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1 Introduction 

In this project we studied the practical use of the MPI message-passing interface in advanced 
distributed computing environments. We built on the existing software infrastructure provided by 
the Globus ToolkitTM, the MPICH portable implementation of MPI, and the MPICH-G integration 
of MPICH with Globus. 

As a result of this project we have replaced MPICH-G with its successor MPICH-G2, which is 
also an integration of MPICH with Globus. MPICH-G2 delivers significant improvements in mes- 
sage passing performance when compared to  its predecessor MPICH-G and was based on superior 
software design principles resulting in a software base that was much easier to make the functional 
extensions and improvements we did. 

Using Globus services we replaced the default implementation of MPI’s collective operations in 
MPICH-G2 with more efficient multilevel topology-aware collective operations which, in turn, led 
to the development of a new timing methodology for broadcasts [8]. MPICH-G2 was extended to 
inlcude client/server functionality from the MPI-2 standard [23] to facilitate remote visualization 
applications and, through the use of MPI idioms, MPICH-G2 provided application-level control 
of quality-of-service parameters as well as application-level discovery of underlying Grid-topology 
information. Finally, MPICH-G2 was successfully used in a number of applications including an 
award-winning record-setting computation in numerical relativity. 

In the sections that follow we describe in detail the accomplishments of this project, we present 
experimental results quantifying the performance improvements, and conclude with a discussion of 
our applications experiences. 
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2 Details of Accomplishments 

In this section we will discuss, in detail, each of the accomplishments that resulted from this 
project. We start with a general description of the Globus and MPICH-G2 startup mechanisms. 
While the work described there existed prior to this project, and therefore, is not part of our the 
work completed in this project, a brief discussion of these issues provides an important context in 
which we present our achievements. We,continue with a description of our work in heterogeneous 
communication and application-level #management of heterogeneity. We conclude this section with 
a description of our multilevel topology-aware collective operations. 

12.1 

As illustrated in Figure 1 and discussed here, MPICH-G2 uses a range of Globus Toolkit services to 
address the various complex issues that arise in heterogeneous, multisite Grid environments, such 
as cross-site authentication, the need to deal with multiple schedulers with different characteristics, 
coordinated process creation, heterogeneous communication structures, executable staging, and 
collation of standard output. In fact, MPICH-G2 serves as an exemplary case study of how Globus 
Toolkit mechanisms can be used to create a Grid-enabled programming tool, as we now explain. 

Prior to startup of an MPICH-G2 application, the user employs the Grid Security Infnrstructure 
(GSI) [12] to obtain a (public key) proxy credential that is used to authenticate the user to each 
remote sites. This step provides a single sign on capability. 

The user may also use the Monitoring and Discovery Service (MDS) [9] to select computers on 
the basis of, for example, configuration, availability, and network connectivity. 

Once authenticated, the user uses the standard mpirun command to request thd creation of an 
MPI computation. The MPICH-G2 implementation of this command uses the Resource Spec$- 

Hiding Heterogeneity during Startup and Management 
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% g rid-p roxy-i n it 
% mpirun -np 256 myprog 
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Submits multiple jobs 
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Communicates via vendor-MPI and TCP/IP (globus-io) 

Figure 1: Schematic of the MPICH-G2 startup, showing the various Globus Toolkit components 
used to hide and manage heterogeneity. "Fork," "LSF," and "LoadLeveler" are different local 
schedulers. 
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Figure An example of an MPICH-G2 application running on a computat,anal grid invo,..ag 4 
processes on an IBM SP at Site A and 8 processes distributed evenly across two Linux clusters at 
Site B 

cation Language (RSL) [SI to describe the job. In brief, users write RSL scripts, which identify 
resources (e.g., computers) and specify requirements (e.g., number of CPUs, memory, execution 
time, etc.) and parameters (e.g., location of executables, command line arguments, environment 
variables, etc.) for each. Based on the information found in an RSL script, MPICH-G2 calls a 
w-allucation libmry distributed with the Globus Toolkit, the Dynamically-Updated Request On- 
line Coallocator (DUROC) [7], to schedule and start the application across the various computers 
specified by the user. 

