tb isotopes. However, the tables show residual reactivity worths of the order of 1.0×10^{-11} . This is because for each case, all the BP isotopes and their daughters (which are not present in the initial loading of the BP) have been added as traces to the BP with a number density of 1.0×10^{-15} instead of zero. This is to avoid problems at the BOC in the input to the MCNP4C code and to avoid computer exception errors (division by zero) when calculating spectrum-weighted cross sections. The MVCs were calculated by decreasing the water coolant density by 10%. Note that for all the cases containing 8, 16, and 64 IFBA rods, the MVCs remain negative. **Figure 19** Negative reactivity of BP for Dy-nat and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 16 poison rods, $4.0 \text{ wt}\% \text{ Dy}_2\text{0}_3$ poison homogeneously mixed in the UO₂ pellets. Reactor power is 3400 MWth, 193 fuel assemblies, initial enrichment is $4.5\text{wt}\%^{235}\text{U}$. **Figure 20** Negative reactivity of BP for Dy-164 and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 16 poison rods, $4.0 \text{ wt}\% \text{ Er}_20_3$ poison homogeneously mixed in the UO₂ pellets. Reactor power is 3400 MWth, 193 fuel assemblies, initial enrichment is $4.5\text{wt}\%^{235}\text{U}$. Figure 20 displays the initial reactivity worths of the BP containing dysprosium as a function of the residual BP penalty in FPDs for several configurations containing 64 IFBA rods. The trends for the different forms of the BPs are very similar. Note also the advantage of using dysprosium enriched in ¹⁶⁴Dy over dysprosium with natural isotopic abundances. **Figure 21** Burnable poison initial reactivity worth as a function of FPD penalty--Dy in 64 IFBA rods ## NEUTRONICS PERFORMANCE RESULTS FOR EUROPIUM The stable isotopes of europium, ¹⁵¹Eu (47.8% natural isotopic abundance) and ¹⁵³Eu (52.2%), exhibit very large thermal neutron capture cross sections. The radioactive isotopes ¹⁵²Eu, ¹⁵⁴Eu, and ¹⁵⁵Eu, produced by neutron capture, have multi-year half-lives and exhibit large neutron capture cross sections. Because of these characteristics, europium with natural isotopic abundances will not burn out easily. It is thus an ideal control rod material and has been used in research reactors [e.g., the High Flux Isotope Reactor (HFIR)]. In this section, we will investigate whether europium, enriched in ¹⁵¹Eu, could be used as a burnable poison in PWRs. The half-lives, natural isotopic abundances, and burnup chains related to the depletion and transmutation of europium are given below. The isomeric states of certain isotopes are not shown. However, the generation of these daughters was taken into account in the BP depletion and decay calculations. The neutron capture cross sections for the europium isotopes are graphed in ref. 11. The europium stable isotope ¹⁵¹Eu (47.8% natural isotopic abundance) exhibits a thermal capture cross section of 9,200 barns and a RI of 3,300 barns. The 151 Eu (n, γ) 152 Eu reaction leads to 152 Eu, which has a halflife of 13.54 years, a thermal neutron capture cross section of 12,800 barns, and a RI of 1,580 barns. The other stable europium isotope, ¹⁵³Eu (52.2% natural isotopic abundance) has a thermal neutron capture cross section of 310 barns and a RI of 1,420 barns. The 153 Eu (n, γ) 154 Eu reaction leads to ¹⁵⁴Eu, which has a half-life of 8.6 years, a thermal neutron capture cross section of 1,340 barns, and a RI of 800 barns. Because of the long half-life of ¹⁵⁴Eu, the principal transmutation route for ¹⁵⁴Eu will be via the 154 Eu (n, γ) 155 Eu reaction, leading to 155 Eu, which has a half-life of 4.75 years, a capture cross section of 3,950 barns, and a RI of 23,200 barns. Again, because of the long half-life of ¹⁵⁵Eu, the principal transmutation route for ¹⁵⁵Eu will be via the ¹⁵⁵Eu (n, γ) ¹⁵⁶Eu reaction, leading to ¹⁵⁶Eu, which decays to ¹⁵⁶Gd with a half-life of 15.2 days. ¹⁵⁶Gd has a capture cross section of 1.5 barns and a RI of 104 barns. The use of ¹⁵¹Eu in a BP will lead by transmutation to ¹⁵²Eu, which has a higher thermal neutron capture cross section than ¹⁵¹Eu. Transmutation of ¹⁵²Eu leads to ¹⁵³Eu, which has a much smaller thermal cross section than either ¹⁵¹Eu or ¹⁵²Eu. The sequence of ¹⁵¹Eu and ¹⁵²Eu, exhibits a pair of very high thermal cross sections, followed by ¹⁵³Eu with a much smaller cross section. This will lead to a decrease of the burnout rate of the BP, together with a reduction of the residual reactivity fraction of the BP. The use of ¹⁵³Eu as a BP will lead to ¹⁵⁴Eu, which has a higher thermal neutron capture cross section than ¹⁵³Eu. Further transmutation leads to ¹⁵⁵Eu, which has an even higher thermal cross section than ¹⁵⁴Eu. Transmutation to ¹⁵⁶Eu will lead to a 15.2-day decay of ¹⁵⁶Eu to ¹⁵⁶Gd, which has a very small thermal cross section. Since the thermal cross section of ¹⁵³Eu is smaller than that of ¹⁵¹Eu, a larger amount of ¹⁵³Eu is needed than of ¹⁵¹Eu in order to achieve a desired initial reactivity worth of the BP. In addition, the sequence ¹⁵³Eu-¹⁵⁴Eu-¹⁵⁵Eu exhibits an increasing thermal neutron capture cross section. This will thus give rise to a much higher residual reactivity fraction than the use of a BP fully enriched in ¹⁵¹Eu. Enriching europium in the ¹⁵¹Eu isotope should thus reduce the residual negative reactivity fraction of the BP, together with decreasing the burnout rate of the BP. In all the neutronics calculations presented in this section, a theoretical density of 7.42 g/cm^3 was used for europia (Eu₂O₃), and 5.22 g/cm^3 was used for metallic europium. For UO₂, a theoretical density of 10.97 g/cm^3 was used. The actual density fraction of the fuel pellets and of the burnable poison pellets was 95% of theoretical
density. As with the other candidate elements, four different configurations of the burnable poison were investigated. The results of each calculation run are given in Tables 21-24 for each configuration. The reactivity worths of the BP isotopes, for a 2.0 wt % loading of europium with natural isotopic abundances, alloyed with the Zircaloy cladding of 64 fuel rods per fuel assembly, are shown in Figure 22. The initial reactivity worth of the BP is 0.124, and the residual reactivity ratio was 11.4%. The total initial mass of natural europium was 457 grams per fuel assembly containing BPs. For a 1.0 wt % homogeneous loading of europium, fully enriched in ¹⁵¹Eu, alloyed in the Zircaloy cladding of 64 fuel rods, the reactivity worths of the BP isotopes are shown in Figure 23. The initial reactivity worth of the BP was 0.118 and the residual reactivity ratio was 6.8%. The total initial mass of ¹⁵¹Eu was 229 grams per fuel assembly. Figure 58 also shows that the reactivity worths of the BP transmutation daughters ¹⁵²Eu to ¹⁵⁵Eu initially increase with depletion time, then reach a maximum, followed by a decrease of the reactivity worth. The time at which the reactivity worth reaches its maximum increases with the isotope transmutation sequence chain from ¹⁵²Eu to ¹⁵⁵Eu. The use of europium enriched in ¹⁵¹Eu, instead of with natural isotopic abundances, will thus lead to a reduction of the residual reactivity burden at EOL of the fuel. The MVCs were calculated by decreasing the water coolant density by 10%. The results are shown in Tables 21 through 24. For all the cases containing 64 and 104 IFBA rods, the MVCs remain negative. Table 21. Eu Burnable Poison Integrally mixed with the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Loading | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | | | BP
enalty
t 4 FPY | MVC
at BOL | |--------------------------|---------------------------|----------------------------|--------------------------------|------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------|-------------------------|---| | Isocope | (wt%Eu2O3 m
in UO2) (w | ment | (per Fuel | Assembly) (gram) | | BP-tot
per
Eu(BOL) | BP-tot
per
Eu(BOL) | Eu-tot
per
Eu(BOL) | Sm-tot
per
Eu(BOL) | Gd-tot
per
Eu(BOL) | | | dkeff per -10%
water density
change (STD) | | Eu-nat | 4.0 | 4.5 | 08 | 5.672+2 | 6.511-2 | 8.535-1 (20.9%) | 6.346-1 (52.0%) | 2.697-1 | 3.160-3 | 2.471-2 | 2.976-1 | 90.7 | | | Eu-151 | 4.0 | 4.5 | 08 | 5.667+2 | 7.374-2 | 8.892-1 (15.5%) | 7.239-1 (38.6%) | 2.591-1 | 7.568-3 | 1.825-2 | 2.849-1 | 96.7 | | | Eu-153 | 4.0 | 4.5 | 08 | 5.677+2 | 2.429-2 | 1.067+0(-25.9%) | 1.184+0(-70.8%) | 6.710-1 | 1.280-6 | 6.992-2 | 7.409-1 | 89.1 | | Table 22. Eu Burnable Poison Integrally mixed with the Outer One Third Part of the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Loading | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | | | BP
enalty
t 4 FPY | MVC
at BOL | |--------------------------|-----------|----------------------------|--------------------------------|---------------------|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------|-------------------------|---| | | (wt%Eu2O3 | ment | (per Fuel
Assembly) | Assembly)
(gram) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Eu(BOL) | BP-tot
per
Eu(BOL) | Eu-tot
per
Eu(BOL) | Sm-tot
per
Eu(BOL) | Gd-tot
per
Eu(BOL) | | (FPD) | dkeff per -10%
water density
change (STD) | | Eu-nat | 8.0 | 4.5 | 80 | 3.712+2 | 5.444-2 | 8.035-1 (25.9%) | 5.314-1 (61.7%) | 2.168-1 | 1.955-3 | 2.168-2 | 2.404-1 | 56.0 | | | Eu-151 | 4.0 | 4.5 | 08 | 1.889+2 | 4.937-2 | 7.760-1 (26.3%) | 4.310-1 (66.9%) | 1.335-1 | 2.248-3 | 1.337-2 | 1.491-1 | 35.9 | | | Eu-153 | 8.0 | 4.5 | 08 | 3.715+2 | 1.776-2 | 1.079+0(-23.2%) | 1.203+0(-59.7%) | 5.914-1 | 1.035-6 | 6.866-2 | 6.601-1 | 52.7 | | Table 23. Eu Burnable Poison in a Eu203 Coating between the UO2 Fuel Pellet and the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Thickness
BP Layer
(mills) | | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | | | BP
Penalty
at 4 FPY | MVC
at BOL | |--------------------------|----------------------------------|----------|----------------------------|--------------------------------|---------------------|-----------------------------|------------------------------------|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---| | | (=====, | BP Eu203 | ment | (per Fuel
Assembly) | Assembly)
(gram) | | BP-tot
per
Eu(BOL) | BP-tot
per
Eu(BOL) | Eu-tot
per
Eu(BOL) | Sm-tot
per
Eu(BOL) | Gd-tot
per
Eu(BOL) | BP-tot
per
Gd(BOL) | | dkeff per -10%
water density
change (STD) | | Eu-nat | 1.0 | 1.00 | 4.5 | 64 | 9.479+2 | 1.875-1 | 6.657-1 (40.0%) | 3.893-1 (73.0%) | 1.430-1 | 7.670-4 | 1.942-2 | 1.632-1 | 205.0 | | | Eu-151
Eu-151 | 0.2
0.5 | 1.00 | 4.5
4.5 | 64
64 | 1.899+2
4.742+2 | 9.787-2
1.754-1 | 4.793-1 (56.0%)
6.093-1 (43.4%) | 1.856-1 (87.5%)
2.594-1 (82.2%) | | 5.562-4
9.068-4 | | 6.968-2
9.900-2 | | | | Eu-151 | 0.2 | 1.00 | 4.5 | 104 | 3.085+2 | 1.444-1 | 5.118-1 (52.8%) | 1.986-1 (86.7%) | 6.631-2 | 5.991-4 | 8.960-3 | 7.587-2 | 33.1 | | | E11-153 | 0.2 | 1.00 | 4.5 | 64 | 1.902+2 | 1.200-2 | 1.100+0(-17.8%) | 1.243+0(-43.2%) | 3.681-1 | 7.796-7 | 6.982-2 | 4.380-1 | 22.9 | | Table 24. Eu Burnable Poison Integrally mixed with the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | | BP
Penalty
at 4 FP | | |--------------------------|--------------------------|----------------------------|--------------------------------|--------------------|-----------------------------|------------------------------------|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|---| | Isocope | (wt%Eu
in Zr-4) | ment | (per Fuel | Assembly) | | BP-tot
per
Eu(BOL) | BP-tot
per
Eu(BOL) | Eu-tot
per
Eu(BOL) | Sm-tot
per
Eu(BOL) | Gd-tot
per
Eu(BOL) | BP-tot (FPD)
per
Eu(BOL) | dkeff per -10%
water density
change (STD) | | Eu-nat
Eu-nat | 1.00
2.00 | 4.5
4.5 | 64
64 | 2.292+2
4.572+2 | 7.437-2
1.244-1 | 4.747-1 (58.1%)
5.508-1 (50.7%) | 2.668-1 (81.0%)
3.114-1 (77.7%) | | 3.542-4
4.489-4 | | 9.502-2 28.8
1.140-1 64.5 | -3.06-3 (3.8-4)
-4.26-3 (3.4-4) | | Eu-nat
Eu-nat | 0.50
1.00 | 4.5
4.5 | 104
104 | 1.864+2
3.724+2 | 6.418-2
1.132-1 | 4.508-1 (60.3%)
4.954-1 (56.1%) | 2.558-1 (81.7%)
2.825-1 (79.8%) | | 3.358-4
3.797-4 | | 8.858-2 22.1
1.012-1 49.4 | -2.91-3 (4.4-4)
-3.64-3 (4.3-4) | | Eu-151
Eu-151 | 0.50
1.00 | 4.5
4.5 | 64
64 | 1.147+2
2.292+2 | 7.083-2
1.183-1 | 7.077-1 (31.0%)
4.757-1 (56.3%) | 1.551-1 (89.6%)
1.855-1 (87.4%) | | 4.019-4
4.958-4 | | 5.680-2 17.2
6.848-2 38.6 | -2.62-3 (3.7-4)
-3.65-3 (3.4-4) | | Eu-151
Eu-151 | 0.20
0.50 | 4.5
4.5 | 104
104 | 7.461+1
1.864+2 | 5.026-2
1.077-1 | 3.707-1 (66.4%)
4.247-1 (61.3%) | 1.415-1 (90.5%)
1.646-1 (88.9%) | 4.468-2
5.255-2 | 3.492-4
4.282-4 | 6.747-3
7.719-3 | 5.178-2 9.5
6.070-2 24.9 | -2.30-3 (4.4-4)
-3.11-3 (4.1-4) | | Eu-151
Eu-151 | 0.50
1.00 | 6.0
6.0 | 104
104 | 1.864+2
3.724+2 | 9.635-2
1.587-1 | 4.958-1 (53.5%)
5.780-1 (45.4%) | 1.988-1 (85.0%)
2.411-1 (81.7%) | | 3.216-4
4.067-4 | | 5.724-2 21.2
7.050-2 58.1 | | **Figure 22** Negative reactivity of BP for Eu-nat and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 64 poison rods, 2.0wt% Eu₂0₃ poison homogeneously mixed in the UO₂ pellets. Reactor power is 3400 MWth, 193 fuel assemblies, initial enrichment is 4.5wt%²³⁵U. **Figure 23** Negative reactivity of BP for Eu-151 and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 64 poison rods, 1.0wt% Eu₂0₃ poison homogeneously mixed in the UO₂ pellets. Reactor power is 3400 MWth, 193 fuel assemblies, initial enrichment is 4.5wt%²³⁵U. ## NEUTRONICS PERFORMANCE RESULTS FOR HAFNIUM The half-lives, natural isotopic abundances, and burnup chains related to the depletion and transmutation of hafnium are given below. The isomeric states of certain isotopes are not shown. However, the generation of these daughters was taken into account in the BP depletion and decay calculations. | Half-life | | | | | | | Stable 181 Ta β- | 114.4d
¹⁸² Ta | |-------------------|---------------------------------|-------------|-----------------------------|---------------------------------|--------------------------|---------------------------------
---------------------------|-----------------------------| | N a t .
