
DOE Next Generation Internet
Applications, Network Technology, and Network Testbed Partnerships Program

Technologies and Tools
for High-Performance Distributed Computing

Final Report

Nicholas T. Karonis

Department of Computer Science
Northern Illinois University

DeKalb, IL 60115

C .

1 Introduction

In this project we studied the practical use of the MPI message-passing interface in advanced
distributed computing environments. We built on the existing software infrastructure provided by
the Globus ToolkitTM, the MPICH portable implementation of MPI, and the MPICH-G integration
of MPICH with Globus.

As a result of this project we have replaced MPICH-G with its successor MPICH-G2, which is
also an integration of MPICH with Globus. MPICH-G2 delivers significant improvements in mes-
sage passing performance when compared to its predecessor MPICH-G and was based on superior
software design principles resulting in a software base that was much easier to make the functional
extensions and improvements we did.

Using Globus services we replaced the default implementation of MPI’s collective operations in
MPICH-G2 with more efficient multilevel topology-aware collective operations which, in turn, led
to the development of a new timing methodology for broadcasts [8]. MPICH-G2 was extended to
inlcude client/server functionality from the MPI-2 standard [23] to facilitate remote visualization
applications and, through the use of MPI idioms, MPICH-G2 provided application-level control
of quality-of-service parameters as well as application-level discovery of underlying Grid-topology
information. Finally, MPICH-G2 was successfully used in a number of applications including an
award-winning record-setting computation in numerical relativity.

In the sections that follow we describe in detail the accomplishments of this project, we present
experimental results quantifying the performance improvements, and conclude with a discussion of
our applications experiences.

4

2 Details of Accomplishments

In this section we will discuss, in detail, each of the accomplishments that resulted from this
project. We start with a general description of the Globus and MPICH-G2 startup mechanisms.
While the work described there existed prior to this project, and therefore, is not part of our the
work completed in this project, a brief discussion of these issues provides an important context in
which we present our achievements. We,continue with a description of our work in heterogeneous
communication and application-level #management of heterogeneity. We conclude this section with
a description of our multilevel topology-aware collective operations.

12.1

As illustrated in Figure 1 and discussed here, MPICH-G2 uses a range of Globus Toolkit services to
address the various complex issues that arise in heterogeneous, multisite Grid environments, such
as cross-site authentication, the need to deal with multiple schedulers with different characteristics,
coordinated process creation, heterogeneous communication structures, executable staging, and
collation of standard output. In fact, MPICH-G2 serves as an exemplary case study of how Globus
Toolkit mechanisms can be used to create a Grid-enabled programming tool, as we now explain.

Prior to startup of an MPICH-G2 application, the user employs the Grid Security Infnrstructure
(GSI) [12] to obtain a (public key) proxy credential that is used to authenticate the user to each
remote sites. This step provides a single sign on capability.

The user may also use the Monitoring and Discovery Service (MDS) [9] to select computers on
the basis of, for example, configuration, availability, and network connectivity.

Once authenticated, the user uses the standard mpirun command to request thd creation of an
MPI computation. The MPICH-G2 implementation of this command uses the Resource Spec$-

Hiding Heterogeneity during Startup and Management

1

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their
employees, make any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

. .

% g rid-p roxy-i n it
% mpirun -np 256 myprog

Generates
resource specification

Submits multiple jobs

t
I LCoordinates startup DUROC

Authendcates 1

I I I I I I
Communicates via vendor-MPI and TCP/IP (globus-io)

Figure 1: Schematic of the MPICH-G2 startup, showing the various Globus Toolkit components
used to hide and manage heterogeneity. "Fork," "LSF," and "LoadLeveler" are different local
schedulers.

2

Site A Site B
\

Figure An example of an MPICH-G2 application running on a computat,anal grid invo,..ag 4
processes on an IBM SP at Site A and 8 processes distributed evenly across two Linux clusters at
Site B

cation Language (RSL) [SI to describe the job. In brief, users write RSL scripts, which identify
resources (e.g., computers) and specify requirements (e.g., number of CPUs, memory, execution
time, etc.) and parameters (e.g., location of executables, command line arguments, environment
variables, etc.) for each. Based on the information found in an RSL script, MPICH-G2 calls a
w-allucation libmry distributed with the Globus Toolkit, the Dynamically-Updated Request On-
line Coallocator (DUROC) [7], to schedule and start the application across the various computers
specified by the user.

The DUROC library itself uses the Grid Resource AZZocation and Management (GRAM) [SI API
and protocol to start and subsequently manage a set of subcomputations, one for each computer.
For each subcomputation, DUROC generates a GRAM request to a remote GRAM server, which
authenticates the user, performs local authorization, and then interacts with the local scheduler to
initiate the computation. DUROC and associated MPICH-G2 libraries tie the various subcompu-
tations together into a single MPI computation.

