Effect of immiscible liquid contaminants on P-wave transmission through natural aquifer samples

PDF Version Also Available for Download.

Description

We performed core-scale laboratory experiments to examine the effect of non-aqueous phase liquid (NAPL) contaminants on P-wave velocity and attenuation in heterogeneous media. This work is part of a larger project to develop crosswell seismic methods for minimally invasive NAPL detection. The test site is the former DOE Pinellas Plant in Florida, which has known NAPL contamination in the surficial aquifer. Field measurements revealed a zone of anomalously high seismic attenuation, which may be due to lithology and/or contaminants (NAPL or gas phase). Intact core was obtained from the field site, and P-wave transmission was measured by the pulse-transmission technique ... continued below

Physical Description

19 pages

Creation Information

Geller, Jil T.; Ajo-Franklin, Jonathan B. & Majer, Ernest L. January 31, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We performed core-scale laboratory experiments to examine the effect of non-aqueous phase liquid (NAPL) contaminants on P-wave velocity and attenuation in heterogeneous media. This work is part of a larger project to develop crosswell seismic methods for minimally invasive NAPL detection. The test site is the former DOE Pinellas Plant in Florida, which has known NAPL contamination in the surficial aquifer. Field measurements revealed a zone of anomalously high seismic attenuation, which may be due to lithology and/or contaminants (NAPL or gas phase). Intact core was obtained from the field site, and P-wave transmission was measured by the pulse-transmission technique with a 500 kHz transducer. Two types of samples were tested: a clean fine sand from the upper portion of the surficial aquifer, and clayey-silty sand with shell fragments and phosphate nodules from the lower portion. Either NAPL trichloroethene or toluene was injected into the initially water-saturated sample. Maximum NAPL saturations ranged from 30 to 50% of the pore space. P-wave velocity varied by approximately 4% among the water-saturated samples, while velocities decreased by 5 to 9% in samples at maximum NAPL saturation compared to water-saturated conditions. The clay and silt fraction as well as the larger scatterers in the clayey-silty sands apparently caused greater P-wave attenuation compared to the clean sand. The presence of NAPLs caused a 34 to 54% decrease in amplitudes of the first arrival. The central frequency of the transmitted energy ranged from 85 to 200 kHz, and was sensitive to both grain texture and presence of NAPL. The results are consistent with previous trends observed in homogeneous sand packs. More data will be acquired to interpret P-wave tomograms from crosswell field measurements, determine the cause of high attenuation observed in the field data and evaluate the sensitivity of seismic methods for NAPL detection.

Physical Description

19 pages

Notes

OSTI as DE00809308

Source

  • 2003 Annual Meeting/SAGEEP, San Antonio, TX (US), 04/06/2003--04/10/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--52131
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 809308
  • Archival Resource Key: ark:/67531/metadc738774

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 31, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 20, 2016, 1:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Geller, Jil T.; Ajo-Franklin, Jonathan B. & Majer, Ernest L. Effect of immiscible liquid contaminants on P-wave transmission through natural aquifer samples, article, January 31, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc738774/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.