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Abstract

A thermodynamic approach is used to develop a framework for modeling uranium-
niobium alloys under the conditions of high strain rate. Using this framework, a three-
dimensional phenomenological model, which includes nonlinear elasticity (equation of
state), phase transformation, crystal reorientation, rate-dependent plasticity, and
porosity growth is presented. An implicit numerical technique is used to solve the
evolution equations for the material state. Comparisons are made between the model
and data for low-strain-rate loading and unloading as well as for heating and cooling
experiments. Comparisons of the model and data also are made for low- and high-
strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent
niobium alloy is used in the comparisons of model and experiment.

I. Introduction

In an effort to improve ductility and corrosion resistance, niobium has been used to alloy
uranium. Uranium-niobium (U-Nb) alloys within the range from 5 weight percent (U-5Nb) to 8
weight percent (U-8Nb) of niobium exhibit the shape memory effect [1–5]. A phase diagram for
U-Nb alloys in the vicinity of the monotectoid composition (U-6Nb) is provided in Fig. 1. At
elevated temperatures (T > 600 K), U-6Nb is stable in the body-centered cubic (bcc) γ  phase. As
the alloy is cooled rapidly to room temperature, it undergoes a two-stage transformation process.
Dilatometry measurements (Fig. 2) indicate that at Tc ~ 570 K, a displacement-ordering
transformation from the γ  phase to a distorted bcc (tetragonal) 0γ  phase is observed. The γ  to

0γ  transformation temperature was denoted Tc to indicate the constriction arrest, which is the
accepted notation for ordering reactions. Because this transformation is a rapid, isothermal
transformation at high temperature, an in-situ structural investigation is difficult to obtain.
Information can be obtained for this transformation at larger niobium concentrations, where the

0γ  phase exists at room temperature (Fig. 1). This transformation was considered to be a pre-

martensitic phenomenon. As U-6Nb is cooled further, the transformation from the 0γ  phase to
the monoclinic α ′′  phase is observed. This transformation starts at the temperature Ms ~ 435 K
and is finished by Mf ~ 350 K.
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Figure 1. Phase diagram for uranium-niobium alloys in the vicinity of the monotectoid [3].
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Figure 2. Dilatometry measurements for U-6Nb [4].

The transformations to both 0γ  and α ′′   are diffusionless and thought to occur by shear or
displacive mechanisms, which require only short-range motions of the atoms. That is,
neighboring atoms remain neighbors, but changes in bond angles and lengths result from these
transformations. The α ′′  phase is metastable and will decompose if the alloy is heated or aged
for long periods (years). The aged material exhibits a loss in ductility and corrosion resistance.
The 0γ  to α ′′  transformation was classified as a martensitic transformation [1–4]:
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1. the α ′′  microstructure is similar to nonferrous alloys that undergo a martensitic
transformation as determined by diffraction techniques,

2. the volume expansion accompanying the transformation is small,
3. the stress versus strain behavior under uniaxial tension exhibits reorientation of the

crystal structure, and
4. the alloy displays strain recovery on heating.

The time for the 0γ  to α ′′  transformation is short (approximately 10 ns). The martensite
start (Ms) and finish (Mf) temperatures are inverse functions of the heating rate. The dependence
of Ms and Mf on the heating rate decreases for higher rates. The thermal transformation
hysteresis associated with the reverse transformation was considered negligible to within
experimental error [1,2]. However, recent experiments have better defined the difference
between the austenite ( 0γ ) finish (Af) and martensite (α ′′ ) start (Ms) as well as the austenite start
(As) and martensite finish (Mf) temperatures.

At room temperature, the monoclinic α ′′  lattice appears as martensite plates, which can
form in many orientations (variants) in the same parent phase (γ ) grains. These variants
subdivide the parent grains. The initial crystalline structure is random. Consequently, material
texture can be neglected. Furthermore, little difference was observed between the tensile and
compressive responses of the material [5]. An elastic material response is observed below strains
of approximately 0.3%. As the α ′′  phase is loaded beyond strains of 0.3%, the deformation
process is dominated by continuous crystalline reorientation associated with a detwinning
process, as reported by x-ray and neutron diffraction experiments [6,7]. That is, orientations
(variants) that are favored by the loading direction increase in volume fraction at the expense of
less favored orientations. This reorientation process is observed for large strains (εL ~ 7%). Once
the strain limit (εL) for the reorientation process is exceeded, dislocation slip is observed to
dominate. For strains between 0.3% and 7%, moderate strain recovery is obtained during a
nonlinear unloading process. The yield strength varies little with niobium content for alloys close
to the monotectoid composition. Experimental data [5] indicate a minimum yield strength for
alloys of 6 weight percent. Heat activated strain recovery (εR ~ 4.2%), which is associated with
martensite recovery, can be obtained.