Abund. | 0.162
%
¹⁷⁴ Hf | | 5.21% | 18.61
%
¹⁷⁷ Hf | % 0 | 13.63
%
¹⁷⁹ Hf | 35.10 % 180Hf | 42.4d | | 11-161:6- | пі | 175Hf
EC | | | | | | ¹⁸¹ Hf | | Half-life | | | stable
¹⁷⁵ Lu | stable
¹⁷⁶ Lu | 160./a ¹⁷⁷ Lu | 28.5m
¹⁷⁸ Lu | 4.6h
¹⁷⁹ Lu | 5.7m 180 Lu | The stable hafnium isotopes are 174 Hf (0.16% natural isotopic abundance, thermal capture cross section 560 barns, RI 436 barns), 176 Hf (5.2%, 23 barns, RI 880 barns), 177 Hf (18,6%, 373 barns, RI 7,173 barns), 178 Hf (27.1%, 84 barns, RI 1,950 barns), 179 Hf (13.7%, 41 barns, RI 630 barns), and 180 Hf (35.2%, 13 barns, RI 35 barns). Transmutation reactions of the hafnium isotopes through the (n, γ) reaction lead to other hafnium isotopes with relatively high capture cross sections. The 180 Hf (n, γ) 181 Hf reaction leads to 181 Hf, which decays to 181 Ta with a half-life of 42.4 days. 181 Ta has a thermal cross section of 20 barns and a RI of 660 barns. The relatively high capture cross sections of the transmutant hafnium isotopes will lead to a substantial residual negative reactivity worth ratio of the BP. However, the 177 Hf (n, γ) 178 Hf reaction leads to 178 Hf, which has a lower capture cross section than that of 177 Hf. Further transmutation to 179 Hf and 180 Hf will lead to progressively smaller thermal neutron capture cross sections. Enriching hafnium in 177 Hf should thus lead to a lower residual reactivity burden than that of hafnium with natural isotopic abundances. In all the neutronics calculations presented in this section, a theoretical density of 9.69 g/cm^3 was used for hafnia (HfO₂), and 13.11 g/cm^3 for metallic hafnium. For UO₂ a theoretical density of 10.97 g/cm^3 was used. The actual density fraction of the fuel pellets and of the burnable poison pellets was 95% of theoretical density. In this section, we will investigate the potential benefits of using enriched hafnium as a burnable absorber. Four different configurations of the hafnium burnable poison, similar to those of the other candidate elements. The results, given in Tables 25 through 28, show that a reduction of the residual reactivity ratio by a factor of two can be achieved by enriching hafnium in ¹⁷⁷Hf. The reactivity worths of the BP isotopes for a 0.001 inch (0.025 mm) coating of the fuel pellets with HfO_2 (fully enriched in ^{177}Hf) inside 64 IFBA rods are shown in Figure 24. The initial reactivity worth of the BP is 0.112, and the residual reactivity ratio is approximately 8.8%. The total initial mass of ^{177}Hf was 1,212 grams per fuel assembly containing BPs. The use of hafnium enriched in ¹⁷⁷Hf instead of with natural isotopic abundances will thus lead to a reduction of the residual reactivity burden at EOL of the fuel. However, the savings is small. The MVCs were calculated by decreasing the water coolant density by 10%. Note that for the cases containing 64 and 104 IFBA rods, the MVCs remain negative. Table 25. Hf Burnable Poison Integrally mixed with the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
Loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivit
4 FPY v | | | BP
enalty
at 4 FPY | MVC
at BOL | |--------------------------|--------------------------|----------------------------|--------------------------------|---------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------|--------------------------|---| | твосоре | (wt%HfO2 | ment | (per Fuel
Assembly) | Assembly)
(gram) | | BP-tot
per
Hf(BOL) | BP-tot
per
Hf(BOL) | Hf-tot
per
Hf(BOL) | Lu-tot
per
Hf(BOL) | Ta-tot
per
Hf(BOL) | | (FPD) | dkeff per -10%
water density
change (STD) | | Hf-nat | 4.0 | 4.5 | 08 | 5.645+2 | 1.428-2 | 8.129-1 (23.3%) | 5.430-1 (56.9%) | 1.792-1 | 5.653-4 | 1.685-2 | 1.966-1 | 11.9 | | | Hf-174 | 4.0 | 4.5 | 08 | 5.645+2 | 1.673-2 | 8.655-1 (37.8%) | 7.845-1 (60.6%) | 3.630-1 | 2.811-1 | 9.888-6 | 6.441-1 | 44.0 | | | Hf-177 | 4.0 | 4.5 | 08 | 5.637+2 | 3.408-2 | 8.477-1 (17.5%) | 6.501-1 (40.1%) | 1.281-1 | 1.641-9 | 2.016-4 | 1.283-1 | 20.7 | | Table 26. Hf Burnable Poison Integrally mixed with the Outer One Third Part of the UO2 Fuel Pellets of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Initial
Loading
BP | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit
120 FPD vs.BOL 1 | | | Reactivit
4 FPY v | | BP
Penalty
at 4 F | | |--------------------------|--------------------------|----------------------------|--------------------------------|---------------------|--|------------------------------------|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|---| | | (wt%HfO2
in UO2) | ment
(wt%U235) | (per Fuel
Assembly) | Assembly)
(gram) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Hf(BOL) | BP-tot
per
Hf(BOL) | Hf-tot
per
Hf(BOL) | Lu-tot
per
Hf(BOL) | Ta-tot
per
Hf(BOL) | BP-tot (FPD)
per
Hf(BOL) | dkeff per -10%
water density
change (STD) | | Hf-nat | 8.0 | 4.5 | 08 | 3.743+2 | 1.111-2 | 7.757-1 (27.6%) | 4.782-1 (64.2%) | 1.718-1 | 2.041-5 | 1.482-2 | 1.866-1 8.9 | | | Hf-177
Hf-177 | 8.0
12.0 | 4.5
4.5 | 08
08 | 3.738+2
5.578+2 | 2.666-2
3.468-2 | 8.347-1 (18.4%)
8.317-1 (19.2%) | 5.985-1 (44.8%)
6.384-1 (41.3%) | 1.031-1
1.238-1 | 1.386-9
1.622-9 | 2.424-4
2.083-4 | 1.034-1 12.3
1.240-1 19.1 | | Table 27. Hf Burnable Poison in a HfO2 Coating between the UO2 Fuel Pellet and the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | | Initial
Density
Fraction | Fuel | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | 120 FPD vs.BOL | rity Ratio
1 FPY vs. BOL | | | vs.BOL | Per | BP
nalty
4 FDV | MVC
at BOL | |--------------------------|--------------|--------------------------------|-------------------|--------------------------------|---------------------|-----------------------------|-----------------|------------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|----------------------|---| | ТВОСОРС | (MIII) | BP Hf02 | ment
(wt%U235) | (per Fuel | Assembly)
(gram) | | BP-tot
per | BP-tot
per
Hf(BOL) | Hf-tot
per
Hf(BOL) | Lu-tot
per
Hf(BOL) | Ta-tot
per
Hf(BOL) | BP-tot (F
per
Hf(BOL) | | dkeff per -10%
water density
change (STD) | | Hf-nat
Hf-nat | 4.00
8.00 | 1.00
1.00 | 4.5
4.5 | 16
16 | 1.203+3
2.376+3 | 3.040-2
4.770-2 | | 5.436-1 (56.9%)
6.138-1 (49.5%) | | 5.704-4
7.051-4 | | 1.977-1 2
2.201-1 4 | | | | Hf-nat | 4.00 | 1.00 | 4.5 | 18 | 1.353+3 | 3.382-2 | 8.012-1 (24.8%) | 5.494-1 (56.3%) | 1.829-1 | 5.765-4 | 1.632-2 | 1.998-1 3 | 30.1 | | | Hf-nat | 2.00 | 1.00 | 4.5 | 64 | 2.420+3 | 7.213-2 | 7.683-1 (28.6%) | 4.895-1 (63.0%) | 1.744-1 | 4.869-4 | 1.518-2 | 1.900-1 4 | 19.3 | | | Hf-nat
Hf-nat | 1.00
2.00 | 1.00
1.00 | 4.5
4.5 | 104
104 | 1.973+3
3.933+3 | 6.875-2
1.114-1 | | 4.375-1 (69.2%)
4.971-1 (62.5%) | | 4.197-4
4.991-4 | | 1.876-1 6
1.950-1 6 | | | | Hf-177
Hf-177 | 2.00
4.00 | 1.00
1.00 | 4.5
4.5 | 16
16 | 6.043+2
1.201+3 | 4.584-2
6.945-2 | | 5.880-1 (45.8%)
6.561-1 (39.7%) | | 1.102-9
1.454-9 | | 9.590-2 1
1.340-1 4 | | | | Hf-177 | 4.00 | 1.00 | 4.5 | 18 | 1.351+3 | 7.788-2 | 8.446-1 (18.0%) | 6.479-1 (40.7%) | 1.341-1 | 1.421-9 | 2.175-4 | 1.343-1 4 | 16.7 | | | Hf-177
Hf-177 | 0.50
1.00 | 1.00
1.00 | 4.5
4.5 | 64
64 | 6.071+2
1.212+3 | 7.139-2
1.118-1 | | 4.443-1 (60.6%)
5.249-1 (52.1%) | | 5.524-10
6.920-10 | | 8.254-2 2
8.860-2 4 | | | | Hf-177
Hf-177 | 0.20
0.50 | 1.00
1.00 | 4.5
4.5 | 104
104 | 3.950+2
9.865+2 | 5.815-2
1.109-1 | | 3.633-1 (69.0%)
4.620-1 (58.8%) | | 4.836-10
5.155-10 | | 7.666-2 2
8.433-2 6 | | | Table 28. Hf Burnable Poison Integrally mixed with the ${\tt Zr-4}$ Cladding of Selected Fuel Rods - Summary Results. | Initial | . Initial | Initial | Number | BP Mass | Initial | Reactivit | | | Reactivit | | | BP | MVC | |---------|-----------|-----------|-----------|-----------|-------------------------------|-----------------|-----------------|----------------|----------------|----------------|----------------|--------|-------------------------------| | BP | loading | Fuel | Fuel Rods | | BP | 120 FPD vs.BOL | 1 FPY vs.BOL | | 4 FPY v | s.BOL | | enalty | at BOL | | Isotope | | Enrich- | with BP | (per Fuel | | | | | | | | | | | | (wt%Hf | ment | (per Fuel | Assembly) | Worth for | BP-tot | BP-tot | Hf-tot | Lu-tot | Ta-tot | BP-tot | (FPD) | dkeff per -10% | | | in Zr-4) | (wt%U235) | Assembly) | (gram) | Reactor Core
(-dkeff/keff) | per
Hf(BOL) | per
Hf(BOL) | per
Hf(BOL) | per
Hf(BOL) | per
Hf(BOL) | per
Hf(BOL) | | water density
change (STD) | | Hf-nat | 1.0 | 4.5 | 64 | 2.308+2 | 1.153-2 | 6.598-1 (40.6%) | 3.698-1 (75.1%) | 1.501-1 | 2.665-4 | 1.089-2 | 1.613-1 | 6.7 | | | Hf-nat | 1.0 | 4.5 | 104 | 3.751+2 | 1.836-2 | 6.692-1 (39.5%) | 3.698-1 (75.3%) | 1.520-1 | 2.708-4 | 1.107-2 | 1.633-1 | 11.6 | -2.36-3 (5.3-4) | | Hf-nat | 4.0 | 4.5 | 104 | 1.524+3 | 5.890-2
| 7.263-1 (33.6%) | 4.146-1 (71.8%) | 1.712-1 | 3.334-4 | 1.308-2 | 1.846-1 | 44.2 | -5.34-3 (4.7-4) | | Hf-177 | 1.0 | 4.5 | 64 | 2.308+2 | 3.798-2 | 6.898-1 (33.5%) | 3.266-1 (72.7%) | 7.314-2 | 5.437-10 | 3.990-4 | 7.354-2 | 12.1 | | | Hf-177 | 0.5 | 4.5 | 104 | 1.871+2 | 3.465-2 | 6.505-1 (37.5%) | 2.861-1 (76.6%) | | 5.495-10 | | 6.774-2 | | -4.22-3 (4.8-4) | | Hf-177 | 1.0 | 4.5 | 104 | 3.751+2 | 5.936-2 | 7.009-1 (32.4%) | 3.400-1 (71.4%) | | 4.234-10 | | 7.531-2 | | -5.51-3 (4.9-4) | | Hf-177 | 2.0 | 4.5 | 104 | 7.541+2 | 9.848-2 | 7.431-1 (28.0%) | 4.017-1 (65.1%) | 8.109-2 | 3.971-10 | 3.934-4 | 8.148-2 | 26.4 | -6.99-3 (4.4-4) | # NEUTRONICS PERFORMANCE RESULTS FOR OTHER ELEMENTS During this project, we investigated the potential of enriching other elements for use as burnable poisons. We have discarded them, however, mostly for economic reasons, with the exception of lutetium, which, although costly, was considered worth evaluation. The use of lutetium as a burnable poison was investigated. The lutetium stable isotopes are ¹⁷⁵Lu and ¹⁷⁶Lu, with natural isotopic abundances of 97.4% and 2.6%, respectively. ¹⁷⁵Lu has a thermal neutron capture cross section of 30 barns and a RI of 610 barns. The (n,γ) reaction on 176 Lu leads to 177 Lu and 177m1 Lu. The 176 Lu (n,γ) 177 Lu reaction has a thermal neutron capture cross section of 2,090 barns and a RI of 1,090 barns. ¹⁷⁷Lu decays to ¹⁷⁷Hf with a half-life of 6.71 days. Another branch in the (n,γ) reaction on 176 Lu leads to 177m1 Lu with a thermal capture cross section of 7.0 barns. ^{177ml}Lu decays to ¹⁷⁷Hf with a half-life of 160.7 days. The ¹⁷⁷Hf (n,γ) ¹⁷⁸Hf reaction leads to ¹⁷⁸Hf with a thermal neutron capture cross section of 373 barns and a RI of 7,173 barns. The 178 Hf (n, γ) 179 Hf reaction leads to 179 Hf with a thermal capture cross section of 84 barns and a RI of 1,950 barns. The sequence ¹⁷⁶Lu 6 ¹⁷⁷Lu 6 ¹⁷⁷Hf 6 ¹⁷⁸Hf 6 ¹⁷⁹Hf will lead via neutron transmutations and decay to nuclides with smaller and smaller thermal neutron capture cross sections. The 175 Lu (n,γ) 176 Lu reaction will thus transmute 175 Lu, which has a small thermal cross section, into ¹⁷⁶Lu, which has a much larger capture cross section. In order to achieve a desired initial reactivity worth of the BP, the use of natural lutetium will require a much larger amount of lutetium than lutetium fully enriched in ¹⁷⁶Lu. The transmutation from ¹⁷⁵Lu into the ¹⁷⁶Lu 6 ¹⁷⁷Lu 6 ¹⁷⁷Hf 6 ¹⁷⁸Hf 6 ¹⁷⁹Hf sequence will thus lead to a substantially greater residual reactivity fraction of the BP. Enriching lutetium in ¹⁷⁶Lu will thus reduce substantially the residual reactivity worth ratio of the BP. A summary of the results for lutetium is shown in Table 29. The table shows that the decrease of the residual reactivity ratio of lutetium fully enriched in ¹⁷⁶Lu is substantial when compared with the use of lutetium with natural isotopic abundances. Plots for the reactivity worths and the masses of the BP isotopes and their daughters are displayed in Ref. 11. The reactivity worths of the BP isotopes, for a 0.5-mil thick coating with Lu_2O_3 (fully enriched in ^{176}Lu) of the fuel pellets in 64 IFBA rods, are shown in Figure 25. The initial reactivity worth of the BP was 0.171, and the residual reactivity ratio is approximately 3.8%. The total mass of ^{176}Lu per fuel assembly was 614 grams. Note that the shapes of the fuel assembly lattice k_{inf} 's for this case is fairly flat. However, the natural isotopic abundance of 176 Lu is only 2.6%. Enriching lutetium in 176 Lu will probably be expensive. Other elements and isotopes, such as Nd and ¹⁴³Nd and Os and ¹⁸⁴Os, were also investigated. We have discarded them because of the very low natural abundance or the very small reduction in the residual reactivity worth ratios of the BP. **Figure 24** Negative reactivity of BP for Hf-177 and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 64 poison rods, 1.0 mil thick $Hf0_2$ poison coating on the outer radial surface of the UO_2 pellets. Reactor power is 3400 MWth, 193 fuel assemblies, initial enrichment is $4.5\text{wt}\%^{235}U$. Table 29. Lu Burnable Poison in a Lu203 coating between the U02 Fuel Pellet and the Zr-4 Cladding of Selected Fuel Rods - Summary Results. | Initial
BP
Isotope | Thickness
BP Layer
(mills) | | Initial
Fuel
Enrich- | Number
Fuel Rods
with BP | BP Mass | Initial
BP
Reactivity | Reactivit | y Ratio
1 FPY vs.BOL | | Reactivity
4 FPY v | | | BP
Penalty
at 4 FPY | MVC
at BOL | |--------------------------|----------------------------------|----------|----------------------------|--------------------------------|---------------------|--|------------------------------------|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---| | | | BP Lu203 | ment
(wt%U235) | (per Fuel
Assembly) | Assembly)
(gram) | Worth for
Reactor Core
(-dkeff/keff) | BP-tot
per
Lu(BOL) | BP-tot
per
Lu(BOL) | Lu-tot
per
Lu(BOL) | Yb-tot
per
Lu(BOL) | Hf-tot
per
Lu(BOL) | BP-tot
per
Lu(BOL) | (FPD) | dkeff per -10%
water density
change (STD) | | Lu-nat | 4.0 | 1.00 | 4.5 | 64 | 4.856+3 | 1.256-1 | 6.754-1 (55.9%) | 5.884-1 (71.0%) | 2.439-1 | 2.263-10 | 1.755-1 | 4.194-1 | 203.0 | | | Lu-nat | 1.0 | 1.00 | 4.5 | 104 | 1.991+3 | 5.931-2 | 7.427-1 (48.8%) | 6.607-1 (64.3%) | 2.458-1 | 4.933-10 | 2.266-1 | 4.724-1 | 109.0 | | | Lu-176
Lu-176 | 0.5
1.0 | 1.00 | 4.5
4.5 | 64
64 | 6.139+2
1.226+3 | 1.709-1
2.409-1 | 6.269-1 (38.7%)
6.943-1 (32.0%) | 2.798-1 (74.6%)
3.838-1 (64.4%) | | 1.797-10
1.283-10 | | 3.479-2
4.330-2 | | | | Lu-176 | 0.2 | 1.00 | 4.5 | 104 | 3.994+2 | 1.398-1 | 5.492-1 (46.6%) | 2.192-1 (80.7%) | 8.901-6 | 2.213-10 | 3.248-2 | 3.249-2 | 21.5 | | **Figure 25** Negative reactivity of BP for Lu-176 and transmutation daughters as a function of fuel life for 17x17 fuel assemblies with 64 poison rods, 0.5 mil thick Lu₂0₃ poison coating on the outer radial surface of the UO₂ pellets. Reactor power is 3400 MWth, 193 fuel assemblies, initial enrichment is $4.5\text{wt}\%^{235}\text{U}$. # DISCUSSION OF THE RESULTS OF THE CALCULATIONS The primary objective of the calculations was to evaluate separated isotopes of candidate burnable poisons. This was achieved with pleasing results. In addition, much was learned about configurations of burnable poisons. This is especially evident in the suggestion and analysis of incorporating metallic burnable poisons in the cladding. It is also noteworthy that the fuel life used was 4 years with a limited number of cases explored with 6% enrichment to achieve a 5-year fuel life. Tables 30 through 48 show a summary of input parameters and results for the four different configurations of the natural elements and separated isotopes of ¹⁵⁷Gd, ¹⁴⁹Sm, ¹⁶⁷Er, ¹⁶⁴Dy, ¹⁷⁷Hf, and ¹⁵¹Eu. A measure of the isotope separation benefit is the ratio of the residual negative reactivity worth at EOL to that at BOL for a separated isotope divided by a similar ratio for the naturally occurring element. From these tables it can be observed that the residual reactivity worth ratio changes slightly with BP loading and that it is dependent on the number of IFBA rods and on the nature of the BP isotopes. The ratio decreases when the poison is spread over more IFBA rods. When the number of fuel pins containing BP increases, the BP is spread thinner, and this reduces the rod self-shielding. Another important parameter that must be considered in selecting a burnable poison is the reactivity worth burnout rate of the BP (including the BP daughters). The rate of burnup is considered by displaying the ratio of the negative reactivity worth of the BP at three different burnup time intervals of interest (e.g., 120 days, 1 year, and 4 years) to the reactivity worth of the BP at BOL. The ratio depends on the BP loading, the number of IFBA rods per fuel assembly, the BP loading type, and the BP element or isotopes. Table 30. The effect of isotope separation for the case of burnable poison in the form of gadolinium oxide homogeneously mixed with the fuel. | T | North and | 01 | 41- D-1 | _ | lk_EOL/dk_BOL Isot | | - 0 | | Janth Barre | | |---------|-----------|----------|---------|--------|--------------------|--------------|-------|------|-------------|----| | Isotope | IFBA | %loading | -ak_ROI | | OL dk EOL/dk BOL N | BP Mas | | | North Burn | | | | IFBA | | | ar_B | or aw_ror/aw_roriv | at (g/assemb | | _ | | ne | | | | | | | | | 120 a | ı yr | 4 yrs | | | Gd-nat | 08 | 3.60 | 5 74-2 | 2.25-2 | 0.202 | 515 | 32 | 82 | 98 | | | Gd-157 | 08 | 1.00 | | 4.53-3 | 0.202 | 144 | 30 | 86 | 100 | | | Ga 157 | 00 | 1.00 | 3.74 2 | 4.55-5 | | 111 | 30 | 00 | 100 | | | Gd-nat | 08 | 4.00 | 5.84-2 | 2.40-2 | 0.212 | 570 | 30 | 79 | 98 | | | Gd-157 | 08 | 1.13 | 5.84-2 | 5.08-3 | 0.212 | 163 | 27 | 80 | 100 | | | · · | | | 0.01 = | 0.00 | | | | | | | | Gd-nat | 08 | 6.15 | 6.31-2 | 3.12-2 | 0.243 | 865 | 23 | 64 | 97 | | | Gd-157 | 08 | 2.00 | 6.31-2 | 7.60-3 | | 288 | 20 | 59 | 100 | | | | | | | | | | | | | | | Gd-nat | 08 | 8.00 | 6.63-2 | 3.68-2 | 0.255 | 1118 | 21 | 52 | 96 | | | | | | | | | | | | | | | Gd-nat | 08 | 8.00 | 6.63-2 | 3.68-2 | 0.255 | 1118 | 21 | 52 | 96 | | | Gd-157 | 08 | 2.86 | 6.63-2 | 9.41-3 | | 409 | 17 | 47 | 99 | Gd-nat | 16 | 0.50 | 6.85-2 | 5.81-3 | 0.150 | 145 | 94 | 100 | 100 | | | Gd-157 | 16 | 0.10 | 6.85-2 | 8.68-4 | | 29 | 100 | 100 | 100 | | | | | | | | | | | | | | | Gd-nat | 16 | 0.67 | 8.17-2 | 9.31-3 | 0.155 | 281 | 76 | 99 | 99 | | | Gd-157 | 16 | 0.20 | 8.17-2 | 1.44-3 | | 58 | 100 | 100 | 100 | | | | |
