Neutron Detection with a Cryogenic Spectrometer

PDF Version Also Available for Download.

Description

Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et ... continued below

Physical Description

5 pages

Creation Information

Bell, Z.W.; Lamberti, V.E.; Carpenter, D.A. & Cristy, S.S. June 23, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Oak Ridge Y-12 Plant
    Publisher Info: Oak Ridge Y-12 Plant, TN (United States)
    Place of Publication: Tennessee

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et al., report the measurement of the 60 keV emission from {sup 241}Am with 230 eV resolution using a superconducting tin absorber. Cunningham, et al., also using a superconducting tin absorber, have recently reported a four-fold improvement over Chow. With such results being reported from the x- and gamma-ray world it is natural to examine the possibilities for cryogenic neutron spectroscopy. Such a detector would operate by detecting the heat pulses caused by neutron capture and scattering. To date, {sup 6}LiF has been the absorber of choice because relatively large crystals can be grown, and it is an insulating material with low heat capacity. Silver reports the fabrication of a {sup 6}LiF spectrometer operating at 328 mK and achieving a resolution of 39 keV. De Marcillac reports the fabrication of a spectrometer operating at 80 mK and achieving 16 keV resolution when bombarded with 5 MeV alpha particles. In this paper, we report preliminary results with a TiB{sub 2} absorber exposed to thermal neutrons. In contrast to lithium, whose chemistry selects for LiF as the absorber, boron offers a rich chemistry from which to select materials with high boron content. We will discuss the considerations governing the choice of absorber material as well as the basic considerations needed to understand a cryogenic spectrometer. The capture and scattering reactions in boron and lithium were modeled with MCNP. The modeling results and methods of analysis applicable to lithium- and boron-based spectrometers will be given.

Physical Description

5 pages

Source

  • Other Information: PBD: 23 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: Y/DX-2549
  • Grant Number: AC05-00OR-22800
  • DOI: 10.2172/812529 | External Link
  • Office of Scientific & Technical Information Report Number: 812529
  • Archival Resource Key: ark:/67531/metadc738884

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 23, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • May 6, 2016, 1:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bell, Z.W.; Lamberti, V.E.; Carpenter, D.A. & Cristy, S.S. Neutron Detection with a Cryogenic Spectrometer, report, June 23, 2003; Tennessee. (digital.library.unt.edu/ark:/67531/metadc738884/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.