Many applications utilizing shape memory alloys (SMAs) require large deformations
under high-strain-rate conditions with few mechanical or thermal cycles. Applications include,
for example, impact, penetration, and weapons performance scenarios. In addition to phase
transitions and reorientation, physical processes including nonlinear elasticity, plastic slip, and
failure must be modeled to address large-strain, high-strain-rate deformations. Nonlinear
elasticity is necessary to model the material response to shock loading accurately. At high
stresses, dislocations are generated within the material, resulting in irreversible strains.
Deforming the detwinned state plastically also can inhibit the material from transforming back to
the parent state when the temperature of the material is increased. The preferred variant
microstructure is ‘locked in’ by the dislocations, preventing the material from transforming back
to the parent or multiple variant microstructure. Subjecting the material to higher stresses
ultimately leads to pore nucleation, growth, and coalescence, which result in ductile failure.
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Theories that address the phase transition and reorientation phenomena inherent in SMAs
are available for a number of length scales. At the atomistic scale, molecular dynamic
simulations have been conducted, which have provided insight into phase transitions [8]. The
atomistic models may be used to guide the free-energy formulations used in single-crystal
models. On the scale of a single crystal, Ginzburg-Landau [9] and Multi-variant [10–12]
theories, which model the phase transition and reorientation processes due to changes in the
stress and temperature, are available. Homogenization techniques [13] can be used to obtain the
polycrystalline response using the single-crystal theories. The polycrystal theories may be used
to develop mechanical potentials, which are necessary for engineering models. Finally,
macromechanical models can be implemented into computer analyses to obtain the response of
engineering structures utilizing SMAs to mechanical and thermal changes. A number of
macromechanical models are available in the literature [14–18]. The majority of the
macromechanical models address one-dimensional problems under the conditions of small
strains and small strain rates. Models, which address large-strain conditions, including plasticity
[19] also have been developed.

A phenomenological approach is provided for modeling high-strain-rate deformations,
including nonlinear elasticity, reorientation (twinning), dislocation slip (plasticity), solid-solid
phase transitions, and material failure. A framework for the constitutive model will be pursued in
Section II, using a thermodynamic approach for modeling SMAs. In Section III, the framework
will be generalized to address high-strain-rate applications. An implicit numerical approach for
implementing the constitutive model into finite-element or finite-difference structural analyses
will be considered in Section IV. Simulations utilizing the model and comparisons to data will be
presented in Section V. A summary will be provided in Section VI.

II. Thermodynamic Framework

The total specific Helmholtz free energy )(χψ , where ],,,,,,[ ξεεεεχ i
ij

rpe
ij DT= are the

state variables, is expressed as the average of the free energy [20–26] of each species
AMkDT rpe

ij
k ,),,,,,( =εεεψ and the free energy [26] of mixing ),( ξεψ i

ij
mix

ψ χ ξψ ξ ψ ψ( )    ( )   = + − +M A mix1   . (II.1)

The variables ,, i
ij

e
ij εε T, and ξ  are the elastic strain, inelastic strain, temperature, and volume

fraction of the product phase (M), respectively. Also, pε and rε are hardening variables for
plasticity and crystal reorientation. The variable D characterizes the amount of material damage.
The Helmholtz free energy for the product and parent (A) phases may be written [20,21,26]
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  . (II.2)
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It is assumed that the material of interest is isotropic. In Eq. II.2, kλ  and kµ  are the Lame

coefficients, kkk Bαβ 3=  where kα  is the coefficient of thermal expansion and kB  is the bulk

modulus ( kkkB µλ 3
2+= ), ck is the specific heat, and θ  is a temperature difference ( 0TT −=θ ).

The reference temperature is 0T . The parameters kγ  and kη  are material parameters related to
plasticity and reorientation, respectively. Also, ρ is the material density, which is assumed to be

identical for both phases. The function ),( Df pp ε  is a general isotropic description for plasticity
[20]. It is assumed that the material fails in a ductile fashion. Consequently, both strain hardening
( pε ) and softening due to damage (D) are included in the expression for plasticity [27–29]. The
function )( rrf ε  is an isotropic description for crystal reorientation, which is written in terms of

the hardening parameter rε . The parameters ks0  and k
0ψ  are material constants, which define the

reference state. The free energy of mixing is expressed as a quadratic function of the volume
fraction of the phases and the inelastic strain [26]

ξεεεξξεψ i
ijij

i
kl

i
ijijkl

i
ij

mix bbb      ),( 2
12

2
1 ++=   . (II.3)

The coefficients ,, ijbb and ijklb  are material parameters. The rate of deformation (strain rate) is
decomposed into its elastic and inelastic components [26]

     i
ij

e
ijij εεε &&& +=   . (II.4)

The inelastic rate of deformation (
i
ijε& ) includes the rates due to crystal reorientation (

r
ijε& ), phase

transformation (
t
ijε& ), and slip plasticity (

p
ijε& ). Furthermore, it is assumed that the rate of

deformation due to transformation may be expressed as [26, 30–33]

ξε && ij
t
ij Λ=  (II.5)

where [26]
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In Eq. II.6, 
ijs  is the deviatoric component of the stress )( 3

1
ijkkijijs δσσ −= , τ is the von Mises

stress )( 2
3

ijij ss=τ , and te  is the effective transformation strain )( 3
2 t

ij
t
ij

t eee &&& = . The deviatoric

component of strain is 
ije . Also, 0h  and 0g  are material constants, where 0h  is the recovery

strain and 0g  is the relative volume change due to transformation.
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The generalized thermodynamic forces may be derived using Eqs. II.1–II.3 [20–22]
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In Eq II.7, s and ijσ  are the entropy and Cauchy stress, respectively. Average material properties

( ηγβµλ ,,,,,, 0sc ) are defined using the rule of mixtures, e.g.

