Options for the handling and storage of nuclear vessel spent fuel.

PDF Version Also Available for Download.

Description

There are many options for the handling and storage of spent nuclear fuel from naval vessels. This paper summarizes the options that are available and explores the issues that are involved. In many cases choices have been made, not on the basis of which is the best engineering solution or the most cost-effective, but based on the political realities involved. For example, currently it seems that the most prevalent solution for spent fuel interim storage is in dual-purpose (transport-storage) casks. These casks are robust and, politically, they offer the visible evidence that the fuel is ''road-ready'' to be moved from ... continued below

Physical Description

10 pages

Creation Information

Earle, O.K. April 18, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

There are many options for the handling and storage of spent nuclear fuel from naval vessels. This paper summarizes the options that are available and explores the issues that are involved. In many cases choices have been made, not on the basis of which is the best engineering solution or the most cost-effective, but based on the political realities involved. For example, currently it seems that the most prevalent solution for spent fuel interim storage is in dual-purpose (transport-storage) casks. These casks are robust and, politically, they offer the visible evidence that the fuel is ''road-ready'' to be moved from the local area where the fuel is being stored in the interim. However, dual-purpose casks are the most expensive of the storage mediums. Drywell storage (storage in below grade or bermed pipes), on the other hand, the least expensive and most flexible storage option, suffers from an image of permanence (not politically acceptable) and from being improperly implemented in the past. Though these issues are easily resolved from a technical perspective, the option is often not seriously considered because of this past history. It wasn't too many years ago that spent fuel pools were the storage medium of choice. The pools were never intended for long term storage. As the ultimate disposal path for spent nuclear fuel (processing, repository) became bogged down, however, fuel remained stored in the pools for much longer than intended. Strategies (re-racking, consolidation) were employed to lengthen the storage life of the pools. In some cases, inadequate attention was paid to the wet storage and significant fuel degradation occurred. Pools were then unloaded into dual-purpose or storage only casks as required. It seems that decisions on spent fuel historically have been short sighted. It is time that the spent fuel situation needs to be evaluated for the long term from a systems perspective. Criteria for the evaluation must consider technical acceptability, safety, flexibility (especially in storage times, fuel condition, and fuel types), active monitoring, costs, security, and, of course, political realities. It is the sense of this author that the political issues may be resolved if a reasoned complete approach is demonstrated.

Physical Description

10 pages

Source

  • NATO Workshop, Moscow (RU), 04/22/2002--04/24/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/NT/CP-107458
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 793904
  • Archival Resource Key: ark:/67531/metadc738861

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 18, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 23, 2016, 10:58 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Earle, O.K. Options for the handling and storage of nuclear vessel spent fuel., article, April 18, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc738861/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.