The DUROC library itself uses the Grid Resource AZZocation and Management (GRAM) [SI API 
and protocol to start and subsequently manage a set of subcomputations, one for each computer. 
For each subcomputation, DUROC generates a GRAM request to a remote GRAM server, which 
authenticates the user, performs local authorization, and then interacts with the local scheduler to 
initiate the computation. DUROC and associated MPICH-G2 libraries tie the various subcompu- 
tations together into a single MPI computation. 

GRAM will, if directed, use Global Access to Secondary Storage (GASS) [3] to stage exe- 
cutable(s) from remote locations (indicated by URLs). GASS is also used, once an application 
has started, to direct standard output and error (stdout and stderr) streams to the user's termi- 
nal, and to provide access to files regardless of location, thus masking essentially all aspects of 
geographical distribution except those associated with performance. 

Once the application has started, MPICH-G2 selects the most efficient communication method 
possible between any two processes, using vendor-supplied MPI (uMPI) if available, or Globus 
communication (Globus IO) with Globus Data Conversion (Globus DC) for TCP, otherwise. 

DUROC and GRAM also interact to monitor and manage the execution of the application. 
Each GRAM server monitors the life cycle of its subcomputation as it passes from pending to 
running and then to terminating, communicating each state transition back to DUROC. Each 
subcomputation is held at a DUROGcontrolled barrier and is released from that barrier only after 
all subcomputations have started executing. Also, a request to terminate the computation ("control 
C") may be initiated by the user at which time DUROC and the GRAM servers, communicating 
via GRAM process control messages, terminate all processes. 

After the processes have started, MPICH-G2 uses information specified in the RSL script to 
create multileoel clustering of the processes based on the underlying network topology. Figure 2 
depicts an MPI application involving 12 processes distributed across three machines located at 
two sites. We depict 4 processes (PI-COMM-WORLD ranks 0-3) on the IBM SP at Site A and 4 
processes on each of two Linux clusters (PI,COMM,WORLD ranks 4 7  and 8-11, respectively) at 
Site B. Each process in MPI-COMM-WORLD is assigned a topology depth. Processes that communicate 
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Figure 3: An example of depths and wlors used by MPICH-G2 to represent network topology in a 
computational grid. 

using only TCP are assigned topology depths of 3 (to distinguish between wide area, l o d  area, 
and intramachine TCP messaging), and processes that can also communicate using a uMPI have 
a topology depth of 4. Using these topology depths MPICH-G2 groups processes at a particular 
level through the assignment of colors. Two processes are assigned the same color at a particular 
level if they can communicate with each other at the network level. 

Figure 3 depicts the topology depths and wlors for the processes depicted in Figure 2. Those 
processes capable of communicating over OMPI, (i.e., those executing on the IBM SP), have a 
depth of 4, while the other processes, (i.e., those executing on a Linux cluster), have a depth of 
3. Since all processes are on the same wide-area network, they all have the same color (0) at the 
-wide-area level. Similarly, at the local-area level, all the processes at Site A are assigned one color 
(0), while all the processes at Site B are assigned another (1). This structure continues through 
the system-area level, where processes are assigned the same color if and only if they are on the 
same machine. Finally, processes that can communicate over a uMPI are assigned the same color 
at the uMPI level if and only if they can communicate directly with each other over the uMPI. 

Topology depths and colors are used in the multilevel topology-aware collective operations and 
topology-discovery mechanism described in Sections 2.2 and 2.3, respectively. 

2.2 Heterogeneous Communications 

MPICH-G2 achieves major performance improvements relative to the earlier MPICH-G [lo] by re- 
placing Nexus [13], the multimethod, singlesided communication library used for all communication 
in MPICH-G, with specialized MPICH-specific communication code. While Nexus has attractive 
features (e.g., multiprotocol support with highly tuned TCP support and automatic data conver- 
sion), other attributes have proved less attractive from a performance perspective. MPICH-G2 now 
handles all communication directly by reimplementing the good things about Nexus and improving 
the others. The result, as we show in Section 3, is that we achieve performance virtually identical 
to vendor MPI and MPICH configured with the default TCP (ch,p4) device. We provide here a 
detailed description of the improvements and additions to MPICH-G used to achieve this impressive 
performance. 