GRAM will, if directed, use Global Access to Secondary Storage (GASS) [3] to stage exe-
cutable(s) from remote locations (indicated by URLs). GASS is also used, once an application
has started, to direct standard output and error (stdout and stderr) streams to the user's termi-
nal, and to provide access to files regardless of location, thus masking essentially all aspects of
geographical distribution except those associated with performance.

Once the application has started, MPICH-G2 selects the most efficient communication method
possible between any two processes, using vendor-supplied MPI (uMPI) if available, or Globus
communication (Globus IO) with Globus Data Conversion (Globus DC) for TCP, otherwise.

DUROC and GRAM also interact to monitor and manage the execution of the application.
Each GRAM server monitors the life cycle of its subcomputation as it passes from pending to
running and then to terminating, communicating each state transition back to DUROC. Each
subcomputation is held at a DUROGcontrolled barrier and is released from that barrier only after
all subcomputations have started executing. Also, a request to terminate the computation ("control
C") may be initiated by the user at which time DUROC and the GRAM servers, communicating
via GRAM process control messages, terminate all processes.

After the processes have started, MPICH-G2 uses information specified in the RSL script to
create multileoel clustering of the processes based on the underlying network topology. Figure 2
depicts an MPI application involving 12 processes distributed across three machines located at
two sites. We depict 4 processes (PI-COMM-WORLD ranks 0-3) on the IBM SP at Site A and 4
processes on each of two Linux clusters (PI,COMM,WORLD ranks 4 7 and 8-11, respectively) at
Site B. Each process in MPI-COMM-WORLD is assigned a topology depth. Processes that communicate

3

.
I Rank (0 1 2 3 4 5 6 7 8 9 10 111

Figure 3: An example of depths and wlors used by MPICH-G2 to represent network topology in a
computational grid.

using only TCP are assigned topology depths of 3 (to distinguish between wide area, l o d area,
and intramachine TCP messaging), and processes that can also communicate using a uMPI have
a topology depth of 4. Using these topology depths MPICH-G2 groups processes at a particular
level through the assignment of colors. Two processes are assigned the same color at a particular
level if they can communicate with each other at the network level.

Figure 3 depicts the topology depths and wlors for the processes depicted in Figure 2. Those
processes capable of communicating over OMPI, (i.e., those executing on the IBM SP), have a
depth of 4, while the other processes, (i.e., those executing on a Linux cluster), have a depth of
3. Since all processes are on the same wide-area network, they all have the same color (0) at the
-wide-area level. Similarly, at the local-area level, all the processes at Site A are assigned one color
(0), while all the processes at Site B are assigned another (1). This structure continues through
the system-area level, where processes are assigned the same color if and only if they are on the
same machine. Finally, processes that can communicate over a uMPI are assigned the same color
at the uMPI level if and only if they can communicate directly with each other over the uMPI.

Topology depths and colors are used in the multilevel topology-aware collective operations and
topology-discovery mechanism described in Sections 2.2 and 2.3, respectively.

2.2 Heterogeneous Communications

MPICH-G2 achieves major performance improvements relative to the earlier MPICH-G [lo] by re-
placing Nexus [13], the multimethod, singlesided communication library used for all communication
in MPICH-G, with specialized MPICH-specific communication code. While Nexus has attractive
features (e.g., multiprotocol support with highly tuned TCP support and automatic data conver-
sion), other attributes have proved less attractive from a performance perspective. MPICH-G2 now
handles all communication directly by reimplementing the good things about Nexus and improving
the others. The result, as we show in Section 3, is that we achieve performance virtually identical
to vendor MPI and MPICH configured with the default TCP (ch,p4) device. We provide here a
detailed description of the improvements and additions to MPICH-G used to achieve this impressive
performance.

Increased bandwidth. In MPICH-G, each communication involved the copying of data to and
from Nexus buffers in sending and receiving processes. MPICH-G2 eliminates these two extra
copies in the case of intramachine messages where a vendor MPI exists. In this situation, sends
and receives now flow directly from and to application buffers, respectively. In addition, for TCP
messaging involving basic MPI datatypes (e.g., MPIJNT, MPI-FLOAT) the sending process also
transmits directly from the application buffer.

4

c

,

Reduced latency for intramachine vendor MPI messaging. Multiprotocol support is achieved
in Nexus by polling each protocol (TCP, vendor MPI, etc.) for incoming messages in a roundrobin
fashion [ll]. However, this strategy is inefficient in many situations: it is relatively expensive to poll
a TCP socket and in practice it is often the case that many processes in a MPICH-G2 computation
use only vendor MPI (for communicating with other processes on the same machine).

While this inefficiency can be reduced by adaptive polling [ll] or by introducing distinct proxy
processes [14, 201, MPICH-G2 takes a more direct approach, exploiting the knowledge about mes-
sage source that is provided by TCP receive commands to eliminate TCP polling altogether in
many situations. MPICH-G2 polls TCP only when the application is expecting data from a source
that dictates, or might dictate (e.g., NPI-Recv specifies source=MPI,ANY,SOURCE), TCP messaging.