| | | | | | | | | | Gd-nat | 16 | 1.00 | 8.24-2 | 9.50-3 | 0.154 | 289 | 75 | 99 | 99 | | | Gd-157 | 16 | 0.21 | 8.24-2 | 1.47-3 | | 60 | 92 | 100 | 100 | | | | | | | | | | | | | | | Gd-nat | 16 | 2.00 | 9.73-2 | 1.53-2 | 0.137 | 575 | 48 | 97 | 98 | | | Gd-157 | 16 | 0.48 | 9.73-2 | 2.08-3 | | 140 | 66 | 100 | 100 | | | | | | | | | | | | | | | Gd-nat | 16 | 2.06 | 9.80-2 | 1.56-2 | 0.138 | 592 | 47 | 97 | 98 | | | Gd-157 | 16 | 0.50 | 9.80-2 | 2.15-4 | | 145 | 65 | 100 | 100 | | | | | | | | | | | | | | | Gd-nat | 16 | 2.27 | 0.100 | 1.68-2 | 0.150 | 652 | 44 | 95 | 98 | | | Gd-157 | 16 | 0.57 | 0.100 | 2.52-3 | | 164 | 58 | 99 | 100 | | | | | | | | | | | | | | | Gd-nat | 16 | 3.43 | 1.08-1 | 2.25-2 | 0.225 | 980 | 33 | 84 | 98 | | | Gd-157 | 16 | 1.00 | 1.08-1 | 5.06-3 | | 289 | 29 | 85 | 99 | | | | | | | | | | | | | | | Gd-nat | 16 | 4.00 | 1.10-1 | 2.51-2 | 0.237 | 1140 | 29 | 79 | 98 | | | Gd-157 | 16 | 1.22 | 1.10-1 | 5.94-3 | | 352 | 25 | 78 | 99 | | | | | | | | | | | | | | | Gd-nat | 16 | 5.83 | 1.18-1 | 3.19-2 | 0.257 | 1646 | 23 | 66 | 97 | | | Gd-157 | 16 | 2.00 | 1.18-1 | 8.19-3 | | 575 | 19 | 58 | 99 | | | | | | | | | | | | | | | Gd-nat | 16 | 8.00 | 1.25-1 | 3.88-2 | 0.271 | 2237 | 20 | 52 | 99 | | | Gd-157 | 16 | 3.05 | 1.25-1 | 1.05-2 | | 871 | 16 | 45 | 99 | Gd-nat | 64 | 0.27 | 1.87-1 | 4.50-3 | 0.145 | 310 | 98 | 99 | 100 | | | Gd-157 | 64 | 0.05 | 1.87-1 | 6.52-4 | | 58 | 100 | 100 | 100 | | | | | | | | | | | | | | Table 31. The effect of isotope separation for the case of burnable poison in the form of samarium oxide homogeneously mixed with the fuel. | | | | | dk_EOL | dk_EOL/dk_BOL Iso | t | | | | |-----------|--------|----------|---------|--------|-------------------|--------------|-------|------|--------| | Isotope | Number | %loading | -dk_Bol | | | | | | Burned | | | IFBA | | | dk_BOL | dk_EOL/dk_BOL Nat | (g/assembly) | | | | | | | | | | | | 120 d | 1 yr | 4 yrs | | Sm-nat | 08 | 4.57 | 6.04-2 | 1.64-1 | 0.317 | 644 | 41 | 82 | 84 | | Sm-149 | 08 | 1.00 | 6.04-2 | | 0.02. | 144 | 30 | 87 | 95 | | D.II. 113 | 00 | 2.00 | 0.01 2 | J.21 2 | | | 30 | 0, | 33 | | Sm-nat | 08 | 8.00 | 6.74-2 | 2.30-1 | 0.320 | 1112 | 24 | 67 | 77 | | Sm-149 | 08 | 1.85 | 6.74-2 | 7.36-2 | | 264 | 21 | 61 | 93 | | | | | | | | | | | | | Sm-nat | 16 | 0.65 | 6.89-2 | 5 23-1 | 0.213 | 186 | 95 | 93 | 95 | | Sm-149 | 16 | 0.10 | 6.89-2 | 1.11-2 | 0.213 | 29 | 99 | 99 | 99 | | 2III-143 | 10 | 0.10 | 0.03-2 | 1.11-2 | | 29 | 99 | 99 | 33 | | Sm-nat | 16 | 1.00 | 7.94-2 | 6.77-1 | 0.224 | 287 | 92 | 92 | 93 | | Sm-149 | 16 | 0.16 | 7.94-2 | 1.52-2 | | 45 | 99 | 99 | 99 | | | | | | | | | | | | | Sm-nat | 16 | 1.22 | 8.40-2 | 7.67-2 | 0.233 | 350 | 89 | 91 | 92 | | Sm-149 | 16 | 0.20 | 8.40-2 | 1.79-2 | | 58 | 95 | 99 | 99 | | | | | | | | | | | | | Sm-nat | 16 | 2.00 | 9.57-2 | 1.06-1 | 0.260 | 572 | 76 | 88 | 89 | | Sm-149 | 16 | 0.38 | 9.57-2 | 2.74-2 | | 109 | 66 | 98 | 97 | | | | | | | | | | | | | Sm-nat | 16 | 2.38 | 1.0-1 | 1.18-1 | 0.274 | 680 | 68 | 87 | 88 | | Sm-149 | 16 | 0.47 | 1.0-1 | 3.24-2 | | 135 | 55 | 97 | 97 | | | | | | | | | | | | | Sm-nat | 16 | 2.52 | 1.013-1 | | 0.278 | 718 | 65 | 87 | 88 | | Sm-149 | 16 | 0.50 | 1.013-1 | 3.40-2 | | 144 | 53 | 97 | 97 | | Sm-nat | 16 | 4.00 | 1.12-1 | 1 61-1 | 0.321 | 1133 | 43 | 84 | 84 | | Sm-149 | 16 | 0.92 | | 5.17-2 | 0.321 | 265 | 32 | 89 | 95 | | D.II. 113 | | 0.32 | | J.1, L | | 203 | | 0,5 | 33 | | Sm-nat | 16 | 4.28 | 1.14-1 | 1.68-1 | 0.326 | 1212 | 41 | 83 | 83 | | Sm-149 | 16 | 1.00 | 1.14-1 | 5.48-2 | | 287 | 30 | 87 | 95 | | | | | | | | | | | | | Sm-nat | 16 | 7.97 | 1.27-1 | 2.36-1 | 0.356 | 2215 | 24 | 67 | 76 | | Sm-149 | 16 | 2.00 | 1.27-1 | 8.38-2 | | 571 | 21 | 58 | 92 | | | | | | | | | | | | | Sm-nat | 16 | 8.00 | 1.27-1 | | 0.356 | 2224 | 24 | 66 | 76 | | Sm-149 | 16 | 2.01 | 1.27-1 | 8.41-2 | | 574 | 21 | 57 | 92 | Table 32. The effect of isotope separation for the case of burnable poison in the form of erbium oxide homogeneously mixed with the fuel. | Tantono | Numbor | %loading | -dh Bol | dk_EOL | dk_EOL/dk_BOL Isot | :
- BP Mass | % of BD | Worth | Burned | |---------|--------|----------|---------|--------|--------------------|----------------|---------|-------|--------| | Isotope | IFBA | oloading | -ak_Boi | dk BOL | dk EOL/dk BOL Nat | | | | | | | IFDA | | | GK_BOH | GK_EOL/GK_BOL NAC | (g/assembry) | 120 d | - | | | | | | | | | | 120 u | - y- | 4 YIS | | Er-nat | 16 | 4.08 | 3.83-2 | 8.36-2 | 0.173 | 1181 | 27 | 58 | 92 | | Er-167 | 16 | 1.00 | 3.83-2 | 1.45-2 | | 292 | 29 | 63 | 99 | | | | | | | | | | | | | Er-nat | 16 | 7.93 | 5.88-2 | 1.03-1 | 0.197 | 2271 | 22 | 49 | 90 | | Er-167 | 16 | 2.00 | 5.88-2 | 2.03-2 | | 582 | 23 | 53 | 98 | | | | | | | | | | | | | Er-nat | 16 | 8.00 | 5.91-2 | 1.04-1 | 0.198 | 2292 | 21 | 49 | 90 | | Er-167 | 16 | 2.02 | 5.91-2 | 2.04-2 | | 588 | 23 | 53 | 98 | | | | | | | | | | | | | Er-nat | 16 | 12.00 | | 1.22-1 | 0.240 | 3402 | 19 | 43 | 88 | | Er-167 | 16 | 3.10 | 7.45-2 | 2.93-2 | | 901 | 21 | 46 | 97 | | | | | | | | | | | | | T | 64 | 1.00 | E 00 0 | 6.53-2 | 0.159 | 1167 | 36 | 72 | 93 | | Er-nat | | | | | 0.159 | | | | | | Er-167 | 64 | 0.24 | 5.08-2 | 1.04-2 | | 284 | 38 | 77 | 99 | | Er-nat | 64 | 2.00 | 8.68-2 | 7.66-2 | 0.160 | 2329 | 30 | 66 | 92 | | Er-167 | 64 | 0.49 | 8.68-2 | 1.22-2 | | 576 | 32 | 71 | 99 | | | | | | | | | | | | | Er-nat | 64 | 2.03 | 8.77-2 | 7.68-2 | 0.160 | 2364 | 30 | 66 | 92 | | Er-167 | 64 | 0.50 | 8.77-2 | 1.23-2 | | 584 | 32 | 71 | 99 | | | | | | | | | | | | | Er-nat | 64 | 2.44 | 0.100 | 8.03-2 | 0.163 | 2843 | 29 | 64 | 92 | | Er-167 | 64 | 0.61 | 0.100 | 1.31-2 | | 707 | 31 | 69 | 99 | | | | | | | | | | | | | Er-nat | 64 | 3.96 | 1.40-1 | 9.02-2 | 0.179 | 4589 | 25 | 58 | 91 | | Er-167 | 64 | 1.00 | 1.40-1 | 1.61-2 | | 1167 | 27 | 62 | 98 | Table 33. The effect of isotope separation for the case of burnable poison in the form of dysprosium oxide homogeneously mixed with the fuel. | Isotope | Number
IFBA | %loading | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass | % of BP
After Sp
120 d | pecifi | ed Time | |---------|----------------|----------|---------|----------------------|---|---------|------------------------------|--------|------------| | Dy-nat | 16 | 2.00 | 3.69-2 | 3.59-1 | 0.281 | 578 | 16 | 30 | 6 4 | | Dy-164 | 16 | 1.32 | 3.69-2 | 1.01-1 | | 384 | 22 | 47 | 90 | | Dy-nat | 16 | 2.75 | 4.75-2 | 3.70-1 | 0.320 | 793 | 16 | 30 | 63 | | Dy-164 | 16 | 2.00 | 4.75-2 | 1.19-1 | | 579 | 20 | 42 | 88 | | Dy-nat | 16 | 4.00 | 6.08-2 | 3.85-1 | 0.405 | 1146 | 15 | 29 | 62 | | Dy-164 | 16 | 3.24 | 6.08-2 | 1.56-1 | | 932 | 17 | 36 | 84 | | Dy-nat | 16 | 4.74 | 6.75-2 | 3.93-1 | 0.459 | 1353 | 15 | 29 | 61 | | Dy-164 | 16 | 4.00 | 6.75-2 | 1.80-1 | | 1149 | 15 | 32 | 82 | | Dy-nat | 64 | 0.76 | 6.52-2 | 3.23-1 | 0.253 | 880 | 17 | 32 | 68 | | Dy-164 | 64 | 0.50 | 6.52-2 | 8.19-2 | | 583 | 27 | 54 | 92 | | Dy-nat | 64 | 1.00 | 8.12-2 | 3.34-1 | 0.266 | 1159 | 17 | 32 | 67 | | Dy-164 | 64 | 0.68 | 8.12-2 | 8.90-2 | | 797 | 26 | 52 | 91 | | Dy-nat | 64 | 1.32 | 0.100 | 3.45-1 | 0.282 | 1523 | 16 | 31 | 66 | | Dy-164 | 64 | 0.90 | 0.100 | 9.73-2 | | 1049 | 24 | 50 | 90 | | Dy-nat | 64 | 1.47 | 1.09-2 | 3.49-1 | 0.290 | 1697 | 16 | 31 | 65 | | Dy-164 | 64 | 1.00 | 1.09-2 | 1.01-1 | | 1163 | 24 | 49 | 90 | Table 34. The effect of isotope separation for the case of burnable poison in the form of gadolinium oxide homogeneously mixed into the outer one-third volume of fuel pellets. | | | | | dk_EOL | dk_EOL/dk_BOL Isot | = | | | | |---------|--------|----------|---------|--------|--------------------|--------------|---------|--------|----------| | Isotope | Number | %loading | -dk_Bol | | | BP Mass | % of BP | Worth | n Burned | | | IFBA | | | dk_BOL | dk_EOL/dk_BOL Nat | (g/assembly) | After S | pecifi | led Time | | | | | | | | | 120 d | 1 yr | 4 yrs | | Gd-nat | 08 | 12.00 | 5.90-2 | 2.29-2 | 0.249 | 549 | 29 | 89 | 98 | | Gd-157 | 08 | 4.00 | 6.08-2 | 5.70-3 | | 190 | 23 | 98 | 99 | | | | | | | | | | | | | Gd-nat | 16 | 2.00 | 7.58-2 | 6.83-3 | 0.151 | 192 | 90 | 99 | 99 | | Gd-157 | 16 | 0.39 | 7.58-2 | 1.03-3 | | 38 | 99 | 100 | 100 | | Gd-nat | 16 | 2.41 | 8.02-2 | 7.95-3 | 0.153 | 231 | 84 | 99 | 99 | | Gd-157 | 16 | 0.50 | 8.02-2 | 1.22-3 | | 48 | 99 | 100 | 100 | | Gd-nat | 16 | 4.00 | 8.96-2 | 1.13-2 | 0.161 | 380 | 68 | 98 | 99 | | Gd-157 | 16 | 0.88 | 8.96-2 | 1.83-3 | | 84 | 85 | 100 | 100 | | Gd-nat | 16 | 4.56 | 9.20-2 | 1.25-2 | 0.164 | 432 | 63 | 98 | 99 | | Gd-157 | 16 | 1.00 | 9.20-2 | 2.04-3 | | 96 | 80 | 100 | 100 | | Gd-nat | 16 | 6.96 | 1.00-1 | 1.67-2 | 0.185 | 652 | 45 | 97 | 98 | | Gd-157 | 16 | 1.63 | 1.00-1 | 3.08-3 | | 156 | 49 | 100 | 100 | | Gd-nat | 16 | 8.00 | 1.028-1 | 1.84-2 | 0.194 | 746 | 39 | 97 | 98 | | Gd-157 | 16 | 1.94 | 1.028-1 | 3.56-2 | | 186 | 39 | 100 | 100 | | Gd-nat | 16 | 8.20 | 1.033-1 | 1.87-2 | 0.195 | 763 | 38 | 96 | 98 | | Gd-157 | 16 | 2.00 | 1.033-1 | 3.65-3 | | 192 | 38 | 100 | 100 | | Gd-nat | 16 | 12.00 | 1.11-1 | 2.38-2 | 0.222 | 1098 | 28 | 89 | 98 | | Gd-157 | 16 | 3.43 | 1.11-1 | 5.28-3 | | 326 | 24 | 98 | 99 | Table 35. The effect of isotope separation for the case of burnable poison in the form of samarium oxide homogeneously mixed into the outer one-third volume of fuel pellets. | | | | | dk_EOL | dk_EOL/dk_BOL Isot | 5 | | | | |---------|----------------|----------|---------|--------|--------------------|---------------------------|-----|--------|-------------------------------| | Isotope | Number
IFBA | %loading | -dk_Bol | dk_BOL | dk_EOL/dk_BOL Nat | - BP Mass
(g/assembly) | | pecif: | h Burned
ied Time
4 yrs | | Sm-nat | 08 | 10.58 | 5.78-2 | 1.42-1 | 0.290 | 484 | 55 | 85 | 86 | | Sm-149 | 80 | 2.00 | 5.78-2 | 4.13-2 | | 95 | 41 | 97 | 96 | | | | | | | | | | | | | Sm-nat | 80 | 12.00 | 5.92-2 | 1.53-1 | 0.299 | 546 | 46 | 84 | 85
| | Sm-149 | 80 | 2.34 | 5.92-2 | 4.57-2 | | 112 | 36 | 95 | 96 | | | | | | | | | | | | | Sm-nat | 16 | 1.26 | 5.85-2 | 4.07-2 | 0.233 | 121 | 94 | 94 | 96 | | Sm-149 | 16 | 0.20 | 5.85-2 | 9.48-3 | | 19 | 99 | 99 | 99 | | | | | | | | | | | | | Sm-nat | 16 | 2.00 | 7.01-2 | 5.25-2 | 0.219 | 191 | 93 | 93 | 95 | | Sm-149 | 16 | 0.28 | 7.01-2 | 1.15-2 | | 27 | 99 | 99 | 99 | | Sm-nat | 16 | 3.26 | 8.23-2 | 7.19-2 | 0.227 | 309 | 92 | 92 | 93 | | Sm-149 | 16 | 0.50 | 8.23-2 | 1.63-2 | | 48 | 99 | 99 | 99 | | | | | | | | | | | | | Sm-nat | 16 | 4.00 | 8.73-2 | 8.21-2 | 0.236 | 378 | 90 | 91 | 92 | | Sm-149 | 16 | 0.64 | 8.73-2 | 1.93-2 | | 61 | 95 | 98 | 98 | | Sm-nat | 16 | 5.74 | 9.58-2 | 1.02-1 | 0.260 | 537 | 83 | 89 | 90 | | Sm-149 | 16 | 1.00 | 9.58-2 | 2.66-2 | 0.200 | 96 | 83 | 98 | 98 | | | | | | | | | | | | | Sm-nat | 16 | 6.84 | 1.00-1 | 1.14-1 | 0.276 | 636 | 77 | 88 | 89 | | Sm-149 | 16 | 1.26 | 1.00-1 | 3.13-2 | | 120 | 73 | 98 | 97 | | Sm-nat | 16 | 8.00 | 1.04-1 | 1.25-1 | 0.292 | 741 | 71 | 87 | 87 | | Sm-149 | 16 | 1.58 | 1.04-1 | 3.66-2 | 0.232 | 150 | 59 | 97 | 97 | Sm-nat | 64 | 0.35 | 9.59-2 | 2.64-2 | 0.227 | 135 | 96 | 96 | 97 | | Sm-149 | 64 | 0.05 | 9.59-2 | 6.00-3 | | 19 | 99 | 99 | 100 | | Sm-nat | 64 | 0.37 | 0.100 | 2.69-2 | 0.226 | 143 | 96 | 96 | 97 | | Sm-149 | 64 | 0.05 | 0.100 | 6.10-3 | | 20 | 100 | 100 | 100 | | | | | | | | | | | | | Sm-nat | 64 | 0.50 | 1.23-1 | 3.00-2 | 0.226 | 192 | 95 | 95 | 97 | | Sm-149 | 64 | 0.065 | 1.23-1 | 6.78-3 | | 27 | 100 | 100 | 100 | | Sm-nat | 64 | 1.00 | 1.78-1 | 4.13-2 | 0.232 | 383 | 94 | 94 | 96 | | Sm-149 | 64 | 0.18 | 1.78-1 | 9.58-3 | 0.232 | 58 | 99 | 99 | 99 | | | | | | | | | | | | | Sm-nat | 64 | 1.34 | 2.00-1 | 4.85-2 | 0.230 | 511 | 93 | 93 | 95 | | Sm-149 | 64 | 0.25 | 2.00-1 | 1.12-2 | | 77 | 99 | 99 | 99 | Table 36. The effect of isotope separation for the case of burnable poison in the form of erbium oxide homogeneously mixed onto the outer one-third volume of fuel pellets. | | | | | dk EOL | dk_EOL/dk_BOL Isot | 5 | | | | |---------|--------|----------|---------|----------|--------------------|--------------|---------|------------------|---------| | Isotope | Number | %loading | -dk_Bol | | | - BP Mass | | | Burned | | | IFBA | | | dk_BOL | dk_EOL/dk_BOL Nat | (g/assembly) | After S | pecifi | ed Time | | | | | | | | | 120 d | 1 yr | 4 yrs | | | | | | | | | | | | | Er-nat | 16 | 1.00 | | 5.83-2 | 0.169 | 97 | 41 | 76 | 94 | | Er-167 | 16 | 0.24 | 4.87-3 | 9.83-3 | | 23 | 44 | 81 | 99 | | Er-nat | 16 | 2.00 | 9 14-3 | 6.11-2 | 0.155 | 194 | 38 | 74 | 94 | | Er-167 | 16 | 0.47 | | 9.47-3 | 0.133 | 46 | 41 | 80 | 99 | | DI 107 | -0 | 0.47 | J.14 J | J.47 J | | 40 | | 00 | 33 | | Er-nat | 16 | 2.11 | 9.60-3 | 6.14-2 | 0.155 | 205 | 38 | 74 | 94 | | Er-167 | 16 | 0.50 | 9.60-3 | 9.53-3 | | 49 | 41 | 80 | 99 | | | | | | | | | | | | | Er-nat | 16 | 4.00 | 1.67-2 | 6.69-2 | 0.160 | 386 | 35 | 71 | 93 | | Er-167 | 16 | 0.98 | 1.67-2 | 1.07-2 | | 95 | 36 | 76 | 99 | | | | | | | | | | | | | Er-nat | 16 | 4.09 | 4.71-2 | 6.72-2 | 0.160 | 395 | 35 | 71 | 94 | | Er-167 | 16 | 1.00 | 4.71-2 | 1.07-2 | | 97 | 35 | 76 | 99 | | | | | | | | | | | | | Er-nat | 16 | 8.00 | | 7.64-2 | 0.166 | 764 | 29 | 65 | 92 | | Er-167 | 16 | 1.94 | 2.85-2 | 1.27-2 | | 188 | 31 | 69 | 99 | | | | | | | | | | | | | Er-nat | 64 | 2.09 | 2 70 2 | 6.28-2 | 0.156 | 811 | 38 | 74 | 94 | | Er-167 | 64 | 0.50 | 3.78-2 | 9.78-3 | 0.136 | 195 | 41 | 7 <u>4</u>
79 | 99 | | Er-16/ | 64 | 0.50 | 3.78-2 | 9.78-3 | | 195 | 41 | 19 | 99 | | Er-nat | 64 | 4.00 | 6.46-2 | 6.97-2 | 0.157 | 1544 | 34 | 70 | 94 | | Er-167 | 64 | 0.96 | | 1.10-2 | | 375 | 37 | 76 | 99 | | | | | | | | | | | | | Er-nat | 64 | 4.15 | 6.66-2 | 7.02-2 | 0.158 | 1602 | 34 | 70 | 93 | | Er-167 | 64 | 1.00 | 6.66-2 | 1.11-2 | | 389 | 36 | 75 | 99 | | | | | | | | | | | | | Er-nat | 64 | 7.23 | 1.00-1 | 7.91-2 | 0.166 | 2768 | 30 | 65 | 92 | | Er-167 | 64 | 1.75 | 1.00-1 | 1.31-2 | | 678 | 32 | 70 | 99 | | | | | | | | | | | | | Er-nat | 64 | 8.00 | | 8.12-2 | 0.167 | 3056 | 29 | 64 | 92 | | Er-167 | 64 | 1.94 | 1.07-1 | 1.36-2 | | 752 | 31 | 69 | 99 | Table 37. The effect of isotope separation for the case of burnable poison in the form of dysprosium oxide homogeneously mixed into the outer one-third volume of fuel pellets. | Isotope | Number
IFBA | %loading | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot | BP Mass
(g/assembly) | After | Specif | h Burned
ied Time
4 yrs | |------------------|----------------|--------------|------------------|----------------------|--------------------|-------------------------|----------|----------|-------------------------------| | Dy-nat | 08 | 6.03 | 1.88-2 | 3.45-1 | 0.272 | 285 | 16 | 31 | 65 | | Dy-164 | 08 | 4.00 | 1.88-2 | 9.37-2 | | 192 | 23 | 47 | 91 | | Dy-nat
Dy-164 | 08
08 | 8.00
5.59 | 2.37-2
2.37-2 | | 0.298 | 376
266 | 16
20 | 31
44 | 64
89 | | Dy-nat | 64 | 1.00 | 3.29-2 | 2.87-1 | 0.256 | 387 | 19 | 35 | 71 | | Dy-164 | 64 | 1.00 | 4.84-2 | 7.34-2 | | 387 | 29 | 57 | 93 | Table 38. The effect of isotope separation for the case of burnable poison in the form of gadolinium oxide deposited in a thin coating on the lateral surface of the fuel pellets. | Isotope | IFBA | Coating
Thickness
(0.001 in) | | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/asbl) | Burne
Speci | BP Wor
d Afte
fied T
1 yr | r | |---------|------|------------------------------------|------|---------|----------------------|---|---------------------|----------------|------------------------------------|-----| | Gd-nat | 16 | 2.18 | 1.00 | 9.54-2 | 1.45-2 | 0.176 | 516 | 55 | 98 | 99 | | Gd-157 | 16 | 0.50 | 1.00 | 9.54-2 | 2.54-3 | | 119 | 65 | 100 | 100 | | Gd-nat | 16 | 2.76 | 1.00 | 1.00-1 | 1.69-2 | 0.184 | 652 | 45 | 97 | 98 | | Gd-157 | 16 | 0.650 | 1.00 | 1.00-1 | 3.12-3 | | 155 | 47 | 98 | 100 | | Gd-nat | 16 | 3.76 | 1.00 | 1.06-1 | 2.07-2 | 0.203 | 885 | 34 | 94 | 98 | | Gd-157 | 16 | 1.00 | 1.00 | 1.06-1 | 4.20-3 | | 238 | 31 | 99 | 100 | | Gd-nat | 16 | 4.00 | 1.00 | 1.08-1 | 2.16-2 | 0.207 | 942 | 32 | 93 | 98 | | Gd-157 | 16 | 1.10 | 1.00 | 1.08-1 | 4.47-3 | | 260 | 28 | 98 | 100 | | Gd-nat | 16 | 6.31 | 1.00 | 1.17-1 | 2.88-2 | 0.239 | 1473 | 23 | 77 | 97 | | Gd-157 | 16 | 2.00 | 1.00 | 1.17-1 | 6.87-3 | | 474 | 20 | 79 | 99 | | Gd-nat | 64 | 0.20 | 1.00 | 1.55-1 | 3.49-3 | 0.137 | 191 | 99 | 100 | 100 | | Gd-157 | 64 | 0.36 | 0.10 | 1.55-1 | 4.80-4 | | 35 | 100 | 100 | 100 | | Gd-nat | 64 | 0.24 | 1.00 | 1.75-1 | 3.96-3 | 0.145 | 227 | 82 | 99 | 100 | | Gd-157 | 64 | 0.50 | 0.10 | 1.75-1 | 5.72-4 | | 48 | 100 | 100 | 100 | | Gd-nat | 104 | 0.50 | 0.10 | 1.05-1 | 2.13-3 | 0.189 | 74 | 100 | 100 | 100 | | Gd-157 | 104 | 0.20 | 0.10 | 1.64-1 | 4.02-4 | | 31 | 100 | 100 | 100 | Table 39. The effect of isotope separation for the case of burnable poison in the form of samarium oxide deposited in a thin coating on the lateral surface of the fuel pellets. | Isotope | Number
IFBA | Coating F
Thickness F
(0.001 in) | | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/asbl) | % of B
Burned
Specif
120 d | ied Ti | | |------------------|----------------|--|--------------|------------------|----------------------|---|---------------------|-------------------------------------|----------|----------| | Sm-nat | 80 | 3.70 | 1.00 | 5.30-2 | 1.43-1 | 0.224 | 434 | 58 | 85 | 86 | | Sm-149 | 80 | 0.50 | 1.00 | 5.30-2 | 3.22-2 | | 59 | 70 | 97 | 97 | | Sm-nat
Sm-149 | 08
08 | 4.00
0.56 | 1.00
1.00 | 5.42-2
5.42-2 | | 0.231 | 470
66 | 53
61 | 84
98 | 85
97 | | Sm-nat
Sm-149 | 16
16 | 1.00
0.13 | 1.00 | 7.13-2
7.13-2 | 6.70-2
1.39-2 | 0.207 | 237
30 | 92