Increased bandwidth. In MPICH-G, each communication involved the copying of data to and 
from Nexus buffers in sending and receiving processes. MPICH-G2 eliminates these two extra 
copies in the case of intramachine messages where a vendor MPI exists. In this situation, sends 
and receives now flow directly from and to application buffers, respectively. In addition, for TCP 
messaging involving basic MPI datatypes (e.g., MPIJNT, MPI-FLOAT) the sending process also 
transmits directly from the application buffer. 
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Reduced latency for intramachine vendor MPI messaging. Multiprotocol support is achieved 
in Nexus by polling each protocol (TCP, vendor MPI, etc.) for incoming messages in a roundrobin 
fashion [ll]. However, this strategy is inefficient in many situations: it is relatively expensive to  poll 
a TCP socket and in practice it is often the case that many processes in a MPICH-G2 computation 
use only vendor MPI (for communicating with other processes on the same machine). 

While this inefficiency can be reduced by adaptive polling [ll] or by introducing distinct proxy 
processes [14, 201, MPICH-G2 takes a more direct approach, exploiting the knowledge about mes- 
sage source that is provided by TCP receive commands to eliminate TCP polling altogether in 
many situations. MPICH-G2 polls TCP only when the application is expecting data from a source 
that dictates, or might dictate (e.g., NPI-Recv specifies source=MPI,ANY,SOURCE), TCP messaging. 

This avoidance of unnecessary polling when coupled with the need to guarantee progress on 
both the vendor MPI and TCP protocols leads to  implementation decisions that can affect an 
application’s point-to-point communication performance. Specifically, for processes executing on 
machines where a vendor MPI is available, the context in which the application calls MPI-Recv 
affects the manner in which MPICH-G2 implements that function, as follows: 

0 Speciiied. The source rank specified in the call to MPI-Recv explicitly identifies a process on 
the same machine (in the same vendor MPI job). Furthermore, no asynchronous requests are 
outstanding (e.g., incomplete NPI-Irecv and/or MPI-Isend). If these two conditions are met, 
MPICH-G2 implements NPI-Recv by directly calling the MPI-Recv of the underlying vendor 
MPI. This is the most favorable circumstances under which an MPI-Recv can be performed. 

0 Specified-pending. This category is similar to  the specified category in that the NPI-Recv 
specifies an explicit source rank on the same machine. This time, however, one or more 
unsatisfied receive requests are present, and each such request specifies a source on the same 
machine. This situation forces MPICH-G2 to continuously poll (WI-Iprobe) the vendor 
MPI for incoming messages. This scenario results in less efficient MPICH-G2 performance 
since the induced polling loop increases latency. 

0 Multimethod. Here the source rank for the WI-Recv is MPI-ANY-SOURCE or MPI-Recv is 
called in the presence of unsatisfied asynchronous requests that require, or might require, 
TCP messaging. In this situation, MPICH-G2 must poll both TCP and the vendor MPI 
continuously. This is the least efficient MPICH-G2 scenario, since the relatively large cost of 
TCP polling results in even greater latency. 

In Section 3, we present a quantitative analysis of the performance differences that result from 
these different structures. 

More efficient use of sockets. The Nexus single-sided communication paradigm results in 
MPICH-G2 opening two pairs of sockets between communicating processes and using each pair as a 
simplex channel (i.e., data always flowing in one direction over each socket pair). MPICH-G2 opens 
a single pair of sockets between two processes and sends data in both directions. This approach 
reduces the.use of system resources; moreover, by using sockets in the bidirectional manner in which 
they were intended, it also improves TCP efficiency. 