This avoidance of unnecessary polling when coupled with the need to guarantee progress on
both the vendor MPI and TCP protocols leads to implementation decisions that can affect an
application’s point-to-point communication performance. Specifically, for processes executing on
machines where a vendor MPI is available, the context in which the application calls MPI-Recv
affects the manner in which MPICH-G2 implements that function, as follows:

0 Speciiied. The source rank specified in the call to MPI-Recv explicitly identifies a process on
the same machine (in the same vendor MPI job). Furthermore, no asynchronous requests are
outstanding (e.g., incomplete NPI-Irecv and/or MPI-Isend). If these two conditions are met,
MPICH-G2 implements NPI-Recv by directly calling the MPI-Recv of the underlying vendor
MPI. This is the most favorable circumstances under which an MPI-Recv can be performed.

0 Specified-pending. This category is similar to the specified category in that the NPI-Recv
specifies an explicit source rank on the same machine. This time, however, one or more
unsatisfied receive requests are present, and each such request specifies a source on the same
machine. This situation forces MPICH-G2 to continuously poll (WI-Iprobe) the vendor
MPI for incoming messages. This scenario results in less efficient MPICH-G2 performance
since the induced polling loop increases latency.

0 Multimethod. Here the source rank for the WI-Recv is MPI-ANY-SOURCE or MPI-Recv is
called in the presence of unsatisfied asynchronous requests that require, or might require,
TCP messaging. In this situation, MPICH-G2 must poll both TCP and the vendor MPI
continuously. This is the least efficient MPICH-G2 scenario, since the relatively large cost of
TCP polling results in even greater latency.

In Section 3, we present a quantitative analysis of the performance differences that result from
these different structures.

More efficient use of sockets. The Nexus single-sided communication paradigm results in
MPICH-G2 opening two pairs of sockets between communicating processes and using each pair as a
simplex channel (i.e., data always flowing in one direction over each socket pair). MPICH-G2 opens
a single pair of sockets between two processes and sends data in both directions. This approach
reduces the.use of system resources; moreover, by using sockets in the bidirectional manner in which
they were intended, it also improves TCP efficiency.

Multilevel topology-aware collective operations. Early implementations of MPI’s collective
operations sought to construct communication structures that were optimal under the assumption
that all processes were equidistant from one another [2, 51. Since this assumption is unlikely
to be valid in Grid environments, however, it is desirable that a Grid-enabled MPI incorporate

5

#include Qpi.h>

i n t main(int argc, char *argvD)
c

int me, f lag;
int *depths;
in t **colors;
Hp1,COmm LANcomm, VCOmmA, VcommB;

"1,Init (&argc, &argv) ;
"I,Comm-ranh(EfPI,CoWt,WO, h e) ;
WI-Attr-get (HPI,COpM,WORLD, PIPICHX,TOPOLOGY,DEPT€IS, &depths, &flag) ;
WI-Attr-get (PIPI~COPPI~UORLD , PIPICHX,TOPOLOGY,COLoRS , &colors, &flag) ;

~I-comm-split (HPI,COWt,WORLD, colors bel 111 , 0 , &LANcomm) ;
~I,Comm,split(HPI,COWt~~RLD, (depthshe1 = 4 ? co lorshe l C31 : -11,

"I-comm-split (HPI,COFD¶,WORLD ,
0, &VcommA);

0, &VcommB);
(depthshe] = 4 ? colorsbel C31 : PIPI-UNDEFINED) ,

"1-Finalize (1 ;
3

Figure 4: An example MPICH-G2 application that uses topology depths and colors to create com-
municators that group processes into various topology-aware clusters.

collective operation implementations that take into account the actual topology. MPICH-G2 does
this, and we have demonstrated substantial performance improvements for our multilevel topology-
uwafe approach [18] relative both to topology-unaware binomial trees and earlier topology-aware
approaches that distinguish only between "intracluster" and "intercluster" communications [17,19].

As we explain in the next subsection, MPICH-G2's topology-aware collective operations are
constructed in terms of topology discovery mechanisms that can also be used by topology-aware
applications.

2.3 Application-Level Management of Heterogeneity

We have experimented within MPICH-GP with a variety of mechanisms for application-level man-
agement of heterogeneity in the underlying platform. We mention two here.

Topology discovery. Once an MPI program starts, all processes can be viewed as equivalent, dis-
tinguished only by their rank. This level of abstraction is desirable from a programming viewpoint
but makes it difficult to write programs that exploit aspects of the underlying physical topology,

. for example, to minimize expensive intercluster communications.
MPICH-G2 addresses this issue within the standud MPlfmmework by using the MPI commu-

nicator construct to deliver topology information to an application. It associates attributes with
each MPI communicator to communicate this topology information, which is expressed within each
process in terms of topology depths and colors, as described in Section 2.1.