99 | 92
99 | 93
99 | | Sm-nat | 16 | 1.46 | 1.00 | 8.07-2 | 8.59-2 | 0.210 | 345 | 92 | 92 | 91 | | Sm-149 | 16 | 0.20 | 1.00 | 8.07-2 | 1.80-2 | | 47 | 98 | 98 | 98 | | Sm-nat | 16 | 2.00 | 1.00 | 8.72-2 | 1.03-1 | 0.212 | 472 | 86 | 89 | 90 | | Sm-149 | 16 | 0.27 | 1.00 | 8.72-2 | 2.19-2 | | 65 | 91 | 98 | 98 | | Sm-nat | 16 | 3.64 | 1.00 | 9.98-2 | 1.48-1 | 0.223 | 856 | 59 | 84 | 85 | | Sm-149 | 16 | 0.50 | 1.00 | 9.98-2 | 3.31-2 | | 119 | 69 | 97 | 97 | | Sm-nat | 16 | 3.68 | 1.00 | 1.00-1 | 1.49-1 | 0.223 | 865 | 58 | 84 | 85 | | Sm-149 | 16 | 0.50 | 1.00 | 1.00-1 | 3.33-2 | | 120 | 69 | 97 | 97 | | Sm-nat | 16 | 4.00 | 1.00 | 1.02-1 | 1.58-1 | 0.226 | 939 | 52 | 83 | 84 | | Sm-149 | 16 | 0.55 | 1.00 | 1.02-1 | 3.55-2 | | 131 | 64 | 97 | 97 | | Sm-nat | 64 | 0.36 | 1.00 | 1.58-1 | 4.35-2 | 0.232 | 337 | 94 | 94 | 96 | | Sm-149 | 64 | 0.50 | 0.10 | 1.58-1 | 1.01-2 | | 47 | 99 | 99 | 99 | | Sm-nat | 64 | 0.50 | 1.00 | 1.82-1 | 5.21-2 | 0.232 | 475 | 93 | 93 | 95 | | Sm-149 | 64 | 0.50 | 0.10 | 1.82-1 | 1.21-2 | | 47 | 99 | 99 | 99 | Table 40. The effect of isotope separation for the case of burnable poison in the form of erbium oxide deposited in a thin coating on the lateral surface of the fuel pellets. | Isotope | Number
IFBA | Coating
Thickness
(0.001 in) | Density | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/asbl) | % of B
Burned
Specif
120 d | After
ied Ti | me | |---------|----------------|------------------------------------|---------|---------|----------------------|---|---------------------|-------------------------------------|-----------------|----| | Er-nat | 16 | 4.14 | 1.00 | 3.70-2 | 8.96-2 | 0.165 | 1144 | 25 | 58 | 91 | | Er-149 | 16 | 2.00 | 1.00 | 3.70-2 | 1.46-2 | | 279 | 28 | 63 | 99 | | Er-nat | 16 | 8.00 | 1.00 | 5.64-2 | 1.08-1 | 0.183 | 2187 | 19 | 48 | 89 | | Er-149 | 16 | 1.94 | 1.00 | 5.64-2 | 1.98-2 | | 540 | 24 | 53 | 98 | | Er-nat | 64 |
1.00 | 1.00 | 4.85-2 | 6.74-2 | 0.161 | 1118 | 35 | 71 | 93 | | Er-149 | 64 | 0.24 | 1.00 | 4.85-2 | 1.08-2 | | 269 | 37 | 77 | 99 | | Er-nat | 64 | 2.00 | 1.00 | 8.32-2 | 7.81-2 | 0.159 | 2228 | 30 | 65 | 92 | | Er-149 | 64 | 0.48 | 1.00 | 8.32-2 | 1.24-2 | | 539 | 33 | 71 | 99 | | Er-nat | 64 | 2.08 | 1.00 | 8.54-2 | 7.88-2 | 0.159 | 2314 | 29 | 65 | 92 | | Er-149 | 64 | 0.50 | 1.00 | 8.54-2 | 1.25-2 | | 560 | 33 | 71 | 99 | | Er-nat | 64 | 2.61 | 1.00 | 1.00-1 | 8.32-2 | 0.161 | 2904 | 27 | 63 | 92 | | Er-167 | 64 | 0.63 | 1.00 | 1.00-1 | 1.34-2 | | 701 | 31 | 68 | 99 | | Er-nat | 64 | 4.00 | 1.00 | 1.33-1 | 9.30-2 | 0.171 | 4429 | 23 | 57 | 91 | | Er-149 | 64 | 0.96 | 1.00 | 1.33-1 | 1.59-2 | | 1070 | 28 | 68 | 98 | | Er-nat | 104 | 1.00 | 1.00 | 7.52-2 | 7.15-2 | 0.153 | 1816 | 34 | 70 | 93 | | Er-149 | 104 | 0.24 | 1.00 | 7.52-2 | 1.10-2 | | 446 | 37 | 75 | 99 | Table 41. The effect of isotope separation for the case of burnable poison in the form of dysprosium oxide deposited in a thin coating on the lateral surface of the fuel pellets. | Isotope | Number
IFBA | Coating
Thickness
(0.001 in) | | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/asbl) | Burned
Specif | BP Wort
After
ied Ti
1 yr | : | |---------|----------------|------------------------------------|------|---------|----------------------|---|---------------------|------------------|------------------------------------|----| | Dy-nat | 64 | 1.00 | 1.00 | 7.40-2 | 3.17-1 | 0.259 | 1005 | 17 | 33 | 68 | | Dy-164 | 64 | 0.66 | 1.00 | 7.40-2 | 8.19-2 | | 664 | 26 | 53 | 92 | | Dy-nat | 64 | 1.00 | 1.00 | 7.40-2 | 3.17-1 | 0.292 | 1005 | 17 | 33 | 68 | | Dy-164 | 64 | 1.00 | 1.00 | 9.87-2 | 9.25-2 | | 1008 | 24 | 50 | 91 | Table 42. The effect of isotope separation for the case of burnable poison in the form of hafnium oxide deposited in a thin coating on the lateral surface of the fuel pellets. | Isotope | Number
IFBA | Coating
Thickness
(0.001 in) | Density | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/asbl) | Burned
Specif | After | | |------------------|----------------|------------------------------------|--------------|------------------|----------------------|---|---------------------|------------------|----------|----------| | Hf-nat | 16 | 7.57 | 1.00 | 4.58-2 | 2.18-1 | 0.441 | 2250 | 18 | 39 | 78 | | Hf-177 | 16 | 2.00 | 1.00 | 4.58-2 | 9.59-2 | | 604 | 17 | 41 | 90 | | Hf-nat | 16 | 8.00 | 1.00 | 4.77-2 | 2.20-1 | 0.449 | 2376 | 17 | 39 | 78 | | Hf-177 | 16 | 2.16 | 1.00 | 4.77-2 | 9.89-2 | | 651 | 17 | 41 | 90 | | Hf-nat
Hf-177 | 64
64 | 2.00
0.51 | 1.00
1.00 | | 1.90-1
8.27-2 | 0.435 | 2420
618 | 23
23 | 51
55 | 81
92 | | Hf-nat | 64 | 2.00 | 1.00 | 7.21-2 | 1.90-1 | 0.466 | 2420 | 23 | 51 | 81 | | Hf-177 | 64 | 1.00 | 1.00 | 1.12-1 | 8.86-2 | | 1212 | 20 | 48 | 91 | | Hf-nat
Hf-177 | 104
104 | 1.00
0.26 | 1.00 | 6.88-2
6.88-2 | 1.88-1
7.82-2 | 0.417 | 1973
514 | 26
27 | 56
62 | 81
92 | | Hf-nat | 104 | 1.73 | 1.00 | 1.00-1 | 1.93-1 | 0.429 | 3409 | 24 | 52 | 81 | | Hf-177 | 104 | 0.44 | 1.00 | 1.00-1 | 8.27-2 | | 864 | 25 | 56 | 92 | | Hf-nat | 104 | 2.00 | 1.00 | 1.11-1 | 1.95-1 | 0.433 | 3910 | 23 | 50 | 81 | | Hf-177 | 104 | 0.50 | 1.00 | 1.11-1 | 8.43-2 | | 987 | 24 | 54 | 92 | Table 43. The effect of isotope separation for the case of burnable poison in the form of gadolinium alloyed in the Zircaloy cladding. | Isotope | Number
IFBA | %loading | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/assembly) | After | Specif | th Burned
ied Time
4 yrs | |---------|----------------|----------|---------|----------------------|---|-------------------------|-------|--------|--------------------------------| | Gd-nat | 16 | 1.03 | 5.27-2 | | 0.139 | 59 | 99 | 100 | 100 | | Gd-157 | 16 | 0.20 | 5.27-2 | 4.55-4 | | 11 | 100 | 100 | 100 | | Gd-nat | 16 | 2.00 | 6.92-2 | 4.83-3 | 0.142 | 115 | 97 | 99 | 100 | | Gd-157 | 16 | 0.40 | 6.92-2 | 6.85-4 | | 23 | 100 | 100 | 100 | | Gd-nat | 16 | 4.00 | 8.61-2 | 7.39-3 | 0.156 | 231 | 88 | 99 | 99 | | Gd-157 | 16 | 0.85 | 8.61-2 | 1.16-3 | | 49 | 100 | 100 | 100 | | Gd-nat | 16 | 4.67 | 8.96-2 | 8.22-3 | 0.159 | 271 | 84 | 99 | 99 | | Gd-157 | 16 | 1.00 | 8.96-2 | 1.31-3 | | 58 | 99 | 100 | 100 | | Gd-nat | 16 | 7.66 | 1.00-1 | 1.21-2 | 0.166 | 446 | 65 | 98 | 99 | | Gd-157 | 16 | 1.76 | 1.00-1 | 2.00-3 | | 101 | 80 | 100 | 100 | | Gd-nat | 16 | 8.00 | 1.01-1 | 1.25-2 | 0.167 | 467 | 63 | 98 | 99 | | Gd-157 | 16 | 1.85 | 1.01-1 | 2.10-3 | | 107 | 77 | 100 | 100 | Table 44. The effect of isotope separation for the case of burnable poison in the form of samarium alloyed in the Zircaloy cladding. | Isotope | Number
IFBA | %loading | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/assembly) | After | Specif | h Burned
ied Time
4 yrs | |---------|----------------|----------|---------|----------------------|---|-------------------------|-------|--------|-------------------------------| | Sm-nat | 16 | 2.00 | | 3.97-2 | 0.253 | 115 | 95 | 95 | 96 | | Sm-149 | 16 | 0.31 | 5.92-2 | 1.00-2 | | 18 | 99 | 99 | 99 | | Sm-nat | 16 | 3.39 | 7.36-2 | 5.28-2 | 0.246 | 196 | 93 | 93 | 95 | | Sm-149 | 16 | 0.50 | 7.36-2 | 1.30-2 | | 29 | 99 | 99 | 99 | | Sm-nat | 16 | 4.00 | 8.00-2 | 5.86-2 | 0.252 | 231 | 93 | 93 | 94 | | Sm-149 | 16 | 0.62 | 8.00-2 | 1.48-2 | | 35 | 99 | 99 | 99 | Table 45. The effect of isotope separation for the case of burnable poison in the form of erbium alloyed in the Zircaloy cladding. | Isotope | Number
IFBA | %loading | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/assembly) | | Specif | | |------------------|----------------|--------------|---------|----------------------|---|-------------------------|----------|----------|----------| | Er-nat | 104 | 2.14 | 3.86-2 | 6.04-2 | 0.154 | 805 | 40 | 76 | 94 | | Er-167 | 104 | 0.50 | 3.86-2 | 9.30-3 | | 187 | 43 | 81 | 99 | | Er-nat
Er-167 | 104
104 | 4.00
0.98 | | 6.49-2
1.03-2 | 0.159 | 1510
367 | 31
40 | 74
79 | 94
99 | Table 46. The effect of isotope separation for the case of burnable poison in the form of europium alloyed in the Zircaloy cladding. | Tantone | Number | %loading | -dk Bol | dk_EOL | dk_EOL/dk_BOL Isot | BP Mass | % of E | D Wort | h Burned | |---------|--------|-----------|---------|--------|---------------------|--------------|--------|--------|----------| | Isocope | IFBA | oloauling | -uk_BOI | dk_BOL | dk_EOL/dk_BOL Nat | (g/assembly) | | | ied Time | | | | | | | | | 120 d | 1 yr | 4 yrs | | Eu-nat | 64 | 1.00 | 7.44-2 | 9.50-2 | 0.607 | 229 | 53 | 73 | 91 | | Eu-151 | 64 | 0.54 | 7.44-2 | 5.77-2 | | 123 | 31 | 84 | 94 | | Eu-nat | 64 | 1.51 | 1.00-1 | 1.05-1 | 0.611 | 346 | 49 | 71 | 90 | | Eu-151 | 64 | 0.81 | 1.00-1 | 6.40-2 | | 185 | 43 | 83 | 94 | | Eu-nat | 64 | 1.88 | 1.18-1 | 1.12-1 | 0.613 | 429 | 46 | 69 | 89 | | Eu-151 | 64 | 1.00 | 1.18-1 | 6.85-2 | | 229 | 52 | 81 | 93 | | | | | | | | | | | | | Eu-nat | 104 | 0.50 | 6.42-2 | 8.86-2 | 0.610 | 186 | 55 | 74 | 91 | | Eu-151 | 104 | 0.27 | 6.42-2 | 5.39-2 | | 102 | 62 | 85 | 95 | | Eu-nat | 104 | 0.87 | 1.00-1 | 9.78-2 | 0.608 | 322 | 52 | 72 | 90 | | Eu-151 | 104 | 0.46 | 1.00-1 | 5.95-2 | | 171 | 58 | 84 | 94 | | Eu-nat | 104 | 0.94 | 1.08-1 | 9.98-2 | 0.608 | 352 | 51 | 72 | 90 | | Eu-151 | 104 | 0.50 | 1.08-1 | 6.07-2 | | 186 | 58 | 84 | 94 | Table 47. The effect of isotope separation for the case of burnable poison in the form of hafnium alloyed in the Zircaloy cladding. | Isotope | Number
IFBA | %loading | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/assembly) | | Specif | | |------------------|----------------|--------------|---------|----------------------|---|-------------------------|----------|----------|----------| | Hf-nat
Hf-177 | 104
104 | 2.21
0.50 | | 1.72-1
6.77-2 | 0.394 | 837
187 | 31
35 | 61
71 | 83
93 | | Hf-nat
Hf-177 | 104
104 | 4.00
0.99 | | 1.85-1
7.52-2 | 0.407 | 1524
371 | 27
30 | 59
66 | 82
92 | Table 48. The effect of isotope separation for the case of burnable poison in the form of osmium alloyed in the Zircaloy cladding. | Isotope | Number
IFBA | %loading | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/assembly) | After S | | | |---------|----------------|----------|---------|----------------------|---|-------------------------|---------|----|----| | Os-nat | 264 | 15.00 | 8.96-2 | | 0.109 | 19620 | 11 | 17 | 46 | | Os-184 | 264 | 0.35 | 8.96-2 | 5.92-2 | | 378 | 47 | 77 | 94 | | Os-nat | 264 | 17.50 | 1.00-1 | 5.44-1 | 0.111 | 22291 | 10 | 17 | 46 | | Os-184 | 264 | 0.40 | 1.00-1 | 6.02-2 | | 432 | 46 | 77 | 94 | | Os-nat | 264 | 17.67 | 1.01-1 | 5.45-1 | 0.111 | 22474 | 10 | 17 | 46 | | Os-184 | 264 | 0.40 | 1.01-1 | 6.03-2 | | 436 | 46 | 77 | 94 | | Os-nat | 264 | 20.00 | 1.12-1 | 5.46-1 | 0.112 | 25340 | 10 | 17 | 45 | | Os-184 | 264 | 0.45 | 1.12-1 | 6.13-2 | | 494 | 46 | 77 | 94 | | Os-nat | 264 | 25.00 | 1.39-1 | 5.48-1 | 0.117 | 33050 | 11 | 18 | 45 | | Os-184 | 264 | 0.60 | 1.39-1 | 6.41-2 | | 651 | 45 | 76 | 94 | The results have been further arranged in a set of four summary tables, one for each configuration. Tables 49 through 52 show input parameters and results from a representative number of runs to compare natural elements with separated isotopes. As much as possible, the initial negative reactivity has been held near 10% in these tables. Since the long run time for each case
prohibited many iterations for fine tuning, there is sometimes a greater variation from 10% than desired; however, the effect of this variation has been minimized by taking appropriate ratios. The calculations for the first phase of the project have assumed that the isotopes have been separated completely. In reality, the enrichment achievable depends upon the particular isotope, its abundance, and the number of passes in the enrichment process. The enrichment levels actualy achieved are presented in the section on isotope separation. Table 49. The effect of isotope separation for the case of burnable poison in the form of oxide homogeneously mixed with the fuel. | Tsotone | Number | %loading | -dk Bol | dk_EOL | dk_EOL/dk_BOL Isot | BP Mass | % of B | P Wort | h Burned | |---------|--------|-----------|---------|--------|--------------------|--------------|--------|----------|----------| | твосоре | IFBA | orcauring | un_bor | dk BOL | dk EOL/dk BOL Nat | (g/assembly) | | | ied Time | | | | | | | ,, | (5, | 120 d | | 4 yrs | | | | | | | | | | | | | Gd-nat | 16 | 2.27 | 0.100 | 1.68-2 | 0.15 | 652 | 44 | 95 | 98 | | Gd-157 | 16 | 0.57 | 0.100 | 2.52-3 | | 164 | 58 | 99 | 100 | | Sm-nat | 16 | 2.38 | 0.100 | 1.18-1 | 0.27 | 680 | 68 | 87 | 88 | | Sm-149 | 16 | 0.47 | 0.100 | 3.24-2 | | 135 | 55 | 97 | 97 | | | | | | | | | | | | | Er-nat | 16 | 12.00 | 7.45-2 | 1.22-1 | 0.24 | 3402 | 19 | 43 | 88 | | Er-167 | 16 | 3.10 | 7.45-2 | 2.93-2 | | 901 | 21 | 46 | 97 | | | | | | | | | | | | | Er-nat | 64 | 2.44 | 0.100 | 8.03-2 | 0.16 | 2843 | 29 | 64 | 92 | | Er-167 | 64 | 0.60 | 0.100 | 1.31-2 | 0.10 | 707 | 31 | 69 | 99 | | HI 107 | 01 | 0.00 | 0.100 | 1.31 2 | | 707 | 31 | 0,5 | ,,, | | | | | | | | | | | | | Dy-nat | 16 | 4.74 | 6.75-2 | 3.93-1 | 0.46 | 1353 | 15 | 29 | 61 | | Dy-164 | 16 | 4.00 | 6.75-2 | 1.80-1 | | 1149 | 15 | 32 | 82 | | | | | | | | | | | | | Dy-nat | 64 | 1.32 | 0.100 | 3.45-1 | 0.28 | 1523 | 16 | 31 | 66 | | Dy-1164 | 64 | 0.90 | 0.100 | 9.73-2 | 0.20 | 1049 | 24 | 50 | 90 | | DY-104 | 04 | 0.90 | 0.100 | 9.73-2 | | 1049 | 27 | 50 | 30 | | | | | | | | | | | | | Eu-nat | 80 | 4.00 | 6.51-2 | 2.98-1 | 0.96 | 567 | 15 | 37 | 70 | | Eu-151 | 80 | 4.00 | 7.37-2 | 2.85-1 | | 567 | 11 | 28 | 72 | | 11£ | 08 | 4.00 | 1.43-2 | 1.97-1 | 0.65 | 565 | 19 | 46 | 80 | | Hf-nat | | | | | 0.65 | | | 46
35 | | | Hf-177 | 80 | 4.00 | 3.41-2 | 1.28-1 | | 564 | 15 | 35 | 87 | | Lu-nat | 08 | 4.00 | 1.54-2 | 4.39-1 | 0.25 | 585 | 29 | 39 | 56 | | Lu-176 | 08 | 4.00 | 6.26-2 | 1.08-1 | | 585 | 18 | 32 | 89 | | | | | | | | | | | | | Yb-nat | 08 | 4.00 | 3.01-3 | | 0.25 | 583 | 14 | 26 | 44 | | Yb-169 | 80 | 4.00 | 4.80-2 | 1.42-1 | | 581 | 11 | 30 | 86 | Table 50. The effect of isotope separation for the case of burnable poison in the form of oxide homogeneously mixed into the outer one-third volume of fuel pellets. | Isotope | Number
IFBA | %loading | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot

dk_EOL/dk_BOL Nat | BP Mass
(g/assembly) | | Specif | h Burned
ied Time
4 yrs | |---------|----------------|----------|---------|----------------------|---|-------------------------|-----|--------|-------------------------------| | Gd-nat | 16 | 6.96 | 0.100 | 1.67-2 | 0.18 | 652 | 45 | 98 | 98 | | Gd-157 | 16 | 1.63 | 0.100 | 3.08-3 | | 156 | 49 | 100 | 100 | | Sm-nat | 16 | 6.84 | 0.100 | 1.14-1 | 0.28 | 636 | 77 | 88 | 89 | | Sm-149 | 16 | 1.26 | 0.100 | 3.13-2 | | 120 | 73 | 97 | 97 | | Sm-nat | 64 | 3.73-1 | 0.100 | 2.69-2 | 0.23 | 143 | 96 | 96 | 97 | | Sm-149 | 64 | 5.06-2 | 0.100 | 6.10-3 | | 20 | 100 | 100 | 100 | | Er-nat | 64 | 7.23 | 0.100 | 7.91-2 | 0.17 | 2768 | 30 | 65 | 92 | | Er-167 | 64 | 1.75 | 0.100 | 1.31-2 | | 678 | 32 | 70 | 99 | | Dy-nat | 64 | 1.00 | 3.30-2 | 2.87-1 | 0.26 | 287 | 19 | 35 | 71 | | Dy-164 | 64 | 1.00 | 4.84-2 | 7.34-2 | | 388 | 29 | 57 | 92 | | Eu-nat | 08 | 8.00 | 5.44-2 | 2.40-1 | 0.62 | 371 | 20 | 42 | 76 | | Eu-151 | 08 | 4.00 | 4.94-2 | 1.49-1 | | 189 | 22 | 57 | 85 | | Hf-nat | 08 | 8.00 | 1.11-2 | 1.87-1 | 0.55 | 374 | 22 | 52 | 82 | | Hf-177 | 08 | 8.00 | 2.67-2 | 1.03-1 | | 374 | 17 | 40 | 90 | | Yb-nat | 80 | 16.00 | 3.82-3 | 5.75-1 | 0.15 | 760 | 14 | 23 | 43 | | Yb-168 | 80 | 4.00 | 2.74-2 | 8.59-2 | | 194 | 14 | 45 | 91 | Table 51. The effect of isotope separation for the case of burnable poison in the form of oxide deposited in a thin coating on the lateral surface of the fuel pellets. | Isotope | Number
IFBA | Coating
Thickness
(0.001 in | . – | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/asbl) | % of B
Burned
Specif
120 d | Afte | r | |---------|----------------|-----------------------------------|--------|----------------------|---|---------------------|-------------------------------------|------|------------| | Gd-nat | 16 | 2.76 | 0.100 | 1.69-2 | 0.18 | 652 | 45 | 97 | 98 | | Gd-157 | 16 | 0.65 | 0.100 | 3.12-3 | | 155 | 47 | 98 | 100 | | Sm-nat | 16 | 3.68 | 0.100 | 1.49-1 | 0.22 | 865 | 58 | 84 | 85 | | Sm-149 | 16 | 0.51 | 0.100 | 3.33-2 | | 120 | 69 | 97 | 97 | | Er-nat | 16 | 8.0 | 5.64-2 | 1.08-1 | 0.18 | 2187 | 19 | 48 | 89 | | Er-167 | 16 | 1.94 | 5.64-2 | 1.98-2 | | 540 | 24 | 53 | 98 | | Er-nat | 64 | 2.61 | 0.100 | 8.32-2 | 0.16 | 2904 | 27 | 63 | 92 | | Er-167 | 64 | 0.63 | 0.100 | 1.34-2 | | 701 | 31 | 68 | 99 | | Dy-nat | 64 | 1.00 | 7.40-2 | 3.17-1 | 0.26 | 1005 | 17 | 33 | 68 | | Dy-164 | 64 | 0.66 | 7.40-2 | 8.19-2 | | 664 | 26 | 53 | 92 | | Eu-nat | 64 | 1.00 | 1.88-1 | 1.63-1 | 0.61 | 948 | 33 | 61 | 8 4 | | Eu-151 | 64 | 0.50 | 1.75-1 | 5.90-2 | | 474 | 39 | 74 | 90 | | Hf-nat | 16 | 8.00 | 4.77-2 | 2.20-1 | 0.45 | 2376 | 17 | 39 | 78 | | Hf-177 | 16 | 2.16 | 4.77-2 | 9.89-2 | | 651 | 17 | 41 | 90 | | Hf-nat | 64 | 2.00 | 7.21-2 | 1.90-1 | 0.43 | 2420 | 23 | 51 | 81 | | Hf-177 | 64 | 0.51 | 7.21-2 | 8.27-2 | | 618 | 23 | 55 | 92 | | Hf-nat | 104 | 1.73 | 0.100 | 1.93-1 | 0.43 | 3409 | 24 | 52 | 81 | | Hf-177 | 104 | 0.44 | 0.100 | 8.27-2 | | 864 | 25 | 56 | 92 | Table 52. The effect of isotope separation for the case of burnable poison in the form of a metal alloyed in the Zircaloy cladding. | Isotope | Number
IFBA | %loading | -dk_Bol | dk_EOL

dk_BOL | dk_EOL/dk_BOL Isot
dk_EOL/dk_BOL Nat | BP Mass
(g/assembly) | | Specif | h Burned
ied Time