Multilevel topology-aware collective operations. Early implementations of MPI’s collective 
operations sought to construct communication structures that were optimal under the assumption 
that all processes were equidistant from one another [2, 51. Since this assumption is unlikely 
to be valid in Grid environments, however, it is desirable that a Grid-enabled MPI incorporate 
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#include Qpi.h> 

i n t  main(int argc, char *argvD) 
c 

int  me, f lag;  
int  *depths; 
in t  **colors; 
Hp1,COmm LANcomm, VCOmmA, VcommB; 

"1,Init (&argc, &argv) ; 
"I,Comm-ranh(EfPI,CoWt,WO, h e )  ; 
WI-Attr-get (HPI,COpM,WORLD, PIPICHX,TOPOLOGY,DEPT€IS, &depths, &flag) ; 
WI-Attr-get (PIPI~COPPI~UORLD , PIPICHX,TOPOLOGY,COLoRS , &colors, &flag) ; 

~I-comm-split  (HPI,COWt,WORLD, colors bel  111 , 0 ,  &LANcomm) ; 
~I,Comm,split(HPI,COWt~~RLD, (depthshe1 = 4 ? co lorshe l  C31 : -11, 

"I-comm-split (HPI,COFD¶,WORLD , 
0, &VcommA); 

0, &VcommB); 
(depthshe] = 4 ? colorsbel  C31 : PIPI-UNDEFINED) , 

"1-Finalize (1 ; 
3 

Figure 4: An example MPICH-G2 application that uses topology depths and colors to create com- 
municators that group processes into various topology-aware clusters. 

collective operation implementations that take into account the actual topology. MPICH-G2 does 
this, and we have demonstrated substantial performance improvements for our multilevel topology- 
uwafe approach [18] relative both to topology-unaware binomial trees and earlier topology-aware 
approaches that distinguish only between "intracluster" and "intercluster" communications [17,19]. 

As we explain in the next subsection, MPICH-G2's topology-aware collective operations are 
constructed in terms of topology discovery mechanisms that can also be used by topology-aware 
applications. 

2.3 Application-Level Management of Heterogeneity 

We have experimented within MPICH-GP with a variety of mechanisms for application-level man- 
agement of heterogeneity in the underlying platform. We mention two here. 

Topology discovery. Once an MPI program starts, all processes can be viewed as equivalent, dis- 
tinguished only by their rank. This level of abstraction is desirable from a programming viewpoint 
but makes it difficult to write programs that exploit aspects of the underlying physical topology, 

. for example, to minimize expensive intercluster communications. 
MPICH-G2 addresses this issue within the standud MPlfmmework by using the MPI commu- 

nicator construct to deliver topology information to an application. It associates attributes with 
each MPI communicator to communicate this topology information, which is expressed within each 
process in terms of topology depths and colors, as described in Section 2.1. 
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Figure 5: An example of a Grid computation involving 10 processes on one IBM SP at SDSC and 
another 10 processes distributed evenly across two SGI Origin2000s (02K, and 02Kb) at NCSA. 

MPICH-G2 applications can tben query communicators to retrieve attribute values and struc- 
ture themselves appropriately. For example, it is straightforward to create new communica- 
tors that reflect the underlying network topology. Figure 4 depicts an MPICH-G2 application 
that first queries the MPICH-G2-defined communicator attributes W I C H X , T O P O L O G Y , D E S  and 
NPICHX,TOPOLOGY,COLORS to  discover topology depths and colors, respectively, and then uses those 
values to create three communicators: LANcomm, which groups processes based on site boundaries, 
VcommA, which groups processes based on their ability to communicate with each other over uMPI, 
while placing all processes that cannot communicate over uMPI into a separate communicator, 
and VcommB, which groups the processes in much the same way as VcommA, but this time does 
not place processes that cannot communicate over uMPI in a communicator (i.e., VcommB is set to 
MPI,COMM,NuI,L for those processes). 

Quality-of-service management. We have experimented with similar techniques for purposes 
of quality of service management [25]. When running over a shared network, an MPI application 
may wish to negotiate with an external resource management system to obtain dedicated access 
to (part of) the network. We show that communicator attributes can be used to set and initiate 
quality-of-service parameters between selected processes. 

2.4 Multilevel Topology-Aware Collective Operations 

Figure 5 depicts an MPI application involving 20 processes distributed over three machines located 
at the San Diego Supercomputer Center (SDSC) and the National Center for Supercomputing 
Applications (NCSA). We depict 10 processes on the IBM SP at SDSC and 5 processes on each of 
two Origin2000s, 02K, and 02Ka, at NCSA. The slowest communication is between sites, which 
uses TCP over a widearea network, with faster communication between the 02Ks at NCSA, which 
uses TCP over their local-area network, and the fastest communication, of course, within each 
machine. 