6

SDSC
r

IBM SP

NCSA

Figure 5: An example of a Grid computation involving 10 processes on one IBM SP at SDSC and
another 10 processes distributed evenly across two SGI Origin2000s (02K, and 02Kb) at NCSA.

MPICH-G2 applications can tben query communicators to retrieve attribute values and struc-
ture themselves appropriately. For example, it is straightforward to create new communica-
tors that reflect the underlying network topology. Figure 4 depicts an MPICH-G2 application
that first queries the MPICH-G2-defined communicator attributes W I C H X , T O P O L O G Y , D E S and
NPICHX,TOPOLOGY,COLORS to discover topology depths and colors, respectively, and then uses those
values to create three communicators: LANcomm, which groups processes based on site boundaries,
VcommA, which groups processes based on their ability to communicate with each other over uMPI,
while placing all processes that cannot communicate over uMPI into a separate communicator,
and VcommB, which groups the processes in much the same way as VcommA, but this time does
not place processes that cannot communicate over uMPI in a communicator (i.e., VcommB is set to
MPI,COMM,NuI,L for those processes).

Quality-of-service management. We have experimented with similar techniques for purposes
of quality of service management [25]. When running over a shared network, an MPI application
may wish to negotiate with an external resource management system to obtain dedicated access
to (part of) the network. We show that communicator attributes can be used to set and initiate
quality-of-service parameters between selected processes.

2.4 Multilevel Topology-Aware Collective Operations

Figure 5 depicts an MPI application involving 20 processes distributed over three machines located
at the San Diego Supercomputer Center (SDSC) and the National Center for Supercomputing
Applications (NCSA). We depict 10 processes on the IBM SP at SDSC and 5 processes on each of
two Origin2000s, 02K, and 02Ka, at NCSA. The slowest communication is between sites, which
uses TCP over a widearea network, with faster communication between the 02Ks at NCSA, which
uses TCP over their local-area network, and the fastest communication, of course, within each
machine.

In the remainder of this section we describe a broadcast using first the topology-unaware imple
mentation currently distributed with MPICH, then a 2-level topology-aware approach, and finally
our multilevel topology-aware broadcast.

7

.

*
&

BO Bl B2 B3

Figure 6: The binomial trees BO through B3.

remaining

SDSC Bcast
m P - + 02Kb

remaining

remaining
SDSC procs

SDSC Bcast
mot process

remaining
02K8prOcJ mKbprocs NCSAP-

(a) clustering p.octsses (b) clustering processes
on machine boundaries on site boundaries

Figure 7: An example of two 2-level topology-aware broadcast trees rooted at SDSC spanning 2
Origin2000s (02K, and 02Kb) at NCSA and an IBM SP at SDSC: (a) clustering processes on
machine boundaries and (b) clustering on site boundaries.

2.4.1 A Topology- Unaware Broadcast

Topology-unaware implementations of broadcast, including the one distributed with MPICH, often
make the simplifying assumption that the communication times between all process pairs in the
computation are equal. Under this assumption the broadcast is often implemented by using a
binomial tree.

A binomial tree Bk is a n ordered tree (i.e., children of each node are ordered) of order k 2 0
defined recursively. As shown in Figure 6, the binomial tree BO consists of a single node. The
binomial tree Bk (k > 0) has a root with k children where the it* child (0 < i 5 k) is the root of
the binomial tree l3k-i. Figure 6 depicts the binomial trees BO through B3.

When communication times between all process pairs in the computation are equal and have
relatively low latency, Bar-Noy and Kipnis show that implementing a broadcast with a binomial
tree has the desirable property that all processes will complete the broadcast at approximately the
same time thus, achieving proper load balancing [2].

2.4.2 A 2-Level Topology-Aware Broadcast

Existing 2-level topology-aware approaches (17, 191 cluster processes into groups. The two natural
choices for the machines depicted in Figure 5 are to cluster the processes based either on machine
boundaries, creating three groups - the IBM SP, 02K,, and 02Kb, or site boundaries creating two

8

i

.
i
I SDSC B w t
I root plucess

I

P-

relnaining

P-
I

v
I

relnaining

remaining

remaining
SDSC procs

Figure 8: An example of a multilevel topology-aware broadcast tree rooted at SDSC spanning 2
Origin 2000s (02K, and 02Kb) at NCSA and an IBM SP at SDSC.

groups - SDSC and NCSA. While both are reasonable choices and would improve performance
when compared with the topology-unaware binomial tree distributed with MPICH, both choices
ignore the disparity in network performance between the local- and wide-area networks. Consider,
for example, a broadcast rooted at one of the processes at SDSC. Figure 7a depicts the broadcast
tree of the 2-level approach when the processes are clustered on machine boundaries. The broadcast
starts with the SDSC root process sending messages to designated processes on each of the 02Ks
at NCSA, resulting in two messages traveling across the wide-area network, and concludes with
broadcasts within each machine. By contrast, Figure 7b depicts the broadcast tree when the
processes are clustered on site boundaries. In this case the root at SDSC sends a single message
across the wide-area network to a process on one of the two 02Ks at NCSA and concludes with
a broadcast within the IBM SP with another simultaneous broadcast across all the processes at
NCSA, which would typically require multiple messages to travel across NCSA’s local network.

