Salt Processing Project: Off-Line Analysis Methods to Meet Process Cycle Time

PDF Version Also Available for Download.

Description

The Salt Waste Processing Facility (SWPF) requires analyses to verify that strontium and total alpha content of treated wastes meet Saltstone Processing Facility (SPF) Waste Acceptance Criteria (WAC). The SWPF will require that results are available in time to meet process cycle requirements. SWPF personnel sought on-line and at-line monitors to follow trends in strontium-90 and alpha concentrations in order to track process performance. While an on-line method is under development at the Pacific Northwest National Laboratory (PNNL), it has yet to be demonstrated. This report describes off-line methods that will not be subject to some of the concerns about ... continued below

Physical Description

vp.

Creation Information

Sigg, R.A. October 18, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Salt Waste Processing Facility (SWPF) requires analyses to verify that strontium and total alpha content of treated wastes meet Saltstone Processing Facility (SPF) Waste Acceptance Criteria (WAC). The SWPF will require that results are available in time to meet process cycle requirements. SWPF personnel sought on-line and at-line monitors to follow trends in strontium-90 and alpha concentrations in order to track process performance. While an on-line method is under development at the Pacific Northwest National Laboratory (PNNL), it has yet to be demonstrated. This report describes off-line methods that will not be subject to some of the concerns about and limitations of on-line/at-line methods. Presently, less-rapid off-line technologies are the baseline methods. Also, this report compares advantages and disadvantages of a variety of approaches including rapid radiochemical separations, automated analytical-scale processing systems, and radiation measurement tools.

Physical Description

vp.

Source

  • Other Information: PBD: 18 Oct 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2002-00310
  • Grant Number: AC09-96SR18500
  • DOI: 10.2172/803394 | External Link
  • Office of Scientific & Technical Information Report Number: 803394
  • Archival Resource Key: ark:/67531/metadc738830

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 18, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 5, 2016, 2:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sigg, R.A. Salt Processing Project: Off-Line Analysis Methods to Meet Process Cycle Time, report, October 18, 2002; South Carolina. (digital.library.unt.edu/ark:/67531/metadc738830/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.