In the remainder of this section we describe a broadcast using first the topology-unaware imple 
mentation currently distributed with MPICH, then a 2-level topology-aware approach, and finally 
our multilevel topology-aware broadcast. 
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Figure 6: The binomial trees BO through B3. 
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on machine boundaries on site boundaries 

Figure 7: An example of two 2-level topology-aware broadcast trees rooted at SDSC spanning 2 
Origin2000s (02K, and 02Kb) at NCSA and an IBM SP at SDSC: (a) clustering processes on 
machine boundaries and (b) clustering on site boundaries. 

2.4.1 A Topology- Unaware Broadcast 

Topology-unaware implementations of broadcast, including the one distributed with MPICH, often 
make the simplifying assumption that the communication times between all process pairs in the 
computation are equal. Under this assumption the broadcast is often implemented by using a 
binomial tree. 

A binomial tree Bk is a n  ordered tree (i.e., children of each node are ordered) of order k 2 0 
defined recursively. As shown in Figure 6, the binomial tree BO consists of a single node. The 
binomial tree Bk (k > 0) has a root with k children where the it* child (0 < i 5 k) is the root of 
the binomial tree l3k-i. Figure 6 depicts the binomial trees BO through B3. 

When communication times between all process pairs in the computation are equal and have 
relatively low latency, Bar-Noy and Kipnis show that implementing a broadcast with a binomial 
tree has the desirable property that all processes will complete the broadcast at approximately the 
same time thus, achieving proper load balancing [2]. 

2.4.2 A 2-Level Topology-Aware Broadcast 

Existing 2-level topology-aware approaches (17, 191 cluster processes into groups. The two natural 
choices for the machines depicted in Figure 5 are to cluster the processes based either on machine 
boundaries, creating three groups - the IBM SP, 02K,, and 02Kb, or site boundaries creating two 
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Figure 8: An example of a multilevel topology-aware broadcast tree rooted at SDSC spanning 2 
Origin 2000s (02K, and 02Kb) at NCSA and an IBM SP at SDSC. 

groups - SDSC and NCSA. While both are reasonable choices and would improve performance 
when compared with the topology-unaware binomial tree distributed with MPICH, both choices 
ignore the disparity in network performance between the local- and wide-area networks. Consider, 
for example, a broadcast rooted at one of the processes at SDSC. Figure 7a depicts the broadcast 
tree of the 2-level approach when the processes are clustered on machine boundaries. The broadcast 
starts with the SDSC root process sending messages to designated processes on each of the 02Ks 
at NCSA, resulting in two messages traveling across the wide-area network, and concludes with 
broadcasts within each machine. By contrast, Figure 7b depicts the broadcast tree when the 
processes are clustered on site boundaries. In this case the root at SDSC sends a single message 
across the wide-area network to a process on one of the two 02Ks at NCSA and concludes with 
a broadcast within the IBM SP with another simultaneous broadcast across all the processes at 
NCSA, which would typically require multiple messages to travel across NCSA’s local network. 

I 

2.4.3 A Multilevel Topology-Aware Broadcast 

The multilevel topology-aware approach we present minimizes messaging across the slowest links 
at each level by clustering the processes at the wide-area level into site groups, and then within 
each site group, clustering processes at the local-area level into machine groups. Using the same 
broadcast example from Section 2.4.2, we depict in Figure 8 the broadcast tree used by a multilevel 
approach. Here the broadcast starts with the SDSC root process sending a single message across the 
wide-area network to  one of the processes at NCSA, in Figure 8 we depict a process on 02K,. The 
broadcast continues with the receiving process on 02K, sending a single message across NCSA’s 
local network to a process on 02Kb and the entire broadcast concludes with broadcasts within 
each machine. This multilevel clustering minimizes messaging over the slower wide and local-area 
networks. 
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Figure 9: vMPI experiments - small message latency. 