4 yrs | |---------|----------------|----------|---------|----------------------|---|-------------------------|----|--------|-------------------------------| | Gd-nat | 16 | 7.66 | 0.100 | 1.20-2 | 0.17 | 446 | 65 | 98 | 99 | | Gd-157 | 16 | 1.76 | 0.100 | 2.00-3 | | 101 | 80 | 100 | 100 | | Sm-nat | 16 | 4.00 | 8.00-2 | 5.86-2 | 0.25 | 231 | 93 | 93 | 94 | | Sm-149 | 16 | 0.62 | 8.00-2 | 1.48-2 | | 35 | 99 | 99 | 99 | | Er-nat | 104 | 4.00 | 6.94-2 | 6.49-2 | 0.16 | 1510 | 31 | 74 | 94 | | Er-167 | 104 | 1.00 | 7.05-2 | 1.03-2 | | 37 | 40 | 79 | 99 | | Dy-nat | 104 | 8.00 | 1.86-1 | 3.51-1 | 0.22 | 3041 | 16 | 32 | 65 | | Dy-164 | 104 | 2.00 | 8.91-2 | 7.60-2 | | 750 | 28 | 56 | 92 | | Eu-nat | 64 | 1.51 | 0.100 | 1.05-1 | 0.61 | 346 | 49 | 71 | 90 | | Eu-151 | 64 | 0.81 | 0.100 | 6.40-2 | | 185 | 43 | 83 | 94 | | Eu-nat | 104 | 0.87 | 0.100 | 9.78-2 | 0.61 | 322 | 52 | 72 | 90 | | Eu-151 | 104 | 0.46 | 0.100 | 5.95-2 | | 171 | 58 | 84 | 94 | | Hf-nat | 104 | 4.00 | 5.89-1 | 1.85-1 | 0.41 | 1524 | 27 | 59 | 82 | | Hf-177 | 104 | 1.00 | 5.89-1 | 7.52-2 | | 371 | 30 | 66 | 92 | | Os-nat | 264 | 17.50 | 0.100 | 5.44-1 | 0.11 | 22290 | 10 | 17 | 46 | | Os-184 | 264 | 0.40 | 0.100 | 6.02-2 | | 432 | 46 | 77 | 94 | # RESIDUAL REACTIVITY Detailed results of the residual reactivity worth of the BPs are displayed in Tables 30 through 48. The results are further summarized by graphing the data in Tables 49 through 52 in several forms. The first plot is shown in Figure 26, where the residual reactivity ratio, the ratio of negative reactivity due to the burnable poison at EOL to the negative reactivity due to the burnable poison at BOL, dk_{EOL}/dk_{BOL}, is plotted for each of the four configurations of each of six isotopes. Two observations may be made from Figure 26. The first is that the residual reactivity ratios are best for ¹⁵⁷Gd and worsen in the order of ¹⁶⁷Er, ¹⁴⁹Sm, ¹⁶⁴Dy, ¹⁷⁷Hf, and ¹⁵¹Eu. The second observation is that, for the same initial reactivity worth of the BP, the ratio decreases when the poison is spread over more IFBA rods. When the number of fuel pins containing BP increases, the BP is spread thinner and is placed in a higher thermal flux position, and this reduces self-shielding. Another observation that may be made directly from Tables 49 through 52 is that the loading of separated isotopes to achieve the same negative reactivity at BOL is much smaller than for naturally occurring elements. This is also an intuitive result and is often not a great benefit. However, in cases where the amount of material added is limited, there is a definite benefit. This is particularly true in advanced reactors, where it is desired to extend the fuel cycle. Thus more fuel may be added in a limited core volume. In the case of coatings, time of deposition, impediment of heat transfer, and cracking of thick coatings due to thermal expansion all limit the thickness of the coatings. In the case of BP in the cladding, high concentrations of rare earths might alter the structure of the cladding or cause degradation by segregation at grain boundaries in the metal. As will be discussed later, at concentrations appropriate for burnable poisons, the zircaloy-4 is not embrittled. In all these cases, there is a decided benefit of isotope separation. A measure of the isotope separation benefit is the ratio of the residual negative reactivity at EOL to that at BOL for a separated isotope divided by a similar ratio for the naturally occurring element. This compound ratio is shown in Tables 49
through 52 and is plotted in Figure 27. Here it is seen that the benefit ratio, defined above, varies with configuration and isotope in the range of 0.15 to 0.96, which shows a reactivity ratio benefit of nearly an order of magnitude for ¹⁵⁷Gd, ¹⁴⁹Sm, and ¹⁶⁷Er to almost no benefit for ¹⁵¹Eu homogeneously mixed with the fuel in eight IFBAs per fuel assembly. As expected, the ratio improves when the self-shielding is minimized by the configuration. Exceptions exist in the figure, largely because of differences in initial reactivity due to running a limited number of cases. Figure 26. Ratio of negative reactivity due to burnable poison (BP) at the end of fuel life to that at the beginning of fuel life for various configurations of the BP. Figure 27. Isotope separation benefit shown by the compound ratio of negative reactivity due to the burnable poison (BP) at end of life to that at beginning of life for a single isotope to a similar ratio for the corresponding natural element. #### TIME DEPENDENCE Residual reactivity is not the only parameter that must be considered in selecting a burnable poison. Another important consideration is the time dependence of burnup. The residual reactivity ratio can be minimized by choosing very high absorbers, but if the BP burns too fast, it will be useless. The rate of burnup is considered by displaying the ratio of the negative reactivity worth of the BP at each of three time intervals of interest to the reactivity worth of the BP at BOL. The times chosen were 120 days, 1 year, and 4 years. The results are tabulated as a percentage of BOL reactivity worth in Tables 49 through 52 and are plotted in Figures 28 through 35. From Figure 28, showing the time dependence of burnup of burnable poisons mixed in the fuel, it can be seen that, except for Gd and Sm, which burn rather rapidly, the time dependence is uniform, but the burnup is incomplete with the exception of Gd, Sm, and Er. From Figure 29, for separated isotopes, it can be seen that the ¹⁵⁷Gd as well as ¹⁴⁹Sm burn too rapidly. However, at the end of 4 years, the burnup is greater than 90% for ¹⁵⁷Gd, ¹⁴⁹Sm, ¹⁶⁷Er, and ¹⁶⁴Dv, and almost 90% for ¹⁷⁷Hf. For the case of mixing the BP in the outer one-third of the fuel, Figures 30 and 31 show that both natural Gd and ¹⁵⁷Gd as well as ¹⁴⁹Sm burn too rapidly. However, ¹⁶⁷Er and ¹⁶⁴Dy now become uniformly burning poisons with over 90% burnup at the end of 4 years. Figures 32 and 33 illustrate the case of a coating on the fuel pellets. Here it is apparent that Gd and Sm burn too fast to be useful. However, ¹⁶⁷Er with 96% burnup at the end of 4 years becomes very promising, and ¹⁶⁴Dy, ¹⁷⁷Hf, and ¹⁵¹Eu all become candidates. For the case of BP in the cladding, separation of isotopes becomes more advantageous. As shown in Figures 34 and 35, the burnup at 4 years is improved for most candidate isotopes. For ¹⁵⁷Gd and ¹⁴⁹Sm, the burnup rates are clearly too high, but natural Eu, ¹⁶⁷Er, ¹⁶⁴Dy, ¹⁷⁷Hf, ¹⁵¹Eu, and ¹⁸⁴Os all become good candidates on the basis of burnup. However, cost and availability are also major factors and will almost certainly eliminate Os and possibly Eu. Figure 28. Burn rate for naturally occurring element burnable poisons homogeneously mixed in the fuel as oxides shown as a percentage of the initial negative reactivity remaining at a given time. Figure 29. Burn rate for single burnable poisons homogeneously mixed in the fuel as oxides shown as a percentage of the initial negative reactivity remaining at a given time. Figure 30. Burn rate for naturally occurring element burnable poisons homogeneously mixed into the outer one-third of the fuel pellets shown as a percentage of the initial negative reactivity remaining at a given time. Figure 31. Burn rate for single burnable poisons homogeneously mixed into the outer one-third of the fuel pellets shown as a percentage of the initial negative reactivity remaining at a given time. Figure 32. Burn rate for naturally occurring element burnable poisons coated on the outer surface of the fuel pellets as oxides, shown as a percentage of the initial negative reactivity remaining at a given time. Figure 33. Burn rate for single burnable poisons coated on the outer surface of the fuel pellets as oxides, shown as a percentage of the initial negative reactivity remaining at a given time. Figure 34. Burn rate for naturally occurring element burnable poisons in the form of a metal alloyed in the Zircaloy cladding, shown as a percentage of the initial negative reactivity remaining at a given time. Figure 35. Burn rate for single burnable poisons in the form of a metal alloyed in the Zircaloy cladding, shown as a percentage of the initial negative reactivity remaining at a given time. # RESIDUAL REACTIVITY PENALTY A useful method to evaluate the isotope separation advantage is to plot the initial negative reactivity as a function of the number of days lost due to residual BP at the end of 4 years, which we shall call the residual absorber penalty (RAP). These parameters are plotted both for the naturally occurring elements and separated isotopes. The difference in the RAP in FPDs between the natural element and the single isotope is the bonus for using separated isotopes. The initial negative reactivity as a function of the RAP (all configurations of the BP), has been previously plotted in Figures 10, 13, and 17 for the case of 16 rods and in Figures 11, 14, 18, and 21 for the case of 64 rods. Table 53 summarizes the results. The RAP for the naturally occurring element is given for the cases of 16 and 64 fuel rods as well as the savings achieved by using the specified separated isotope. It can be seen that using ¹⁵⁷Gd in 16 rods results in a savings of 6.3 FPD, leaving only one day RAP. The isotope ¹⁶⁷Er results in a savings of 32 days for 16 fuel rods, but a RAP of 33 days remains. On the basis of RAP alone, Gd is the most beneficial isotope, but there are other considerations, as discussed previously. In order to achieve a uniform burnout over several years, lower absorbing isotopes must be used, either alone or in conjunction with Gd. However, in all cases, separation of isotopes results in a significant savings, considering that the revenue from a 1000-MW plant is about \$1 million per day. Table 53. Savings in full-power days achieved by the use of single isotopes over the same naturally occurring elements for 10% initial negative reactivity | Isotope | RAP (natural) | Savings | RAP (natural) | Savings | |-------------------|---------------|---------|---------------|---------| | | 16 rods | 16 rods | 64 rods | 64 rods | | ¹⁵⁷ Gd | 7 | 6.3 | 1 | 1 | | ¹⁴⁹ Sm | 50 | 41 | 10 | 10 | | ¹⁶⁷ Er | 65 | 32 | 30 | 28 | | ¹⁶⁴ Dy | 200 | 64 | 160 | 110 | | ¹⁷⁷ Hf | ~100 | 20 | | | | ¹⁵¹ Eu | | | 45 | 30 | An interesting phenomenon is that the curves are similar for each configuration of the BP. The initial reactivity is strongly dependent upon where the BP is placed, but for a given initial negative reactivity, the penalty at 4 years is the same. This is not the case when the number of fuel rods containing BP is changed. When Sm is distributed in 64 fuel rods, the new set of curves shown in Figure 14 is obtained. The savings from isotope separation is nonetheless apparent. The values given in Table 53 are theoretical. The actual values are smaller and will be discussed in the section on isotope separation. #### METHOD OF ISOTOPE SEPARATION Theragenics Corporation has recomissioned the Plasma Separation Process system originally developed for DOE by TRW and has successfully separated isotopes of molybdenum to a fairly high enrichment factor. Following this initial shakedown using molybdenum, the plant was ready to attempt gadolinium. Unfortunately due to the higher mass of gadolinium, the close **Figure 36** The plasma separation device at the Theragenics plant showing the vacuum chamber, associated pumps, and auxiliary equipment. spacing (1 AMU) of isotopes adjacent to ¹⁵⁷Gd, and the low thermal conductivity of gadolinum, the ¹⁵⁷Gd enrichment job has been quite difficult relative to molybdenum and other isotopes previously separated by TRW. Nevertheless, an output assay of 32% (enrichment factor $\beta 1=2.2$) for¹⁵⁷Gd was demonstrated with a throughput of 5.9 kg/year effective production rate. Modeling results performed by Theragenics and similar modeling by TRW were more optimistic, predicting up to 50% output assay at a throughput greater than 15 kg/yr. With experience and improvement in the techniques, it is anticipated that enriching ¹⁵⁷Gd and similar isotopes can be improved significantly in the future. Figure 36 shows the PSP facility at Theragenics. Figure 37 describes the basic operating principle of the PSP. The PSP appears to have unique capabilities for handling rare earth elements among the available isotope separation technologies available today. PSP can handle elements in metal form without the need for a stable gas phase required by gas centrifuges and has a relatively high throughput compared to calutrons. Rare earth elements are apparently difficult to convert into gaseous phases for gas centrifuge or gaseous diffusion separation methods. Previous attempts by groups using laser separation processes have reportedly been unsuccessful at handling gadolinium and other rare earths due to a lack of mass dependent photoionization spectral lines. # **PSP OPERATING PRINCIPLES** **Figure 37** Schematic diagram of the plasma separation process to demonstrate operating principles. #### TARGET FABRICATION Three targets were fabricated for the PSP separation of the following elements: gadolinium, dysprosium, and erbium. The gadolinium target was the first to be made. Pieces of gadolinium metal were melted in a tantalum crucible and cast into an ingot approximately 5 inches in diameter by 8 inches long (12.7 cm diameter x 20 cm long) by Ames Laboratory. Since rare earth metals are pyrophoric, it was decided not to use conventional
machining in order to avoid the danger of igniting chips. Electro-discharge machining was used to slice the ingot into plates 3.18 mm thick to form a mosaic structure 23 x 24 inches (58.4 x 70.0 cm). The seams were then welded to form a single plate. The welding was done in a argon atmosphere using tungsten inert gas welding with the electrode negative using a 2.4 mm thoriated tungsten electrode. Scrap plates were cut to make filler wire for the welding process. The welded plate is shown in Figure 38. Cracking is visible in Figure 39, but each individual platelet is held in place by at least two and most often four sides, resulting in a plate with structural integrity. **Figure 38** Gadolinium plate fabricated by welding together 3.18 mm thick slabs. The weld bead facing the plasma does not harm the process. The back side, which attaches to the cooling coils is very flat. **Figure 39** Welded gadolinium plate showing weld cracking. The dysprosium target was also made from a cast ingot and again sliced into 3.18 mm thick plates to form a plate 58.4 x 70 cm. However, considering the difficulty in welding gadolinium, another approach was tried. The platelets were beveled at the edges in order to block line-of-sight passage of ions through the target. The platelets were then soldered individually to form a single target plate. The advantage is apparent, but achieving a flat target plate with good adheasion to the backing plate proved difficult. The soldering was performed by pretinning surfaces and clamping the assembly in a specially designed press which was heated by propane burners. The soldered Dy plate assembly is shown in Figure 40 (which was taken after completing the dysprosium campaign as can be confirmed by the visible burn-through regions). To ensure adequate cooling, voids in the solder must be minimized to limit the path length between the heat flux on the plasma facing side and the cooling water. Dysprosium has a rather low thermal conductivity of 10.8 W/m-°K. As with the Gd target, an IR camera system was used to check the integrity of the solder layer by alternately passing hot and cold water through the cooling lines. A number of "hot spots" were located using the IR camera upon initial inspection. Several occurred near corners in the plates which were slightly warped away from the backing plate. These were patched where possible by heating with a torch and feeding in additional solder and then reheating the entire assembly in the press. After several attempts an adequate cooling uniformity was achieved based on IR camera measurements. The Dy source plate assembly was installed on the PSP and operated for a short period of time at a low source current. Several trouble spots quickly became apparent including some of the smaller Dy tiles around the edge which became slightly detached. These sections were removed and recoated with copper and resoldered. Silver paint filler was added to a few other spots. Eventually, adequate cooling was achieved across the entire plate with the exception of a few hot spots around the edge. Operation of the PSP was possible; however, there were frequent source arcs throughout the entire Dy campaign. Solder that leaked between the tiles is believed to be one cause of the frequent arcing. This solder gradually disintegrated over the course of the run. There was an edge tile that became slightly detached during the campaign and sharp corners and gaps around the loose section may have also contributed to the arcing. **Figure 40** Dysprosium target assembly after completion of the production campaign. Note the absence of weld bead and some edge separation of the tiles. The dysprosium target plate was operated a total of ~ 630 amp-hours at a typical current of 15 amps (approximately 42 hours run time). Upon removal, there were several burn through spots in the plate where the copper backing plate was visible. The erbium target was fabricated from rolled plate, having located a source of rolled rare earth plates. Although a plate the size of the target could not be obtained, four quarter size plates were purchased. Considering the difficulties with the soldered tiles of the Dy plate, it was decided to again attempt welding the plates. An inert gas welding glove box with a high capacity purification system was procured and dedicated to welding rare earth plates. A dedicated facility was necessary because what appeared to be an oxide of gadolinium was deposited over surfaces inside the welding glove box during the Gd target fabrication, necessitating an extensive cleaning operation, perhaps with Figure 41 Inert gas welding glove box some residual gadolinium