Optimizing Pinhole and Parallel Hole Collimation for Scintimammography With Compact Pixellated Detectors

PDF Version Also Available for Download.

Description

The relative resolution and sensitivity advantages of pinhole and parallel hole collimators for planar scintimammography with compact, pixellated gamma detectors were investigated using analytic models. Collimator design was studied as follows. A desired object resolution was specified for a pixellated detector with a given crystal size and intrinsic spatial resolution and for a given object-to- collimator distance. Using analytic formulas, pinhole and parallel hole collimator parameters were calculated that satisfy this object resolution with optimal geometric sensitivity. Analyses were performed for 15 cm x 20 cm field of view detectors with crystal elements 1.0, 2.0 and 3.0 mm on a ... continued below

Physical Description

143 Kilobytes pages

Creation Information

Smith, Mark F.; Majewski, Stan & Weisenberger, Andrew G. November 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The relative resolution and sensitivity advantages of pinhole and parallel hole collimators for planar scintimammography with compact, pixellated gamma detectors were investigated using analytic models. Collimator design was studied as follows. A desired object resolution was specified for a pixellated detector with a given crystal size and intrinsic spatial resolution and for a given object-to- collimator distance. Using analytic formulas, pinhole and parallel hole collimator parameters were calculated that satisfy this object resolution with optimal geometric sensitivity. Analyses were performed for 15 cm x 20 cm field of view detectors with crystal elements 1.0, 2.0 and 3.0 mm on a side and 140 keV incident photons. The sensitivity for a given object resolution was greater for pinhole collimation at smaller distances, as expected. The object distance at which the pinhole and parallel hole sensitivity curves cross each other is important. The crossover distances increased with larger crystal size for a constant object resolution and increased as the desired object resolution decreases for a constant crystal size. For example, for 4 mm object resolution and a pinhole collimator with focal length 13 cm, these distances were 5.5 cm, 6.5 cm and 8 cm for the 1 mm, 2 mm and 3 mm crystal detectors, respectively. The results suggest a strategy of parallel hole collimation for whole breast imaging and pinhole collimation for imaging focal uptake. This could be accomplished with a dual detector system with a different collimator type on each head or a single head system equipped with two collimators and a rapid switching mechanism.

Physical Description

143 Kilobytes pages

Source

  • Other Information: No journal information given for this preprint

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-PHY-02-65
  • Report No.: DOE/ER/40150-2404
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 805769
  • Archival Resource Key: ark:/67531/metadc739236

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Feb. 5, 2016, 8:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Smith, Mark F.; Majewski, Stan & Weisenberger, Andrew G. Optimizing Pinhole and Parallel Hole Collimation for Scintimammography With Compact Pixellated Detectors, article, November 1, 2002; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc739236/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.