3 Performance Experiments 

We present the results of detailed performance experiments that characterize the performance 
of MPICH-G2 and demonstrate the major improvements achieved relative to its predecessor, 
MPICH-G. We begin by looking at the performance of intmmachine communication over a vendor 
MPI. Then, we examine performance when TCP is the only choice for communicating between a 
pair of processes. In all cases, mpptest [16], the performance tool included in the MPICH distribu- 
tion, is used to obtain all results. 

Following that we examine the benefits of our multilevel topology-aware strategy for MPI's 
collective operations by using MPIBcast to compare our multilevel approach to MPICH's default 
topology-unaware binomial tree and MagPIe, a 2-level topology-aware approach. 

3.1 Point-t 0-point Operations 

In this section we examine the performance improvements in point-to-point messaging resulting 
from removing Nexus in MPICH-G2. 

3.1.1 Vendor MPI 

Evaluating the performance of MPICH-G2 when using a vendor MPI as an underlying communi- 
cation mechanism is not as simple as running a single set of ping-pong tests. As discussed earlier, 
the performance achieved by MPICH-G2 can be affected by outstanding requests and by the use of 
MPI-ANY-SOURCE. Therefore, we have divided the experiments into the three categories described 
in Section 2.2. 

Our vendor MPI experiments were run on an SGI Origin2000 at Argonne National Laboratory. 
Both MPICH-G2 and MPICH-G were built using a nonthreaded, no-debug flavor of Globus 1.1.4 
and performed intramachine communication via SGI's implementation of MPI. 

One MPICH-G2 design goal was to minimize latency overhead for intramachine communication 
relative to an underlying vendor W I .  As can been seen in Figure 9, MPICH-G2 does an outstand- 
ing job in this regard: only a few extra microseconds of latency are introduced by MPICH-G2 
when the source of the message is specified and no other requests are outstanding. In contrast, 
MPICH-G added approximately 80 microseconds of latency to each message, because the multiple 
steps required to  implement the Nexus singlesided communication model. 
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Figure 10: vMPI experiments - realized bandwidth. 

The introduction of pending receive requests has a modest impact on MPICH-G2 message 
latencies. Messages falling into the specified-pending category incur slightly more overhead, as the 
MPICH-G2 progress engine must continuously poll (probe) the vendor MPI rather than blocking 
in a receive. Overall, MPICH-G2 latencies increase by several microseconds relative to the first 
a& but are still far less than those of MPICH-G. 

The use of BPI-ANY-SOURCE has the largest impact on MPICH-G2 performance. The additional 
cost is associated with having to-poll TCP as well as the vendor MPI. Polling TCP increases the 
latency of messages by nearly 20 microseconds over those in the specified-pending category. While 
the increase is significant, however, these latencies are still considerably less than for MPICH-G. 

While MPICH-G2 message latencies are affected by the use of MPI-ANY-SOURCE and pending 
receive requests, the realized bandwidths are largely unaffected. Figure 10 shows the bandwidths 
obtained for messages up to one megabyte. We see that the bandwidths for MPICH-G2 are nearly 
identical for all but small messages. While the large message bandwidths for MPICH-G2 are 
approximately 7% less than those for the the vendor MPI (for reasons we do not yet understand), 
they represent an improvement of more than 60% over MPICH-G. 

3.1.2 TCP/IP 

Performance optimization work on MPICH-G2 performed to date has focused on intramachine mes- 
saging when a vendor MPI is used as the underlying communication mechanism. The MPICH-G2 
TCP/IP communication code has not been optimized. However, its performance is quite reasonable 
when compared with MPICH-G and to MPICH configured with the default TCP (chp4) device. 

All TCP/IP performance measurements were taken using a pair of SUN workstations in Ar- 
gonne’s Mathematics and Computer Science Division. These two machines were connected to a 
local-area network via gigabit Ethernet. Both MPICH-G and MPICH-G2 were built using a non- 
threaded, no-debug flavor of Globus 1.1.4. 

Figure 11 shows the small message latencies exhibited by all three systems. We see that for 
most message sizes, MPICH-G2 is 20% to 30% slower than MPICH/chp4, although the difference 
is much smaller for very small messages. We also see that MPICH-G2 latencies, in most cases, are 
somewhat less than those of MPICH-G. 