contamination. The new rare earth welding glove box is shown in Figure 41. It is capable of moisture and oxygen levels below 1 ppm. The erbium plates were welded using the method of tungsten inert gas welding with a 2.4 mm thoriated tungsten electrode made negative with respect to the erbium plate. A maximum of 200 amperes was used with a voltage of about 12 volts. Single pass welds were made using filler metal made from scrap erbium plate. Although the impurity levels in the box quickly rose to over 20 ppm, they decreased to below 5 ppm as welding progressed. It was found that the weld cracked when the torch was removed in the middle of a plate. The cracks were then rewelded and the torch not removed until the edge of the plate was reached. This resulted in a plate with no cracks visible to the naked eye. The weld bead on the back surface was removed by grinding and the plate prepared for the next stage. The plate was then thermal sprayed with copper in preparation for soldering. Since this plate was a single full-size unit, it was possible to directly attach heat exchanger cooling lines without the need for a copper backing plate. The weld beads on the plasma side were ground flat to facilitate water line attachment. To ensure that adequate cooling existed in the gaps between the water lines, additional copper was plasma sprayed on the erbium plate to a thickness of ~ 0.1 ". The additional copper backing application caused the plate to warp slightly but not enough to affect installation or operation on the PSP. The soldering was performed by applying a layer of paste solder and clamping the assembly in a specially designed press which is heated by propane burners. The soldered erbium plate assembly is shown in figure 42. To protect the exposed water line ends, two copper shields were soldered to them since the width of the erbium plate was not quite their full width. Sharp corners at the edge of the erbium plate were smoothed down to reduce the likelihood of arcing. An infrared camera survey of the erbium plate assembly indicated that the waterline attachment was very good with no significant non-uniformity in the cooling. There is non-uniformity in the infrared surface emissivity of the rough, slightly oxidized metal surface which makes interpretation of the IR camera image more difficult. Observation of the uniformity of the change in apparent temperature as the cooling (or heating) water is turned on is the most meaningful technique. Figure 42 Erbium target assembly after attaching the coolant lines. The erbium plate was installed on the PSP and operated for about 1 hour and then inspected. There was no sign of hot spots. The erbium plate was operated a total of ~ 330 amp-hours at a typical current of 10-12 amps (approximately 30 hours run time). Upon removal, there were no burn through spots in the plate where the copper backing plate was visible. There are clear indications of cracks in the erbium plates at various locations and also variations in the grain structure in some regions which were produced during the manufacturing process. The welds show no sign of failure. A triangular patch apparently replaced by the manufacutrer (visible in figure 42) became more pronounced since its grain structure does not match that of the surrouding area. This plate operated very smoothly with very little source arcing as experienced with the multi-tile dysprosium plate. During exposure to the plasma, the target must be actively cooled to prevent melting. The source plate must be attached to a water cooling heat exchanger. During typical PSP operation, the heat flux on the source plate is 60 W/cm². Many metals have no difficulty handling this heat flux provided cooling lines are attached with soft solder and any voids in the solder interface are 3-4 cm diameter or less. Due to the low thermal conductivity of gadolinium and other rare earth metals, the acceptable void diameter is much less- probably 1 cm diameter depending upon the thickness. Copper was plasma sprayed onto the back of the target plates by commercial suppliers to simplify soldering. The single plate unit can have the waterlines directly attached whereas the multiple section plates, such as the Dy plates, need a thin copper backing plate for support. A single plate assembly with waterlines attached directly has been found to be the most reliable. However, gaps between water lines are a concern just like voids in the solder. Warpage in a thin single plate makes reliable attachment more difficult. The multiple plate units must be attached to an intermediate backing plate to provide support, which requires two solder joints to be reliable. However the copper backing plate does a better job spreading out the heat flux. To qualify the source plate and cooling line assembly for installation in the PSP, two techniques have been used. An ultrasonic probing technique was studied and found to be quite sensitive for locating voids in the solder. However, the ultrasonic probe requires good contact with the source plate and must be manually scanned across the entire plate. Interpreting the signals is somewhat difficult, especially with the complicated shape of the cooling lines on the backside of the plate. An infrared camera technique was found to provide fairly
meaningful two-dimensional images of the cooling uniformity and therefore can indicate locations of voids in the solder when used with changing water temperature. The IR camera method has the potential for viewing the entire source plate simultaneously and can provide quick feedback. Unfortunately, the surface emissivity of the source plate material strongly affects the apparent surface temperature. Variations in surface roughness and the presence of surface oxide or soldering flux residue make interpretation of the images difficult. An image processing method that subtracts off the baseline temperature and shows only changes in temperature as cold or warm water is flowed through the cooling lines drastically simplifies interpretation. A number of attempts were made before successfully attaching a gadolinium source plate that could handle the heat flux without overheating and melting at any location. The Gd plate, formed from several smaller 1/8" thick plates welded together was placed in the soldering fixture, using small **Figure 43** Gadolinium target showing damage caused by melting. The hole is approximately 4cm across. aluminum filler plates to compensate for a slight curvature resulting from the welding and thermal spray processes. It was then soldered directly to the water lines. This plate, as with a preliminary test plate, did not last very long, apparently due to the water lines detaching in a few places. This was believed to be due to the difficulty in getting a good fit between the water lines and the warped plate. The melting damage to the target plate is shown in Figure 43. Later a rigid clamping fixture was utilized which solved this difficulty. Another attempt was with two 6.4 mm half plates which were soldered to a backing plate. The IR camera system was available to test this assembly before it was used, and several hot spots were located. A filling method using silver paint was used to patch the known voids through small holes drilled between water lines from the backside. This plate was run in the PSP a short while, and evidence for hot spots was still visible but much smaller than in previous attempts. A few more attempts and improved soldering were made before finally getting an acceptable solder job combined with a few patches to fill in smaller voids. The use of lead/tin solder proved to be much better at minimizing the void areas than the previously used lead-free solder, which was used because of its lower vapor pressure and thus better vacuum compatibility. A typical infrared scan is shown in Figure 44. **Figure 44** A typical infrared image of the erbium plate with hot water flowing in one sector of the cooling lines. A cold spot is visible toward the left, indicating a void in the solder in that region. #### MODELING OF PLASMA SEPARATION Modeling enrichment capabilities of the PSP facility at Theragenics (1.8 T magnetic field) and a future 6 T magnetic field device have been performed and are summarized in this section. The models which have been developed have been fairly accurate at predicting output assay and throughput for some isotopes, especially those of lower mass and with greater mass separation. For the purpose of illustration, ¹⁵⁷Gd will be used as an example. The modeling process begins by analyzing the ion cyclotron excitation process of the uniform low-temperature plasma incident from the source end. Electromagnetic waves generated by the antenna structure are analyzed inside the plasma using a numerical technique. A set of test particles of each isotope is then launched and tracked along the plasma and its net energy gain evaluated at the collector entrance. Usually a scan of the ion perpendicular temperature vs. magnetic field is plotted for each isotope, as shown in Figures 45 and 46 for two cases of plasma density corresponding to very low source current and to a medium source current. An exact relationship between source current and plasma density requires more complicated modeling or actual measurements. The important features visible in Figures 45 and 46 are the ratios of the ¹⁵⁷Gd ion temperature to that of its neighbors. This ratio directly translates to the product assay recovered in the collector. The low-density conditions in Figure 45 show fairly sharp resonance lines and a ¹⁵⁷Gd to ¹⁵⁸Gd (or ¹⁵⁶Gd) ratio >10:1. The peak height can be adjusted somewhat arbitrarily by changing the RF drive level applied. As the density increases, the rate of collisions between particles in the plasma increases, which spoils the resonance and rapidly decreases the temperature ratio (Figure 46 shows $\sim 4:1$). This depicts the fundamental trade-off between high enrichment and high throughput in the PSP device and Figure 45 Predicted gadolinium ion excitation at low density Figure 46 Predicted gadolinium ion excitation at medium density is also the situation for most other isotope separation technologies. Other factors which can be varied to optimize either throughput or product assay are the collector bias and fence width. Details of the collector structure are depicted in Figure 47. The highest assay product is on the leading edge of the collector blades in the shadow region behind the fences. Material further back on the collectors has lower assay due to depletion of the higher energy particles and more sputtering of low enriched material from the fence edges and tails plate regions. There are several other factors affecting the actual throughput and assay levels obtained. Many are accounted for in the models. The dominant effect is driven by the plasma ion collision process which has several contributors. One is the "hard body" collision with a cross section that is highly dependent on the particular isotope and plasma temperature. Exact parameters for this effect for a particular isotope have not been incorporated in the model. In the case of small mass separation, these approximated factors are more likely to reduce the accuracy of the modeling. Actual diagnostic collector analysis of the performance is necessary for making the final determination of the process performance. The diagnostic collector (called HDC) used is a small version that can easily be inserted through a vacuum lock and retrieved without breaking the PSP vacuum. The full production collector requires an up-to-air event to change out a collector. The HDC has approximately 1/15 of the useful area of the full production collector. During HDC operation, the remaining material that misses the HDC is deposited on a tails plate. Numerous diagnostic collector runs were performed to optimize the ¹⁵⁷Gd assay. Modeling had predicted that an assay of 50% for ¹⁵⁷Gd might be possible on the 1.8 T PSP facility. It was determined that if a low density were used and a wide collector fence width with 150 V collector bias, it would be possible to approach this assay on the leading edge of the collector blades. An assay of 48% was achieved for one case, which is shown in Figure 48. The consequence of having to operate at reduced source current, use wide collector fences and operate at high bias voltages to achieve the reasonably high assay has resulted in relatively lower product throughput than is possible for other isotopes of lower mass and wider mass separation. The material collected on the graphite blades is essentially a thin metallic film that must be processed to convert it into a useful form. Two techniques have been used for harvesting Figure 47 Schematic diagram of the cross section through a PSP collector Figure 48 Point assay of ¹⁵⁷Gd as a function of distance from the leading edge of the collector. gadolinium: acid dissolution and calcining in an oxidizing furnace. Both have similar collection efficiency and, depending upon the element, both have advantages. To produce sufficient product material, a greater portion of the collector must be harvested than the leading edge. A trade-off must be made between throughput or high assay in deciding where to section the collector blades. The processed material for a production run corresponding to the point data in Figure 48 is assayed in Figure 49. This material is from the first 0.5-cm of the collector blades (called U material) and corresponds to the region that all 3 data points of Figure 48 are taken from. A reduction in assay from the leading edge to essentially the location of the lowest value of the point data was observed. During a production campaign, approximately 26-33 hours of plasma time were required to collect 0.75 gram of 36% assay 157 Gd with the HDC, which translates to ~ 12 grams using the production collector or 0.3 g/h production rate. Harvesting other regions on the collector can result in a greater throughput. The second half-cm on the blades (referred to as "V" material) indicated a lower ¹⁵⁷Gd assay (typically 28%) and contained about 49% more ¹⁵⁷Gd than the U material alone, as summarized in Table 54 below. It should also be noted that the 155 Gd is $\sim 5-8\%$ of the output material assay. so the effectiveness of the output material as a burnable poison is slightly greater. Other portions of the collector blades have significant quantities of ¹⁵⁷Gd at slightly lower enrichment levels. These batch categories have traditionally been called X, Y and Z. The X and Y material are recovered from the edge regions of the collector blades and further back from the leading edge on the central blades. The enrichment factor for these batches is typically half that of the U+V category and the production rate total is typically comparable to the U+V rate. Table 54 Production values for ¹⁵⁷Gd | Run # | "U" mass
(metal) | "V" mass
(metal) | Run time | (amp-hours) | Gd-157 U | |-----------|---------------------|---------------------|----------|-------------|----------| | H031003-1 | 0.754 g | 0.504 g | 26 hours | 400 A-H | 34.8% | | H031703-1 | 0.767 g | 0.529 g | 33 hours | 495 A-H | 34.5% | - The ratio between U and V mass collected