I

2.4.3 A Multilevel Topology-Aware Broadcast

The multilevel topology-aware approach we present minimizes messaging across the slowest links
at each level by clustering the processes at the wide-area level into site groups, and then within
each site group, clustering processes at the local-area level into machine groups. Using the same
broadcast example from Section 2.4.2, we depict in Figure 8 the broadcast tree used by a multilevel
approach. Here the broadcast starts with the SDSC root process sending a single message across the
wide-area network to one of the processes at NCSA, in Figure 8 we depict a process on 02K,. The
broadcast continues with the receiving process on 02K, sending a single message across NCSA’s
local network to a process on 02Kb and the entire broadcast concludes with broadcasts within
each machine. This multilevel clustering minimizes messaging over the slower wide and local-area
networks.

9

3

H

m

no

f "

1 1 I I U * a 400 OD am IW
y l r l . I L l b l - 1

Figure 9: vMPI experiments - small message latency.

3 Performance Experiments

We present the results of detailed performance experiments that characterize the performance
of MPICH-G2 and demonstrate the major improvements achieved relative to its predecessor,
MPICH-G. We begin by looking at the performance of intmmachine communication over a vendor
MPI. Then, we examine performance when TCP is the only choice for communicating between a
pair of processes. In all cases, mpptest [16], the performance tool included in the MPICH distribu-
tion, is used to obtain all results.

Following that we examine the benefits of our multilevel topology-aware strategy for MPI's
collective operations by using MPIBcast to compare our multilevel approach to MPICH's default
topology-unaware binomial tree and MagPIe, a 2-level topology-aware approach.

3.1 Point-t 0-point Operations

In this section we examine the performance improvements in point-to-point messaging resulting
from removing Nexus in MPICH-G2.

3.1.1 Vendor MPI

Evaluating the performance of MPICH-G2 when using a vendor MPI as an underlying communi-
cation mechanism is not as simple as running a single set of ping-pong tests. As discussed earlier,
the performance achieved by MPICH-G2 can be affected by outstanding requests and by the use of
MPI-ANY-SOURCE. Therefore, we have divided the experiments into the three categories described
in Section 2.2.

Our vendor MPI experiments were run on an SGI Origin2000 at Argonne National Laboratory.
Both MPICH-G2 and MPICH-G were built using a nonthreaded, no-debug flavor of Globus 1.1.4
and performed intramachine communication via SGI's implementation of MPI.

One MPICH-G2 design goal was to minimize latency overhead for intramachine communication
relative to an underlying vendor W I . As can been seen in Figure 9, MPICH-G2 does an outstand-
ing job in this regard: only a few extra microseconds of latency are introduced by MPICH-G2
when the source of the message is specified and no other requests are outstanding. In contrast,
MPICH-G added approximately 80 microseconds of latency to each message, because the multiple
steps required to implement the Nexus singlesided communication model.

10

f

Figure 10: vMPI experiments - realized bandwidth.

The introduction of pending receive requests has a modest impact on MPICH-G2 message
latencies. Messages falling into the specified-pending category incur slightly more overhead, as the
MPICH-G2 progress engine must continuously poll (probe) the vendor MPI rather than blocking
in a receive. Overall, MPICH-G2 latencies increase by several microseconds relative to the first
a& but are still far less than those of MPICH-G.

The use of BPI-ANY-SOURCE has the largest impact on MPICH-G2 performance. The additional
cost is associated with having to-poll TCP as well as the vendor MPI. Polling TCP increases the
latency of messages by nearly 20 microseconds over those in the specified-pending category. While
the increase is significant, however, these latencies are still considerably less than for MPICH-G.

While MPICH-G2 message latencies are affected by the use of MPI-ANY-SOURCE and pending
receive requests, the realized bandwidths are largely unaffected. Figure 10 shows the bandwidths
obtained for messages up to one megabyte. We see that the bandwidths for MPICH-G2 are nearly
identical for all but small messages. While the large message bandwidths for MPICH-G2 are
approximately 7% less than those for the the vendor MPI (for reasons we do not yet understand),
they represent an improvement of more than 60% over MPICH-G.

3.1.2 TCP/IP

Performance optimization work on MPICH-G2 performed to date has focused on intramachine mes-
saging when a vendor MPI is used as the underlying communication mechanism. The MPICH-G2
TCP/IP communication code has not been optimized. However, its performance is quite reasonable
when compared with MPICH-G and to MPICH configured with the default TCP (chp4) device.

