Alternate Electrolyte Composition for Electropolishing of Niobium Surfaces

PDF Version Also Available for Download.

Description

Electropolishing has shown promising results for the treatment of Nb cavities to be used in particle accelerators, particularly in the attainment of high surface electric fields. In support of the CEBAF Upgrade project and as part of a longer-term R and D program, we have investigated the properties of several electrolyte recipes. A particularly promising one consists of a mixture of lactic, sulfuric, and hydrofluoric acids. Initial tests reveal that smooth Nb surfaces can be achieved with no observable grain boundaries under optical microscope. We report on the results of the investigations of the parameters that control the polishing process ... continued below

Physical Description

694 Kilobytes pages

Creation Information

Delayen, Jean R.; Mammosser, John; Phillips, Larry & Wu, Andy T. September 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Electropolishing has shown promising results for the treatment of Nb cavities to be used in particle accelerators, particularly in the attainment of high surface electric fields. In support of the CEBAF Upgrade project and as part of a longer-term R and D program, we have investigated the properties of several electrolyte recipes. A particularly promising one consists of a mixture of lactic, sulfuric, and hydrofluoric acids. Initial tests reveal that smooth Nb surfaces can be achieved with no observable grain boundaries under optical microscope. We report on the results of the investigations of the parameters that control the polishing process using this particular acid mixture.

Physical Description

694 Kilobytes pages

Source

  • 2001 SRF Workshop, KEK, Tsukuba City (JP), 09/06/2001--09/11/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-ACT-01-24
  • Report No.: DOE/ER/40150-2023
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 792481
  • Archival Resource Key: ark:/67531/metadc739035

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 2001

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Feb. 5, 2016, 7:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Delayen, Jean R.; Mammosser, John; Phillips, Larry & Wu, Andy T. Alternate Electrolyte Composition for Electropolishing of Niobium Surfaces, article, September 1, 2001; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc739035/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.