High Average Power Free-Electron Lasers - A New Source for Materials Processing

PDF Version Also Available for Download.

Description

Material processing with lasers has grown greatly in the previous decade, with annual sales in excess of $1 B (US). In general, the processing consists of material removal steps such as drilling, cutting, as well as joining. Here lasers that are either cw or pulsed with pulsewidths in the mu-s time regime have done well. Some applications, such as the surface processing of polymers to improve look and feel, or treating metals to improve corrosion resistance, require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes. The development of FELs based ... continued below

Physical Description

144 Kilobytes pages

Creation Information

Shinn, Michelle D. December 1, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Material processing with lasers has grown greatly in the previous decade, with annual sales in excess of $1 B (US). In general, the processing consists of material removal steps such as drilling, cutting, as well as joining. Here lasers that are either cw or pulsed with pulsewidths in the mu-s time regime have done well. Some applications, such as the surface processing of polymers to improve look and feel, or treating metals to improve corrosion resistance, require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW, rendering these applications economically viable, since the cost/photon drops as the output power increases. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth {approx} 1 ps) output with very high beam quality. The first example of such an FEL is the IR Demo FEL at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), which produces nearly 2 kW of high average power on a routine basis. Housed in a multilaboratory user facility, we as well as members of our user community have started materials process studies in the areas mentioned earlier. I will present some of the first results of these studies. I will also briefly discuss the status of our DOD-funded project to upgrade the FEL to 10 kW in the mid IR.

Physical Description

144 Kilobytes pages

Source

  • Journal Name: SPIE vol. 4065 pp. 434-440 (2000); Journal Volume: 4065; Other Information: Submitted to SPIE vol. 4065 pp. 434-440 (2000)

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-ACT-00-11
  • Report No.: DOE/ER/40150-2040
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 793044
  • Archival Resource Key: ark:/67531/metadc738804

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 2000

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Feb. 5, 2016, 8:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Shinn, Michelle D. High Average Power Free-Electron Lasers - A New Source for Materials Processing, article, December 1, 2000; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc738804/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.