All TCP/IP performance measurements were taken using a pair of SUN workstations in Ar-
gonne’s Mathematics and Computer Science Division. These two machines were connected to a
local-area network via gigabit Ethernet. Both MPICH-G and MPICH-G2 were built using a non-
threaded, no-debug flavor of Globus 1.1.4.

Figure 11 shows the small message latencies exhibited by all three systems. We see that for
most message sizes, MPICH-G2 is 20% to 30% slower than MPICH/chp4, although the difference
is much smaller for very small messages. We also see that MPICH-G2 latencies, in most cases, are
somewhat less than those of MPICH-G.

The most notable data point is barely visible on the graph but emphasizes a clear optimization
that is missing in MPICH-G2. The latency for zero-byte messages is 140 microseconds, while the
latency for an eight-byte message is 224 microseconds. The reason for this large difference is that

11

Figure 11: TCP/IP experiments - small message latency.

Figure 12: TCP/IP experiments - realized bandwidth.

MPICH-G2 currently uses separate system calls to send the message header and the message data.
This data point suggests that by combining these two writes into a single vector write, we could
reduce the latency of small messages significantly. While this difference might seem unimportant
for machines separated by a wide-area network, it can be significant when MPICH-G2 is used to
combine multiple machines with the same machine room or even at the same site.

Figure 12 shows the bandwidths obtained by all three systems for message sizes up to one
megabyte. For large messages, we see that MPICH-G2 performs approximately 5% better than the

I other two systems. This improvement is a result of the message data being sent directly from the
user buffer rather than being copied into a separate buffer before urite is called. For preposted
receives with contiguous data, further improvement is possible. Data for these receives can be read
directly into the user buffer, avoiding a buffer copy that, at present, always takes place at the
receiver.

3.2 Collective Operations

To demonstrate the advantages of our multilevel approach, we examine its effects on WP1,Bcast.
The MPICH implementation of WP1,Bcast is based on binomial trees; hence, in a distributed
heterogeneous environment like a computational Grid its performance is acutely sensitive to the
distribution of the processes and the root of the broadcast. For example, in an application using

12

For (each message size M)
HPI-Barrier (YIPI-COW-WORLD)
if (yIPI,CO~-WORLD rank = 0)

For (r = 0; r < Nprocs; r ++)
tO = get-time0

IPI-Bcast (root= to HPI,CO#H,WORLD message size H)
ack,barrier()

ti = get-time0
report message size M, time ti-tO

if (HPI,COpIH,wORLD rank = 0)

Figure 13: The broadcast timing application.

P = 2‘ processes distributed evenly across C = 2’,0 5 i 5 IC clusters, a broadcast implemented
using a binomial tree propagates the message down its longest path using at least log2C inter-
cluster messages and log& intracluster messages. In contrast, under certain intercluster network
performance conditions described by Bar-Noy and Kipnis in their postal model, our multilevel
method could be used to send 1 intercluster message and log25 intracluster messages. Assuming
an intercluster latency I , sec and bandwidth b, Kb/sec; and an intracluster latency I f sec and
bandwidth b j Kb/sec, broadcasting a message of N Kb using the binomial tree conservatively takes
O((logC)(Z, + e) + (log$)(Zf + e)), whereas broadcasting the same message using our multilevel
method takes only O((Z, + e) + (Zogg)(Zj + e)).

We wrote a small MPI application (depicted in Figure 13) that times the broadcasts of messages
of increasing size. To represent a broadcast with an arbitrary root, we timed how long it would
take to broadcast each message of size M as each process in WI-COMEII-WORLD took its turn as the
root. Also, in order to eliminate any potential pipelining that might occur between consecutive
broadcasts, we inserted a barrier (ack-barrier()) after each broadcast in which all processes
other than rank 0 HPI-Send an ACK message to process 0 and then wait to BPI-Recv a GO
message. Process 0, after BPI-Recv’ing the ACK message from all the other processes, MP1,Send’s
a GO message to each of the other processes, one at a time. We chose to write our own barrier
rather than calling BPI-Barrier because we have reimplemented MPI-Barrier to reflect multilevel
topology and we wished these tests to reflect the differences only in the broadcast implementations.

We conducted experiments running the MPI application depicted in Figure 13 on three comput-
ers: the IBM SP at the San Diego Supercomputer Center (SDSC-SP) and the IBM SP (ANLSP)
and SGI Origin200 (ANL-OZK) at Argonne National Laboratory. We compare our multilevel
topology approach to the binomial tree provided by MPICH and include comparisons to the 2-level
approach provided by MagPIe. We ran the application four times, each time using 16 processes
on each of the three computers. These results are depicted in Figure 14. The curves labeled
“MagPIemachine” and “MagPIesite” represent two runs using MagPIe version 2.0.1, each time
with a different cluster definition. In our first MagPIe run (“MagPIemachine”) we defined three
clusters, one for each computer, of 16 processes each. In our second MagPIe run (“MagPIe-site”)
we defined two clusters: an ANL cluster comprising the two ANL machines having 32 processes
and an SDSC cluster comprising the SDSC-SP having only 16 processes.