appears to be ~ 1.49 If U+V are combined, the resulting assay will be proportional - The production rate using the production collector would be typically 0.4 g/hour U or 0.68 g/hour U+V - Typical isotopic distribution comparison | | | Gd-152 | 154 | 155 | 156 | 157 | 158 | 160 | |-----------|---|--------|------|------|------|------|------|------| | H031003-1 | U | 0.03 | 0.49 | 5.84 | 26.4 | 34.8 | 29.2 | 4.26 | | H031003-2 | V | 0.06 | 0.82 | 8.41 | 28.1 | 28.8 | 29.9 | 4.79 | # ESTIMATED COST FOR COMMERCIAL PRODUCTION OF 157Gd Pricing for production of enriched ¹⁵⁷Gd is highly dependent on the throughput and enrichment level required. Using the weighted average throughput of the processing of 1.3g per hour, throughput, based on total available hours in one year, is approximately 11.2kg of 28% assay ¹⁵⁷Gd. If only higher assay material (up to 36% ¹⁵⁷Gd) is desired, then the annual throughput would be less and cost per gram proportionally higher. The following table presents the estimated pricing per gram, based on varying levels of utilization, and includes estimated cost of natural gadolinium source plates: | | Based on total produ | ct (2) | Based on isotope (3) | | |-----------------|----------------------|---------------|----------------------|---------------| | Utilization (1) | Pricing range | Annual | Pricing range | Annual | | | per gram | capacity (kg) | per gram | capacity (kg) | | 100% | \$600-\$1,000 | 11.0-11.4 | \$2,100-\$3,500 | 3.1-3.2 | | 75% | \$800-\$1,300 | 8.1-8.5 | \$2,800-\$4,600 | 2.3-2.4 | | 50% | \$1,200-\$2,000 | 5.2- 5.6 | \$4,300-\$7,100 | 1.5-1.6 | This cost estimate is intended for scientific feasibility studies only. An actual price depends upon many factors which are functions of time. - (1) Actual production hours divided by total available hours. 24 hours per day considered total available hours. 100% utilization is theoretical maximum (24 hours per day, 7 days per week, 365 days). - (2) Gadolinium enriched to 28% of ¹⁵⁷Gd. (i.e. 28% of total product is ¹⁵⁷Gd). - (3) ¹⁵⁷Gd only. This is a function of enrichment multiplied by the total product. #### **SEPARATION OF DYSPROSIUM-164** The separation of ¹⁵⁷Gd was used as an illustration of the PSP process. For the other isotopes, the results and peculiarities will be discussed. Based on a ¹⁶⁴Dy production run, it has been determined that an annual production rate of 2.2 - 4 kg/year at an assay of 61-67% can be achieved on the existing PSP facility at TheragenicsTM. The production rate and output assay depend on system availability and blending of lower and higher assay collected material. The price range for enriching ¹⁶⁴Dy is in the range of \$1000-\$3200/gram depending on availability and assay. On a future 6 Tesla **Figure 49** Plot of relative concentration of the isotopes of an enrichment sample from a ¹⁵⁷Gd run. PSP device, an annual ¹⁶⁴Dy production rate of 125 kg/yr at an assay of 90% is likely to be feasible and the processing cost per gram would be significantly lower. Several diagnostic collector runs of ~ 1 hour each were performed to optimize conditions for best 164 Dy enrichment. The magnetic field, RF drive level, neutral source current and other parameters were varied based on REA diagnostic signals and mass spectrometer analysis of the product. The best assay achieved is $\sim 74\%$ Dy-164 for 0.25 cm of the leading edge of the collector blade. The mass spectrometer analysis for this sample is shown in figure 50. A production collector run was performed. The run lasted 20 hours at an average source current of $\sim 14~A~(280~A\text{-H})$. The collector blades were harvested in the TheragenicsTM chemistry lab and analyzed with the TheragenicsTM ICP-MS mass spectrometer system. A few of the collector blades insulation shorted during the run so their bias voltage dropped to zero at that point. Batches were separated out to account for the various conditions. **Figure 50** Relative concentrations of isotopes for a production run to separate ¹⁶⁴Dy # Production run data for ¹⁶⁴Dy: Run conditions: 14 A Neutral source current 20 hours of operation (280 A-H) 100 V bias for 90% of the run - \bullet Note: a few blades bias shorted toward the end of the run. They are the blades processed (data below). The un-shorted blade had $\sim 2\%$ higher assay. - Note: only 6 blades out of 10 were processed in the main batch. The full production rate is 10/6 times higher for 20 hours. # Batches processed: ``` U1 6 blades (of 10); Leading 0.5 cm 2.62 g recovered Assay = 67.1\% ^{164}Dy Other isotopes: 16.58\% ^{163}Dy, 9.4\% ^{162}Dy, 5.7\% ^{161}Dy, 0.8\% ^{160}Dy ``` V1 6 blades (of 10); Second 0.5 cm 2.38 g recovered Assay = $$64.1\%$$ 164 Dy Y 4 blades, outer positions, first 1 cm leading edge 3.27 g recovered Assay = $61.7 \% ^{164}$ Dy X 10 blades top and bottom 8 cm 1 cm leading edge 4.35 g recovered Assay = 61.2% 164 Dy Therefore, depending on the assay level desired, we get the following rates for annual production assuming 55% availability . ``` U 67.1% assay 0.210 g/hour 1011 g/year V 64.1% assay 0.199 g/hour 958 g/year X 61.2% assay 0.217 g/hour 1045 g/year Y 61.7% assay 0.163 g/hour 785 g/year ``` If we combine them all, we get about 3.8 kg/year at an assay of $\sim 63\%$ # ESTIMATED COST FOR COMMERCIAL PRODUCTION OF 164Dy Pricing for production of enriched ¹⁶⁴Dy is highly dependent on the throughput and enrichment level required. Using the weighted average throughput of the processing of 0.8g per hour, the throughput based on total available hours in one year is approximately 6.75kg of 63% assay ¹⁶⁴Dy. The following table presents the estimated pricing per gram, based on varying levels of utilization and includes the estimated cost of natural dysprosium source plates: | | Based on total produ | ict (2) | Based on isotope (3) | | |-----------------|----------------------|---------------|----------------------|---------------| | Utilization (1) | Pricing range | Annual | Pricing range | Annual | | | per gram | capacity (kg) | per gram | capacity (kg) | | 100% | \$1,000-\$1,600 | 6.5-7.0 | \$1,600-\$2,500 | 4.1-4.4 | | 75% | \$1,200-\$2,200 | 4.7-5.2 | \$1,900-\$3,500 | 3.0-3.3 | | 50% | \$1,900-\$3,300 | 3.0-3.5 | \$3,000-\$5,200 | 1.9-2.2 | As with ¹⁵⁷Gd, this is a cost estimate for scientific research, not a price quotation. - (1) Actual production hours divided by total available hours. 24 hours per day considered total available hours. 100% utilization is theoretical maximum (24 hours per day, 7 days per week, 365 days). - (2) Dysprosium enriched to 63% of ¹⁶⁴Dy. (i.e. 63% of total product is ¹⁶⁴Dy). - (3) ¹⁶⁴Dy only. This is a function of enrichment multiplied by total product. # **SEPARATION OF ERBIUM-167** Several diagnostic collector runs of ~ 1 hour each were performed to optimize conditions for best 167 Er enrichment and the results analyzed on a mass spectrometer. The magnetic field, RF drive level, neutral source current and other parameters were varied based on diagnostic signals and mass spectrometer analysis of the product. The best assay achieved is $\sim 37.5\%$ 167 Er for 0.25 cm of the leading edge of the HDC collector blade for this study. A lower source current (10A) than used during dysprosium operation was needed to give an acceptable 167 Er assay due to the difficulty of this isotope. The same conditions were used for a 19 hour production run where a slightly better assay was obtained. This is likely to be due to the slightly wider fence used for the production run. A production collector run was performed which lasted 19 hours at an average source current of ~ 10 A (190 A-H). The collector blades were harvested in the TheragenicsTM chemistry lab and analyzed with the TheragenicsTM ICP-MS mass spectrometer system. Figure 51 shows the isotope distribution **Figure 51** Isotope distribution achieved in a 19 hour production run to separate ¹⁶⁷Er. achieved. A few of the collector blade's insulation shorted during the run so their bias voltage dropped to zero at that point. A view of the collector plates following the run is shown in Figure 52. Batches were separated out to account for the various conditions. # Production run data for Er-167 Run conditions: 10.5 A Neutral source current ~19 hours of operation (190 A-H) 100 V bias for 100% of the run These batches were processed using acid dissolution of the metal film off the collector blades then filtered and dried: U: 1.9 out of 10 blades; Leading 0.5 cm; 1.193 g recovered. Assay = $39.4 \% ^{167}$ Er Other isotopes: $0.06\% ^{167}$ Er, $27.3\% ^{166}$ Er, $26.8\% ^{168}$ Er, $2.58\% ^{170}$ Er V: 1.9 out of 10 blades; Second 0.5 cm; 1.017 g recovered. Assay = 33.7% ¹⁶⁷Er Y and X portions of the blades can be scaled from U &V results based on ratios from earlier more extensive processing operations since the plasma cross section is identical. **Figure 52** Production collector following a production run showing the outline of the plasma and erbium metal films becoming detached from the tails plate and fences. Therefore, depending on the assay level desired, we get the following rates for annual production assuming 55% continuous availability. U 39.4% assay 0.330 g/hour 1591 g/year (Yearly rates based on 55% availability) V 33.7% assay 0.278 g/hour 1348 g/year X 31% assay 0.315 g/hour 1530 g/year (**scaled based on Dy ratio) Y 31% assay 0.247 g/hour 1192 g/year (**scaled based on Dy ratio) If we combine them all, we get about 5.66 kg/year at an assay of $\sim 33\%$ and 55% run time availability. # ESTIMATED COST FOR COMMERCIAL PRODUCTION OF $^{167}\mathrm{Er}$ Pricing for production of enriched 167 Er is highly dependent on the throughput and enrichment level required. By combining all grades of recovered product, a production rate 1.17 g per hour at an assay level of \sim 33% is available. Equivalent throughput based on total available hours in one year is approximately 10.2 kg of \sim 33% assay product. The following table presents
the estimated pricing per gram, based on varying levels of run-time utilization, and includes estimated cost of natural erbium source plates. | | Based on total produ | ict (2) | Based on isotope (3) | | |-----------------|----------------------|-------------|----------------------|------------| | Utilization (1) | Pricing range | Annual | Pricing range | Annual | | | per gram | capacity | per gram | capacity | | 100% | \$600 - \$1100 | 9.8-10.2 kg | \$1800 - \$3400 | 3.2-3.4 kg | | 75% | \$800 - \$1500 | 7.4-7.8 kg | \$2400 - \$4600 | 2.4-2.6 kg | | 55% | \$1200 - \$2200 | 4.8-5.2 kg | \$3600 - \$6700 | 1.5-1.7 kg | This cost estimate is only for scientific purposes. It is not meant to be a price. - (1) Actual production hours divided by total available hours. 24 hours per day considered total available hours. 100% utilization is theoretical maximum (24 hours per day, 7 days per week, 365 days). - (2) Erbium enriched to 33% of 167 Er. (i.e. -33% of total product is 167 Er). - (3) ¹⁶⁷Er only. This is a function of enrichment multiplied by total product. For comparison purposes, the parameters for the erbium runs are presented in Table 55 with the corresponding parameters for gadolinium and dysprosium. 2 Tesla PSP Unit Table 55 Comparison of burnable poison isotope separation on the Theragenics™ PSP | | Gd-157 | Dy-164 | Er-167 | |---------------------------|--------------|----------|----------| | Source current (A) | 15.00 | 14.00 | 10.00 | | Particle mass number | 157 | 164 | 167 | | Particle mass (g) | 2.61E-22 | 2.72E-22 | 2.77E-22 | | Isotope natural abundance | 16.30% | 28.20% | 22.95% | | Calculated assay % | 36.00% | 67.50% | 37.50% | | Collector cut | 0.03 | 0.04 | 0.04 | | Overall cut | 0.02 | 0.02 | 0.02 | | Collector flux (g/hour) | 0.72 | 0.86 | 0.92 | | Isotope flux (g/hour) | 0.2581 | 0.5804 | 0.3436 | | Run time fraction | 0.6 | 0.6 | 0.6 | | Isotope flux (g/year) | 1356 | 3051 | 1806 | | Product flux (g/year) | 3768 | 4519 | 4815 | | Feed mass (Kg/yr) | 693 | 676 | 492 | | DISCUSSION OF RESULTS C | F ISOTOPE SE | PARATION | | The experimental values achieved in the PSP isotope separation are given in Table 56. The enrichment values, although lower than expected for ¹⁵⁷Gd and ¹⁶⁷Er, are reasonable for a single pass process. The production rates are disappointing. With the present PSP device, such a throughput, leading to an associated cost of approximately \$1,000 per gram is not viable for present day commercial reactors. Table 56 Comparison of experimental and calculated values of enrichment and production rates of PSP separated isotopes. Production rates are based on 24 hours/day, 365 days/year. | Isotope | Natural
Abundance
(%) | Theoretical
Enrichment
(%) | | Experimental Enrichment (%) | Theoretical
Production Rate
(kg/year) | | Experimental Production Rate (kg/year) | |-------------------|-----------------------------|----------------------------------|---------|-----------------------------|---|---------|--| | | | 2 Tesla | 6 Tesla | 2 Tesla | 2 Tesla | 6 Tesla | 2 Tesla | | ¹⁵⁷ Gd | 15.65 | 45.8 | 72 | 32 | 51 | 87 | 5.9 | | ¹⁶⁴ Dy | 28.2 | 63.1 | 90 | 63 | 96 | 130 | 6.9 | | ¹⁶⁷ Er | 22.9 | 55.5 | 79 | 33 | 79 | 120 | 10.2 | However, ¹⁶⁴Dy has favorable qualities. Of course, the higher the enrichment, the lower the percentage of undesirable isotopes, but it is the distribution of the undesirable isotopes that determines the performance of the burnable poison. Calculations have determined the residual negative reactivity due to each isotope remaining and produced. A reasonable prediction of performance of the actual material can be computed by considering the reactions that lead to the production of each isotope. Then the ratio of the actual concentration of each isotope to the natural concentration is multiplied by the negative reactivity of the isotope generated. The sum of each of these negative reactivities is then used to linearly interpolate a value for the RAP. The values calculated in this manner appear in Table 57. It is evident that ¹⁵⁷Gd and certainly ¹⁶⁷Er will not serve as economical burnable absorbers for commercial reactors. ¹⁶⁴Dy, with its uniform burn rate over a period of four years, is a strong potential candidate for use in a generation IV reactor with an extended fuel cycle. This is particularly true if a PSP device with a 6T magnet is used, which is predicted to result in a 2-3 times higher production rate as well as an enrichment value 30% higher or a production rate 50% higher and a corresponding enrichment value nearly twice as high. Table 57 Residual absorber penalty in days resulting from the candidate burnable poisons in 16 rods. | Isotope | RAP
Natural Element | RAP
(100% Separated)
(Days) | RAP
(Experimental)
(Days) | Savings
(Experimental)
(Days) | |-------------------|------------------------|-----------------------------------|---------------------------------|-------------------------------------| | ¹⁵⁷ Gd | 7 | 0.7 | 6.5 | 0.5 | | ¹⁶⁴ Dy | 200 | 136 | 163 | 37 | | ¹⁶⁷ Er | 65 | 33 | 66 | 0 | #### MATERIALS ISSUES WITH BURNABLE POISONS #### **GADOLINIUM OXIDE IN FUEL** The third phase of this project is to investigate the product form of the fuel and burnable poison, or as has been discovered during phase one, to explore the possibility of incorporating the burnable poison into the cladding. The addition of gadolinium oxide to uranium oxide is not a new concept. In fact, the addition of gadolinia to UO_2 nuclear fuels to depress early life power levels and homogenize core power distributions has been accepted in commercial power reactors for many years. For this reason, a literature search was conducted to determine the issues involved with incorporating Gd_2O_3 into the fuel and to what extent the problems have already been solved. # EFFECTS OF Gd₂O₃ in UO₂ Experience with Gd₂O₃ as a burnable poison dates back to the 1960's. ASEA-ATOM began testing fuel rods containing gadolinia in 1971 and a full-scale demonstration was conducted during 1976-1977 (ref 18). By 1982, 3223 fuel assemblies containing 2 to 6 wt% gadolinia had been utilized to 90% of the design burnup without any fuel failure. Destructive examination of fourteen of the rods showed that dimensional changes, fission gas release and fuel structure was within the range of standard fuel rods. Kansai Electric also uses fuel containing gadolinia in commercial reactors. Eight fuel assemblies with 6 wt% Gd₂O₃ in UO₂ were tested beginning in 1984. The measured physics parameters during the startup operation agreed with predicted values. Destructive post irradiation examination indicated that the fission gas release was less in the gadolinia doped fuel than in the UO₂ rods irradiated concurrently (ref 19). Advanced Nuclear Fuels Corporation introduced gadolinia bearing nuclear fuel in the late 1970's. By 1988, 45,000 fuel rods containing 1 to 10 wt % gadolinina had been irradiated in 29 reactors: 11 pressurized water reactors and 18 boiling water reactors. Hot cell examinations indicated that the mechanical behavior of the gadolinia bearing rods was fully satisfactory (ref 20). UO₂ forms a single phase cubic fluorite type solid solution with Gd₂O₃ up to 20-30 wt % at temperatures above 1300 K (ref 21). The addition of gadolinia to UO₂ modifies the material properties of the fuel. During calcination and sintering of a homogeneous mixture, the Gd atoms can replace the U atom in the crystal structure. Since Gd has a lower atomic weight, the density of the solid solution decreases as the gadolinia concentration increases. However, this effect is somewhat offset since the lattice parameter of (U,Gd)O₂ solid solutions decreases with increasing Gd₂O₃ content (ref 22). The final density depends on the sintering temperature, the sintering atmosphere, and on the characteristics of the UO₂ powder used to prepare the fuel. In a hydrogen atmosphere, UO₂ containing up to 6 wt % Gd₂O₃ shows a reduced sinterability compared to UO₂ (ref 23). As the oxygen potential in the sintering atmosphere increases, the sintered density of UO₂-2% Gd₂O₃ pellets increases, but that of UO₂-10% Gd₂O₃ pellets decreases. The grain size of UO₂-Gd₂O₃ fuel also increases with increased oxygen potential, and a short range Gd distribution becomes homogeneous (ref 24). The thermal and physical properties of $(U,Gd)O_2$ fuel were measured to serve as a benchmark to existing UO_2 data in support of U.S. reactor designs. For reactor design purposes, the thermal conductivity is the only property among the thermal expansion, the specific heat, and the solidus temperature, that significantly changes from those of UO_2 (ref 25). The melting temperature of UO_2 and UO_2 -2wt% Gd_2O_3 fuel irradiated in a commercial LWR has been measured (ref 26). There is no decrease in the melting temperature with irradiation to a burnup of about 30GWd/t, and Gd_2O_3 addition below 2 wt% has little, if any, influence on the melting temperature. The melting behavior for irradiated UO_2 containing higher concentrations of Gd_2O_3 has not been reported. The melting point of Gd_2O_3 doped UO_2 should be sufficiently high so as not to impact reactor safety during normal operations. Limited data exist in the literature on the thermal expansion coefficient (CTE) for $(U,Gd)O_2$. Additions of Gd_2O_3 up to about 12 wt% have little effect on the CTE for temperatures below 1233 K (ref 27). At temperatures exceeding about 1300 K the CTE for unirradiated solid solutions becomes larger with increasing Gd_2O_3 content. At 1973 K the CTE values for 5, 8, and 10 wt % Gd_2O_3 are 2.7, 5.4 and 6.2 % larger than for UO_2 (ref 28). CTE values as a function of fuel burnup have not been reported in the open literature. The thermal conductivity of UO₂ is reduced when gadolinia is added to form a solid solution. The reduction is most