The most notable data point is barely visible on the graph but emphasizes a clear optimization 
that is missing in MPICH-G2. The latency for zero-byte messages is 140 microseconds, while the 
latency for an eight-byte message is 224 microseconds. The reason for this large difference is that 
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Figure 11: TCP/IP experiments - small message latency. 

Figure 12: TCP/IP experiments - realized bandwidth. 

MPICH-G2 currently uses separate system calls to send the message header and the message data. 
This data point suggests that by combining these two writes into a single vector write, we could 
reduce the latency of small messages significantly. While this difference might seem unimportant 
for machines separated by a wide-area network, it can be significant when MPICH-G2 is used to 
combine multiple machines with the same machine room or even at the same site. 

Figure 12 shows the bandwidths obtained by all three systems for message sizes up to one 
megabyte. For large messages, we see that  MPICH-G2 performs approximately 5% better than the 

I other two systems. This improvement is a result of the message data being sent directly from the 
user buffer rather than being copied into a separate buffer before urite is called. For preposted 
receives with contiguous data, further improvement is possible. Data for these receives can be read 
directly into the user buffer, avoiding a buffer copy that, at present, always takes place at the 
receiver. 

3.2 Collective Operations 

To demonstrate the advantages of our multilevel approach, we examine its effects on WP1,Bcast. 
The MPICH implementation of WP1,Bcast is based on binomial trees; hence, in a distributed 
heterogeneous environment like a computational Grid its performance is acutely sensitive to the 
distribution of the processes and the root of the broadcast. For example, in an application using 
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For (each message size M) 
HPI-Barrier (YIPI-COW-WORLD) 
if (yIPI,CO~-WORLD rank = 0 )  

For (r = 0; r < Nprocs; r ++) 
tO = get-time0 

IPI-Bcast (root= to HPI,CO#H,WORLD message size H) 
ack,barrier() 

ti = get-time0 
report message size M, time ti-tO 

if (HPI,COpIH,wORLD rank = 0 )  

Figure 13: The broadcast timing application. 

P = 2‘ processes distributed evenly across C = 2’,0 5 i 5 IC clusters, a broadcast implemented 
using a binomial tree propagates the message down its longest path using at least log2C inter- 
cluster messages and log& intracluster messages. In contrast, under certain intercluster network 
performance conditions described by Bar-Noy and Kipnis in their postal model, our multilevel 
method could be used to send 1 intercluster message and log25 intracluster messages. Assuming 
an intercluster latency I ,  sec and bandwidth b, Kb/sec; and an intracluster latency I f  sec and 
bandwidth b j  Kb/sec, broadcasting a message of N Kb using the binomial tree conservatively takes 
O((logC)(Z, + e) + (log$)(Zf + e)), whereas broadcasting the same message using our multilevel 
method takes only O((Z, + e) + (Zogg)(Zj + e)). 

We wrote a small MPI application (depicted in Figure 13) that times the broadcasts of messages 
of increasing size. To represent a broadcast with an arbitrary root, we timed how long it would 
take to broadcast each message of size M as each process in WI-COMEII-WORLD took its turn as the 
root. Also, in order to eliminate any potential pipelining that  might occur between consecutive 
broadcasts, we inserted a barrier (ack-barrier()) after each broadcast in which all processes 
other than rank 0 HPI-Send an ACK message to process 0 and then wait to BPI-Recv a GO 
message. Process 0, after BPI-Recv’ing the ACK message from all the other processes, MP1,Send’s 
a GO message to each of the other processes, one at a time. We chose to write our own barrier 
rather than calling BPI-Barrier because we have reimplemented MPI-Barrier to reflect multilevel 
topology and we wished these tests to reflect the differences only in the broadcast implementations. 

We conducted experiments running the MPI application depicted in Figure 13 on three comput- 
ers: the IBM SP at the San Diego Supercomputer Center (SDSC-SP) and the IBM SP (ANLSP) 
and SGI Origin200 (ANL-OZK) at Argonne National Laboratory. We compare our multilevel 
topology approach to  the binomial tree provided by MPICH and include comparisons to the 2-level 
approach provided by MagPIe. We ran the application four times, each time using 16 processes 
on each of the three computers. These results are depicted in Figure 14. The curves labeled 
“MagPIemachine” and “MagPIesite” represent two runs using MagPIe version 2.0.1, each time 
with a different cluster definition. In our first MagPIe run (“MagPIemachine”) we defined three 
clusters, one for each computer, of 16 processes each. In our second MagPIe run (“MagPIe-site”) 
we defined two clusters: an ANL cluster comprising the two ANL machines having 32 processes 
and an SDSC cluster comprising the SDSC-SP having only 16 processes. 