Figure 14 shows there are significant benefits to the multilevel approach when compared with a
simple binomial tree and even when compared with a 2-level approach as implemented by MagPIe.
A multilevel view of the network allows an application to avoid slower channels at each level. In

13

* *

p IM
Y

F la,

M

n I
0 100m3m4Klmmmmm1m m h s m (I;Bytc)

Figure 14: Original MPICH broadcast vs. topology-aware MPICH broadcast vs. MagPIe broad-
cast running 16 processes on the IBM SP at SDSC and 16 processes on each the IBM SP and
SGI Origin2000 at ANL.

our experiments, the broadcast is optimized by sending one message across the wide-area network,
then one message across the local-area network, and then many messages within each computer.

4 Application Experiences

MPICH-G2 has been used by many groups worldwide for a wide variety of purposes. Here we
mention a few relevant experiences that highlight interesting features of the system.

One interesting use of MPICH-G2 is to run conventional MPI programs across multiple par-
allel computers within the same machine room. In this case, MPICH-G2 is used primarily to
manage startup and to achieve efficient communication via use of different low-level communi-
cation methods. Other groups are using MPICH-G2 to distribute applications across computers
located at different sites, for example, Taylor performing MM5 climate modeling on the NSF Tera-
Grid [26,24], Mahinthakumar forming multivariate geographic clusters to produce maps of regions
of ecological similarity [22], Larsson for studies of distributed execution of a large computational
electromagnetics code [21], and Chen and Taylor in studies of automatic partitioning techniques,
as applied to finite element codes [4].

level interface to Grids for nontraditional distributed computing applications, for example, Roy et
al. for studies in using MPI idioms for setting &OS parameters [25] and Papka and Binns for creating
distributed visualization pipelines using MPICH-G2’s client/server MPI-2 extensions [26, 241.

MPICH-G2 was awarded a 2001 Gordon Bell Award for its role in an astrophysics application
used for solving problems in numerical relativity to study gravitational waves from colliding black
holes [l]. The winning team used MPICH-G2 to run across four supercomputers in California and
Illinois, achieving scaling of 88% (1,140 CPUs) and 63% (1,500 CPUs) computing a problem size
five times larger than any other previous run.

MPICH-G2 has also been successfully used in demonstrations that promote MPI as an application-

5 Summary

We have described MPICH-G2, an implementation of the Message Passing Interface that use8
Globus Toolkit mechanisms to support the execution of MPI programs in heterogeneous wide-area

14

/

environments. MPICH-G2 masks details of underlying networks, software systems, policies, and
computer architectures so that diverse distributed resources can appear as a single #PI-COMKWORLD.
Arbitrary MPI applications can be started on heterogeneous collections of machines simply by t y p
ing mpirun: authentication, authorization, executable staging, resource allocation, job creation,
startup, and routing of stdout and stderr are all handled automatically via Globus Toolkit mecha-
nisms. MPICH-G2 also enables the use of MPI features for user-level management of heterogeneity,
for example, via the use of MPI’s communicator construct to access system topology information.
A wide range of successful application experiences have demonstrated MPICH-G2’s utility in prac-
tical settings, both for traditional simulation applications and for less traditional applications such
as distributed visualization pipelines.

While MPICH-G2 is already a sophisticated tool that is seeing widespread use, there are also
several areas in which it can be extended and improved. Support for MPI-2 features, in particular
dynamic process management, will be invaluable for Grid applications that adapt their resource
usage to changing conditions and application requirements. This support will be provided as soon
as it is incorporated into MPICH. More challenging is the design of techniques for effective fault
management, a major topic for future research. Here we may be able to draw upon techniques
developed within systems such as PVM [15].

a

Acknowledgments
We thank Olle Larsson and Warren Smith for early discussions and for prototyping the techniques
that enable us to use vendor-supplied MPI. MPICH-G2 is, to a large extent, the result of our
MPICH-G experiences. We therefore thank Jonathan Geisler, who originally designed and imple-
mented MPICH-G while at Argonne, and George Thiruvathukal, who further developed MPICH-G
also while at Argonne. We thank William Gropp, Ewing Lusk, David Ashton, Anthony Chan,
Rob Ross, Debbie Swider, and Rajeev Thakur of the MPICH group at Argonne for their guidance,
assistance, insight, and many discussions. We thank Sebastien Lacour for his efforts in conducting
the performance evaluation and his many other contributions. His insight and ingenuity were in-
valuable to the implementation of the topology-aware components of MPICH-G2. We thank the
San Diego Supercomputer Center and the National Center for Supercomputing Applications for
providing access to their machines. Finally, we thank all the members of the Globus development
team for their support, patience, and many ideas.

