Effect of Pressure Transmission Lines on the Frequency Response of Pressure Transducers

PDF Version Also Available for Download.

Description

It is well known that the length and diameter of the transmission lines between a pressure transducer and the pressure source can significantly affect the dynamic frequency response of the transducer. A new lumped parameter model has been developed to predict the time and frequency response of any number of different transducers connected in parallel in a manifold. While the model is simple to apply, it can provide quantitative information given the transducer and transmission line characteristic parameters. More importantly, the model can be used to evaluate the measured, in-situ response. this provides the natural frequency and the effective damping ... continued below

Physical Description

906 Kilobytes pages

Creation Information

Kirouac, G.J. November 13, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

  • Lockheed Martin
    Publisher Info: Lockheed Martin Corporation, Schenectady, NY 12301 (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

It is well known that the length and diameter of the transmission lines between a pressure transducer and the pressure source can significantly affect the dynamic frequency response of the transducer. A new lumped parameter model has been developed to predict the time and frequency response of any number of different transducers connected in parallel in a manifold. While the model is simple to apply, it can provide quantitative information given the transducer and transmission line characteristic parameters. More importantly, the model can be used to evaluate the measured, in-situ response. this provides the natural frequency and the effective damping which can then be used to generate a frequency response curve. The model is also useful for designing a new pressure transmission system, which will have the required frequency response. The model was qualified by comparison to measurements of the step-function pressure response of a number of different transducers and test installations. With the aid of the model, the system resonant frequency and damping can be determined. Additional damping can be added if necessary to prevent ringing of the signal and to assure an accurate pressure measurement with a flat frequency response. For all of the experimental systems evaluated in this work, the response at the natural frequency was significantly underdamped and ringing was observed. This means that to perform accurate measurements damping needs to be added to the system. It was observed that the use of flexible pressure lines versus hard lines does increase the damping and may therefore be useful in certain situations. Equations were developed to permit sizing an orifice to be added to the system to provide the necessary damping.

Physical Description

906 Kilobytes pages

Notes

OSTI as DE00821309

Source

  • Other Information: PBD: 13 Nov 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LM-00K100
  • Grant Number: AC12-00SN39357
  • DOI: 10.2172/821309 | External Link
  • Office of Scientific & Technical Information Report Number: 821309
  • Archival Resource Key: ark:/67531/metadc738739

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 13, 2000

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 28, 2016, 8:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kirouac, G.J. Effect of Pressure Transmission Lines on the Frequency Response of Pressure Transducers, report, November 13, 2000; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc738739/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.