Beam Halo formation and loss induced by image-charge effects in a small-aperture alternating-gradient focusing system

PDF Version Also Available for Download.

Description

Effects of image charges on beam halo formation and beam loss in small-aperture alternating-gradient focusing systems are studied analytically, computationally, and experimentally. Nonlinear image-charge fields result in chaotic particle motion and the ejection of particles from the beam core into a halo. Detailed chaotic particle motion and structure of the particle phase space is studied, and the beam loss rate is computed for a long transport channel. Image-charge effects are also studied for a short transport channel, and compared with the Neutralized Transport Experiment (NTX) at LBNL.

Physical Description

3 pages

Creation Information

Zhou, J.; Qian, B.L.; Chen, C.; Henestroza, E.; Eylon, S. & S., Yu May 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Effects of image charges on beam halo formation and beam loss in small-aperture alternating-gradient focusing systems are studied analytically, computationally, and experimentally. Nonlinear image-charge fields result in chaotic particle motion and the ejection of particles from the beam core into a halo. Detailed chaotic particle motion and structure of the particle phase space is studied, and the beam loss rate is computed for a long transport channel. Image-charge effects are also studied for a short transport channel, and compared with the Neutralized Transport Experiment (NTX) at LBNL.

Physical Description

3 pages

Notes

INIS; OSTI as DE00815519

Source

  • Particle Accelerator Conference PAC 03, Portland, OR (US), 05/12/2003--05/16/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--53082
  • Report No.: HIFAN 1249
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 815519
  • Archival Resource Key: ark:/67531/metadc739209

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 3:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zhou, J.; Qian, B.L.; Chen, C.; Henestroza, E.; Eylon, S. & S., Yu. Beam Halo formation and loss induced by image-charge effects in a small-aperture alternating-gradient focusing system, article, May 1, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc739209/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.