References

[l] G. Allen, T. Dramlitsch, I. Foster, M. Ripeanu N. T. Karonis, E. Seidel, and B. Toonen.
Supporting efficient execution in heterogeneous distributed computing environments with catus
and globus. In Proceedings of Supercomputing 2001. IEEE Computer Society Press, 2001,
winner Gordon Bell Award, Special Category.

[2] A. Bary-Noy and S. Kipnis. Designing broadcasting algorithms in the postal model for message-
passing systems. In Pmedings of the 4th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 559-566, June 1992.

[3] Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedes~o, and Steven Tuecke. GASS:’ A data
movement and access service for wide area computing systems. In P m . IOPADS’99. ACM
Press, 1999.

15

[4] Jian Chen and Valerie Taylor. Mesh partitioning for distributed systems. In Proc. 7th IEEE
Symp. on High Performance Distributed Computing. IEEE Computer Society Press, 1998.

[5] D.E. Culler, R. Karp, D.A. Patterson, A. Sahay. K.E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken. Logp: Towards a realistic model of parallel compuation. In Proceedings
of the 4th SIGPLA N Symposium on Principles and Pmctices of Pamllel Progmmming, pages
1-12, May 1993.

-

[SI K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A
resource management architecture for metacomputing systems. In The 4th Workshop on Job
Scheduling Strategies for Pamllel Pmessing, 1998.

[7] Karl Czajkowski, Ian Foster, and Carl Kesselman. Co-allocation services for computational
grids. In Proc. 8th IEEE Symp. on High Performance Distributed Computing. IEEE Computer
Society Press, 1999.

[8] B. de Supinski and N. Karonis. Accurately measuring mpi broadcasts in a computational grid.
In Proc. 8th IEEE Symp. on High Performance Distributed Computing, 2000.

[9] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A directory
service for configuring high-performance distributed computations. In Proc. 6th IEEE Symp.
on High Performance Distributed Computing, pages 365-375. IEEE Computer Society Press,
1997.

[lo] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal, and S. Tuecke. A wide-
area implementation of the Message Passing Interface. Parallel Computing, 24(12):1735-1749,
1998.

[ll] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Managing multiple communication meth-
ods in high-performance networked computing systems. Journal of Pamllel and Distributed
Computing, 40~35-48, 1997.

[12] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for computational
grids. Technical report, Mathematics and Computer Science Division, Argonne National Lab-
oratory, Argonne, Ill., 1998.

[13] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach to integrating multithreading

[14] Edgar Gabriel, Michael Resch, Thomas Beisel, and f i n e r Keller. Distributed computing in a

[15] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,IB. Manchek, and V. Sunderam. PVM: Pamllel
Virtual Machine-A User’s Guide and llrtorial for Network Parallel Computing. MIT Press,
1994.

and communication. Journal of Pamllel and Distributed Computing, 37:70-82,1996.

heterogenous computing environment. In P m . EumPVMMPI’98.1998.

El61 William Gropp and Ewing Lusk. Reproducible measurements of MPI performance character-
istics. Technical Report ANL/MCS-P7550699, Mathematics and Computer Science Division,
Argonne National Laboratory, June 1999.

[17] P. Husbands and J.C. Hoe. MPI-StarT: Delivering network performance to numerical appli-
cations. In Proceedings of Supercomputing ’98, November 1998.

16

r

[18] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan. Exploiting
hierarchy in parallel computer networks to optimize collective operation performance. In
Proceedings of the 14th International Pamllel and Distributed Processing Symposium, 2000.

[19] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang. MAGPIE: MPI's
collective communcation operations for clustered wide area systems. In proceedings of Super-
computing '98, November 1998.

~

[20] T. Kimura and H. Takemiya. Local area metacomputing for multidisciplinary problems: A
case study for fluid/structure coupled simulation. In P m . Intl. Conf. on Supercomputing,
pages 145-156.1998.

[21] Olle Larsson. Implementation and performance analysis of a high-order CEM algorithm in

[22] G. Mahinthakumar, F. M. Hoffman, W. W. Hargrove, and N. Karonis. Multivariate geographic
clustering in a metacomputing environment using globus. In Proceedings of Supercomputing
'99. IEEE Computer Society Press, 1999.

parallel and distributed environments. Master's thesis, University of Houston, 1998.

[23] Message Passing Interface Forum. MPI2: A message passing interface standard. International
Journal df High Performance Computing Applications, 12(1-2):l-299,1998.

http://wuv.ncsa.edu/News/Acces~/Releases/Oll2ll.TeraGrid.html.
I [24] Ncsa Press release web page.

[25] A. Roy, I. Foster, W. Gropp, N. Karonis, V. Sander, and B. Toonen. MPICH-GQ: Quality-of-
Service for message passing programs. In Proceedings of Supercomputing 2000. IEEE Computer
Society Press, 2000.

[26] Teragrid web page. http : //mu. teragrid. org.

,

17