pronounced at lower temperatures and is about a factor of two at room temperature but only about 20% at 1400 K. Irradiation also reduces the thermal conductivity of UO₂ and UO₂-10 wt% Gd₂O₃ due to the formation of point defects. The reduction in the thermal conductivity is less at higher irradiation temperatures and is small in samples that are irradiated at temperatures exceeding 1273 K (ref 29). The relative reduction in the thermal conductivity of gadolinia doped fuel during irradiation is smaller than that of UO₂ (ref 30). Furthermore, the difference in relative thermal conductivities between UO₂ and (U,Gd)O₂ become insignificant with increasing burnup (ref 31). This suggests that the effects of soluble fission products and irradiation induced defects are more significant than those of the added Gd. This reduction in fuel thermal conductivity can cause gadolinia doped fuel to reach higher temperatures during irradiation than UO_2 operating at the same power. As a consequence, fission gas release from the gadolinia-doped fuel is predicted to be higher. The fission gas diffusion coefficient in $(U,Gd)O_2$ under irradiation is independent of temperature below 1073 K, but increases with temperature above this value. In contrast to UO_2 , the diffusion coefficient is independent of O potential in UO_2 -8 wt% Gd_2O_3 and less sensitive than UO_2 to the O potential in 4 wt% Gd_2O_3 . The oxygen/metal (O/M) stoichiometry in the $(U,Gd)O_2$ also affects the diffusion coefficient. It is independent of the O/M ratio in the hypostoichiometric region, but increases sharply with increasing O/M ratio in the hyperstoichometric region (ref 32). Heat capacity measurements have been performed on unirradiated and irradiated $(U,Gd)O_2$ fuel. Measurements of the heat capacities of undoped UO_2 pellets agree well, but measurements of the gadolinia doped material show considerable scatter. The heat capacity of unirradiated 6 wt% Gd_2O_3 doped UO_2 containing fission products that simulate a burnup of 30 GWd/t is the same as that of UO_2 up to about 800 K. Above this temperature the heat capacity of the Gd_2O_3 containing material is somewhat lower than that of UO_2 (ref 33). The behavior of (U,Gd)O₂ during fuel irradiation in boiling water reactors has been successfully modeled and incorporated into the ABB Atom fuel performance code STAV-6 (ref 34). The model considers burnable absorber rods with 6 and 9 wt% Gd and accounts for both nuclear burnup and the thermal-mechanical properties of the Gd bearing fuel. The fission gas release behavior uses an empirical model that assumes that the release rate is lowered by an increase in oxygen vacancies caused by doping with the trivalent Gd⁺³. Out-of-pile results seem to show that the diffusion coefficients decrease with increasing gadolinia content; which contrasts with the in-pile results presented above. In conclusion, gadolinia-doped UO_2 neutron absorber material is a proven concept to extend the lifetime and to shape the power distribution in commercial reactors. Experimental data concerning the effects of adding the gadolinia on the fuel performance have been measured and are sufficient to use in performance modeling and prediction codes for normal operating conditions. In fact, in the U.S., the American Society for Testing and Materials (ASTM) has issued a standard specification for finished sintered gadolinium oxide-uranium dioxide pellets for use in light-water reactors (ref 35). The use of Gd_2O_3 enriched to about 32% in ^{157}Gd , the amount achieved by the 2 T PSP device, will decrease the required concentration of Gd_2O_3 in the fuel by about a factor of two. This will reduce the effects of the Gd in the fuel even further. It is clear that more research has been conducted on gadolinium-containing fuel than could be conducted in this investigation. As a result, the study turned to the rather new idea of incorporating metallic burnable poison elements into the fuel cladding. # INVESTIGATION OF ZIRCONIUM AND ITS ALLOYS DOPED WITH RARE EARTHS There are two primary concerns with doping an alloy with an element of different properties and structure. The first is that impurity elements frequently have low solubility in the solvent metal and tend to precipitate or segregate at grain boundaries. In the first case, a second phase is formed which can sometimes strengthen the host material, especially with respect to high temperature creep deformation. However, perhaps more commonly, it can embrittle the host material, enhancing intergranular fracture. In the second case, the foreign element might diffuse to a lower energy site while remaining in solid solution. Such segregation can still embrittle a material since it coats grain boundaries where it forms a weaker metallic bond with the host element than the atoms of the host form with themselves. The second concern is degradation of corrosion resistance of the host alloy. This is an even more subtle effect since it depends on many factors such as diffusion of protective oxide-forming elements to the surface or the formation of a second phase which depletes the surface region of the protective oxide-forming element. In other cases, a dopant can change the thermodynamic stability of a gettering element which perhaps protects the host alloy from hydrogen or other gas embrittlement. The area of corrosion is left for a follow-on project. Embrittlement was first approached by a scoping experiment using pure zirconium. Pure Zr was doped with levels of Gd, Dy, and Er found to be relevant to their use as a burnable poison, in particular, concentrations of the separated isotopes which result in an initial addition of negative reactivity of approximately 0.1. The concentrations selected were: 0.5% Gd, 0.5% Sm, 2% Dy, and 2% Er. It was attempted to prepare all of these alloys and conduct bend tests to scope ductility behavior. An immediate difficulty was encountered with samarium as can be seen in Table 58. Table 58 Melting and boiling points of metals used in the study of rare earth-doped zirconium | Element | Melting Point (9C) | Boiling Point (9C) | |---------|--------------------|--------------------| | Zr | 1852 | 4409 | | Gd | 1314 | 3264 | | Sm | 1072 | 1778 | | Dy | 1411 | 2561 | | Er | 1529 | 2862 | The boiling point of samarium is lower than the melting point of zirconium. The alloys were melted with an inert gas arc melter and cast into a copper mold. An attempt to directly melt the Sm alloy would result in the metal being vapor deposited on the chamber walls. Instead, it was considered that zircaloys contain approximately 1.5% tin. Since tin boils at 2602 9C, it could be used to form an alloy with samarium, then the Sm-Sn alloy could be melted with Zr to form the desired alloy with the expectedly innocuous addition of tin. Such an alloy was melted, but it was found that the high vapor pressure of the Sm caused it to be removed from the final alloy nonetheless. Because of its difficulty in alloying and its high reactivity in air, making handling difficult, samarium was excluded from further investigation. The remaining alloys were melted, and a strip approximately 0.76 mm in thickness was cut from the ingot and bent around a 6.4 mm mandrel 1809. In all cases, the alloys were bent without cracking. In one case, there was a pre-existing crack which did not propagate further during the bending. The alloys are pictured in Figure 53. A more realistic and quantitative series of tests was run by melting alloys of Zircaloy-4 doped with Gd, Dy, and Er. This series of alloys was arc melted in an inert atmosphere then rolled to a thickness of approximately 1 mm in five steps with intermediate anneals. For the first three stages, the alloys were rolled to 35% reduction of area then annealed in a vacuum of approximately 10⁻⁴ Pa at 8159C. In last stage, the annealing temperature was increased to 8509C and the rolling taken to 50% reduction of area. Following the final rolling, the material was annealed again at 8509C for 30 minutes. This processing was done with only the anticipated edge cracking. This operation, therefore, demonstrated adequate ductility in the rare earth-doped Zircaloy-4. Optical metallography was done to detect any large changes in microstructure or precipitate morphology upon addition of the rare earth dopants. Although expected precipitates were observed on grain boundaries and on what appeared to be former grain boundaries, no new precipitates were observable. The 30 minute anneals appear to have resulted in little grain growth, although some grain boundary migration is anticipated. The structures of the four alloys appear in Figures 54-57. **Figure 53** Alloys of zirconium and rare earths in concentrations typical of burnable poison alloys showing high ductility in a bend test around a 6.3 mm mandrel. The Sm alloy was later found to contain only trace amounts of Sm. Figure 54 Zircaloy-4 following rolling **Figure 55** Zircaloy-4 doped with 0.5% Gd Figure 56 Zircaloy-4 doped with 2% Dy **Figure 57** Zircaloy-4 doped with 2% Er #### CONCLUSIONS The isotopes ¹⁵⁷Gd, ¹⁴⁹Sm, ¹⁶⁷Er, ¹⁶⁴Dy, and ¹⁷⁷Hf were identified as potential candidates based on nuclear performance. All of them result in a significant increment in performance in terms of reduced residual negative reactivity. In all cases of separated isotopes, less of the burnable poison will have to be used, resulting in a higher allowable fuel loading in cases where core volume is limited. As can be concluded from the time dependence of burnout, each of these isotopes has a potential for use in leveling the power distribution in an extended life core. The configuration as well as the particular isotope can be used to adjust the time dependence of the burnout. In the practical demonstration of isotope separation by the plasma separation process, the enrichments were below expected values for gadolinium and erbium, but at the calculated value
for dysprosium. The remaining undesirable isotopes caused the savings in fuel life to be favorable in the case of dysprosium, of small advantage for gadolinium, and erbium. The production rate of the separated isotopes was also less favorable resulting in a cost of \$600 to \$1600 per gram. This could be far more favorable if a future PSP plant used a higher field magnet. A possibility that should not be ignored. # In summary: - 1. ¹⁵⁷Gd, ¹⁴⁹Sm, ¹⁶⁷Er, ¹⁶⁴Dy, and ¹⁷⁷Hf have been identified as candidates for advanced burnable poisons. - 2. ¹⁶⁴Dy was demonstrated to be the most easily separated by the PSP and at the attained 63% enrichment is calculated to result in a savings of 37 days at the end of a 4 year fuel cycle in a PWR. - 3. An understanding of burnable poison behavior in various configurations in a PWR has been acquired and can be applied to the design of an advanced reactor with an extended fuel cycle. - 4. The method of incorporation of metallic burnable poisons into the fuel cladding has been suggested. Preliminary experiments and calculations have shown this to be a viable alternative to blending rare earth oxides with fuel. - 5. The cost of producing separated isotopes is on the order of \$600 to \$1600 per gram using the present PSP facility. A device with a 6 Tesla magnet is predicted to reduce the price on the order of \$60 to \$160 per gram. This, along with improved techniques of operation, could make the process cost effective in the future. ### **DIRECTIONS FOR FUTURE RESEARCH** This project was intended to be a scoping study to test the feasibility of using isotopically enriched burnable poisons. Several opportunities have been revealed for further development. 1. The behavior of burnable poisons has been investigated using a state-of-the-art system of computer codes. These codes can now be used to aid in the design of an advance reactor with an extended-life fuel cycle. The behavior of the partially-enriched isotopes produced by PSP should now be calculated using these codes. - 2. The method of incorporating the burnable poison into the fuel cladding is an innovative idea. Further work must be done on the effect of the rare earths on corrosion properties, and further development should be done to test the commercial feasibility and cost effectiveness of this process. - 3. The PSP is still in its infancy as an isotope separation method. Further fine tuning might increase both the enrichment and the production rates. There is probably much to be gained using the present system even without increasing the field strength of the magnet. - 4. Other methods of isotope separation might be explored. For example, gas centrifuge and laser isotope separation. Different methods of separation might be used for different isotopes. #### REFERENCES - 1. P. G. Boczar, "CANDU Fuel-Cycle Vision," presented at IAEA Technical Committee Meeting on "Fuel Cycle Options for LWRs and HWRs, Victoria, B.C., April 28–May 1, 1998. - 2. P. Blanpain, D. Haas, and F. Motte, "High Rated and High Burnup Gadolinia Fuel Irradiated in the BR3 17 × 17 PWR," *Proc. Symposium on Improvements in Water Reactor Fuel Technology and Utilization*, Vienna, IAEA, 1987, p. 305. - 3. A. Radkowsky, *Naval Reactors Physics Handbook*, Vol.1, U.S. Atomic Energy Commission, Washington, D.C., 1964. - 4. IAEA, *Design and Performance of WWER Fuel*, Technical Reports Series No.379, Vienna, International Atomic Energy Agency, 1996, p. 44. - 5. F. J. Rahn, A. G. Adamantiades, J. E. Kenton, and C. Braun, *A Guide to Nuclear Power Technology: A Resource for Decision Making*, New York, John Wiley & Sons, 1984, 436–38. - 6. R. G. Cochran and N. Tsoulfanidis, *The Nuclear Fuel Cycle: Analysis and Management* American Nuclear Society, La Grange Park, Ill., 1990, p. 84. - 7. C. Collette, G.Francillon, F. Abadia, and A. Darraud, "Operating Experience of the Fragema Gadolinia Bearing Fuel Assembly," *Proc. Symposium on Improvements in Water Reactor Fuel Technology and Utilization*, Vienna, IAEA, 1987, p. 255. - 8. L. Goldstein and A. A. Strasser, "A Comparison of Gadolinia and Boron for Burnable Poison Applications in Pressurized Water Reactors," *Nucl. Tech.* **60** 352 (1983). - 9. C. M. Hove and S. W. Spetz, "Improvement of Gadolinia Fuel Cycle Economics by Isotopic Enrichment of ¹⁵⁷Gd," *Trans. Am. Nucl. Soc.* **50**, 102 (1985). - 10. Private communication, W. S. Aaron, Oak Ridge National Laboratory, November, 1998. - 11. J.-P.A. Renier and M. L. Grossbeck, *Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors*, ORNL-TM-2001/238, Oak Ridge National Laboratory, 2001. - 12. A. G. Croff, ORIGEN2.1—A Revised and updated Version of the Oak Ridge Isotope Generation and Depletion Code, ORNL-5621, July 1980. - 13. E. A. Villarino, R. J. Stammler, A. A. Ferri, and J. J. Casal, *Nucl Sci. Eng.* 112, 16 (1992). - 14. *HELIOS—General Two-Dimensional Neutron and Gamma Transport with Depletion Code*, Studvik-Scandpower, Inc. - 15. R. E. MacFarlane and D. W. Muir, *The NJOY Nuclear Data Processing System*, LA-12740-M, 1994. - 16. J. F. Briesmeister, ed., MCNP—A General Monte Carlo N-Particle Transport Code 4C, LA-13709-M, April 2000. - 17. J. P. Renier and C. W. Alexander, An Advanced Version of the Oak Ridge Isotope Generation and Depletion Code with Fission Product Yield for 34 Actinides, ORNL-TM, 2001 - 18. A. Helmersson, et. al., Trans. Am. Nucl. Soc., <u>43</u>, 162-163 (1982). - 19. M. Yokote, et. al, Trans. Am. Nucl. Soc., <u>57</u>, 33-34 (1988). - 20. F. B. Skogen, Trans. Am. Nucl. Soc., <u>57</u>, 36, (1988). - 21. R. J. Beals, J. Am. Ceram. Soc., 48, 272 (1965) - 22. T. Ohmichi, et. al., J. of Nuclear Materials, <u>102</u>, 40-46 (1981). - 23. J.-H. Baek, Han'guk Chaelyo Hakhoechi, <u>5</u>, 364-70 (1995). - 24. Kun Woo Song, et. al., J. of the Korean Nuclear Society, <u>30</u>, 128-139 (1998). - 25. L. W. Newman, et. al., DOE/ET/34212-43 report (1984). - 26. S. Yamanouchi, et. al., J. of Nuclear Science and Technology, 25, 528-533 (1988). - 27. T. Wada, Proc. Int. Conf. Of Nuclear Fuel Performance, London, 1973, British Nuclear Energy Soc., p 63. - 28. K. Une, J. of Nuclear Science and Technology, 23, 1020-1022 (1986). - 29. K. Minato et. al., J. of Nuclear Materials, <u>288</u>, 57-65 (2001). - 30. J. Nakamura, 24th NSRR Technical Review Meeting, 13-14 Nov. 2000, Tokyo, Japan - 31. M. Amaya, et. al., J. of Nuclear Materials, 300, 57-64 (2002). - 32. M. Hirai, J. of Nuclear Materials, 226, 238-251 (1995). - 33. M. Amaya, J. of Nuclear Materials, 294, 1-7 (2001). - 34. A. R.Massih, J. of Nuclear Materials, 188, 323-330 (1992). - 35. "Standard Specification for Sintered Gadolinium Oxide-Uranium Dioxide Pellets," ASTM C 922-00, American Society for Testing and Materials, West Conshohocken, PA #### INTERNAL DISTRIBUTION - 1. H. L. Dodds - 2. M. L. Grossbeck - 3. L. F. Miller - 4. L. W. Townsend - 5. B. R. Upadhyaya #### **EXTERNAL DISTRIBUTION** - 6. Denise Berry, U.S. Department of Energy, Oakland Operations Office, 1301 Clay Street, Oakland, CA 94612 - 7. Rebecca Richardson, U.S. Department of Energy, Oakland Operations 1301 Clay Street, Oakland CA 94612 - 8. Madeline A. Feltus, NE-20, U.S Department of Energy, Office of Nuclear Energy, Science & Technology, 19901 Germantown Road, Germantown, MD 20874 - 9. Charles Thompson, NE-20, U.S Department of Energy, Office of Nuclear Energy, Science & Technology, 19901 Germantown Road, Germantown, MD 20874 - 10. Prof. Michael J. Driscoll, Massachusetts Institute of Technology, Department of Nuclear Engineering, 138 Albany Street Bldg. NW 13-259, Cambridge, MA 02139 - 11. Michael Natelson, Bettis Atomic Power Laboratory, P.O. Box 79 West Mifflin, PA 15122 - 12. Claude Degueldre, Paul Sherrer Institute, CH-5232 Villigen PSI, Switzerland - 13. Alberto L. Casadei, European Fuel Group, Santiago Rusinol, 12, 28040 Madrid, Spain - 14. Dick Kovan, Nuclear News UK Editorial Office, 8 Park Close, Strood Green, Betchworth, Surrey RH3 7 JB, England - 15. S. D. Harkness, Bettis Atomic Power Laboratory, P.O. Box 79, West Mifflin, PA 15122 - 16. W. Ollinger, Bettis Atomic Power Laboratory, P.O. Box 79, West Mifflin, PA 15122 - 17. Gordon E. Michaels, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162 - 18. Bojan Petrovic, Westinghouse Electric Co., 1344 Beulah Road, Pittsburgh, PA 15235-5081 - 19. James E. Rushton, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6243