Phosphate-stabilized Lithium intercalation compounds

PDF Version Also Available for Download.

Description

Four manganese and iron phosphates with alluaudite or fillowite structures have been prepared by solid state reactions: Na2FeMn2(PO4)3, LiNaFeMn2(PO4)3, NaFe3(PO4)3, and Na2Mn3(PO4)3. LixNa2-xFeMn2(PO4)3 with x close to 2 was prepared from Na2FeMn2(PO4)3 by molten salt ion exchange. These materials are similar in stoichiometry to the phospho-olivines LiFe(Mn)PO4, but have a more complex structure that can accommodate mixed transition metal oxidation states. They are of interest as candidates for lithium battery cathodes because of their somewhat higher electronic conductivity, high intercalant ion mobility, and ease of preparation. Their performance as intercalation electrodes in non-aqueous lithium cells was, however, poor.

Physical Description

vp.

Creation Information

Richardson, Thomas J. July 22, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Four manganese and iron phosphates with alluaudite or fillowite structures have been prepared by solid state reactions: Na2FeMn2(PO4)3, LiNaFeMn2(PO4)3, NaFe3(PO4)3, and Na2Mn3(PO4)3. LixNa2-xFeMn2(PO4)3 with x close to 2 was prepared from Na2FeMn2(PO4)3 by molten salt ion exchange. These materials are similar in stoichiometry to the phospho-olivines LiFe(Mn)PO4, but have a more complex structure that can accommodate mixed transition metal oxidation states. They are of interest as candidates for lithium battery cathodes because of their somewhat higher electronic conductivity, high intercalant ion mobility, and ease of preparation. Their performance as intercalation electrodes in non-aqueous lithium cells was, however, poor.

Physical Description

vp.

Source

  • Journal Name: Journal of Power Sources; Journal Volume: 119-121; Other Information: Journal Publication Date: 6/1/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--51158
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 816063
  • Archival Resource Key: ark:/67531/metadc738659

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 22, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 1:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Richardson, Thomas J. Phosphate-stabilized Lithium intercalation compounds, article, July 22, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc738659/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.