Figure 14 shows there are significant benefits to the multilevel approach when compared with a 
simple binomial tree and even when compared with a 2-level approach as implemented by MagPIe. 
A multilevel view of the network allows an application to avoid slower channels at each level. In 
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Figure 14: Original MPICH broadcast vs. topology-aware MPICH broadcast vs. MagPIe broad- 
cast running 16 processes on the IBM SP at SDSC and 16 processes on each the IBM SP and 
SGI Origin2000 at ANL. 

our experiments, the broadcast is optimized by sending one message across the wide-area network, 
then one message across the local-area network, and then many messages within each computer. 

4 Application Experiences 

MPICH-G2 has been used by many groups worldwide for a wide variety of purposes. Here we 
mention a few relevant experiences that highlight interesting features of the system. 

One interesting use of MPICH-G2 is to run conventional MPI programs across multiple par- 
allel computers within the same machine room. In this case, MPICH-G2 is used primarily to 
manage startup and to achieve efficient communication via use of different low-level communi- 
cation methods. Other groups are using MPICH-G2 to distribute applications across computers 
located at different sites, for example, Taylor performing MM5 climate modeling on the NSF Tera- 
Grid [26,24], Mahinthakumar forming multivariate geographic clusters to produce maps of regions 
of ecological similarity [22], Larsson for studies of distributed execution of a large computational 
electromagnetics code [21], and Chen and Taylor in studies of automatic partitioning techniques, 
as applied to finite element codes [4]. 

level interface to Grids for nontraditional distributed computing applications, for example, Roy et 
al. for studies in using MPI idioms for setting &OS parameters [25] and Papka and Binns for creating 
distributed visualization pipelines using MPICH-G2’s client/server MPI-2 extensions [26, 241. 

MPICH-G2 was awarded a 2001 Gordon Bell Award for its role in an astrophysics application 
used for solving problems in numerical relativity to study gravitational waves from colliding black 
holes [l]. The winning team used MPICH-G2 to run across four supercomputers in California and 
Illinois, achieving scaling of 88% (1,140 CPUs) and 63% (1,500 CPUs) computing a problem size 
five times larger than any other previous run. 

MPICH-G2 has also been successfully used in demonstrations that promote MPI as an application- 

5 Summary 

We have described MPICH-G2, an implementation of the Message Passing Interface that use8 
Globus Toolkit mechanisms to  support the execution of MPI programs in heterogeneous wide-area 
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environments. MPICH-G2 masks details of underlying networks, software systems, policies, and 
computer architectures so that diverse distributed resources can appear as a single #PI-COMKWORLD. 
Arbitrary MPI applications can be started on heterogeneous collections of machines simply by t y p  
ing mpirun: authentication, authorization, executable staging, resource allocation, job creation, 
startup, and routing of stdout and stderr are all handled automatically via Globus Toolkit mecha- 
nisms. MPICH-G2 also enables the use of MPI features for user-level management of heterogeneity, 
for example, via the use of MPI’s communicator construct to access system topology information. 
A wide range of successful application experiences have demonstrated MPICH-G2’s utility in prac- 
tical settings, both for traditional simulation applications and for less traditional applications such 
as distributed visualization pipelines. 

While MPICH-G2 is already a sophisticated tool that is seeing widespread use, there are also 
several areas in which it can be extended and improved. Support for MPI-2 features, in particular 
dynamic process management, will be invaluable for Grid applications that adapt their resource 
usage to  changing conditions and application requirements. This support will be provided as soon 
as it is incorporated into MPICH. More challenging is the design of techniques for effective fault 
management, a major topic for future research. Here we may be able to draw upon techniques 
developed within systems such as PVM [15]. 
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