AM λξξλλ )1(    −+=   . (II.8)

Also, AM λλλ −=∆  denotes the difference in the material properties of the product and parent
phases.

Consider the Clausius-Duhem inequality [20–23], which defines the dissipation rate (Φd)
for the thermomechanical process in the absence of external heat sources

0    )  (    , ≥−+−=Φ
T

Tq
Ts ii

ijijd
&&& ψρεσ   , (II.9)

where iq  is the heat flux. Substituting Eqs. II.4, II.5, and II.7 into Eq. II.9 results in the
expression for the dissipation rate

Φ Σ Ω Π Σ Ω Ωd ij ij
r r r

ij ij
p d p p i iD

q T

T
  ˙ ˙   ˙   ( ˙ ˙ ˙ )    ,= −( ) + + − − − ≥ε ε ξ ε ε 0  . (II.10)

The thermodynamic variables Σij and Π are defined as [26]
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  . (II.11)

It is assumed that the dissipation may be decomposed [20] into four separate and
independent processes, three mechanical (reorientation, phase transformation, and combined slip
plasticity and damage) and one thermal. Therefore, three independent mechanical potentials for
reorientation, transformation, and plasticity ( ,, tr φφ and pφ ) will be defined, from which the
inelastic parameters may be obtained [20,21,24]
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In Eqs. II.12, rλ& , tλ& , and pλ&  are the Lagrange multipliers for crystal reorientation,
transformation, and plasticity, respectively. The thermal potential results in Fourier’s Law for
heat conduction [20]. Consider, for example, the inelastic mechanical potentials

φ ε

φ

φ

r
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r r r

t t
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In Eq. II.13, 
ijijij δΣ+Σ=Σ′  and kkΣ−=Σ 3

1  are the deviatoric and volumetric components of

ijΣ , respectively. The two signs (+/-) in Eq. II.13b allow for hysteresis [26] in the phase
transformation process. The inelastic variables may be obtained from Eqs. II.12 and II.13.
Therefore, for crystal reorientation and transformation, the inelastic variables are

t
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  . (II.14)
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The multipliers for reorientation ( rλ& ) and transformation ( tλ& ) are obtained from the consistency

conditions ( 0=rφ& and 0=tφ& ). In Eq. II.14, Σ′  is an effective stress ( ijijΣ′Σ′=Σ′ 2
3 )  .

Assume, for example, that the plastic term in the expression for the Helmholtz free
energy (Eq. II.2) may be written

)1ln()(),( 0 DgDf ppp −
Σ

= ε
ρ

ε   . (II.15)

Also, if the plastic-yield function degrades linearly with the hydrostatic stress (Σ < 0) and
linearly with damage, then

Y D h
g hp d p p p
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0
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γ ε
  . (II.16)

Substituting Eqs. II.15 and II.16 into II.12 provides the plastic-strain rate ( p
ijε& ), the strain-rate-

hardening variable ( pε& ), and the rate of change of damage (D& ):
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  . (II.17)

Eq. II.17c resembles a classical void growth expression [27] if the damage (D) is interpreted as
the void volume fraction (φ ). The advantage of this associative formulation is that the Clausius-
Duhem inequality is satisfied automatically. That is, with a judicious choice for the inelastic
mechanical potentials in terms of the generalized thermodynamic forces, an associated
formulation can be obtained systematically for the state variables ( Dpp

ij
rr

ij ,,,,, εεξεε ), which
automatically satisfy the dissipation inequality.
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III. Constitutive Model

In an effort to address high-strain-rate applications, the framework developed in Section
II will be generalized in a heuristic fashion. Extensions include nonlinear elasticity (equation of
state), rate-dependent plasticity, and ductile failure by porosity growth. Phenomenological
mechanical potentials for crystal reorientation, phase transformation, and plasticity will be
introduced for demonstrative purposes. Physically based potentials will be pursued in a future
investigation. Finally, a phase diagram will be introduced as a method of summarizing the model
in a two-dimensional (stress versus temperature) space.

A. Equation of State

From Eq. II.7b, the stress is written as

ij
e
ijij

e
kkij βθδµεδλεσ   2    −+=   . (III.1)

The expression for the stress (Eq. III.1) will be generalized in this section to include high-
pressure effects. The stress ( ijσ ) is decomposed into its deviatoric ( ijs ) and volumetric

( kkP σ3
1−= ) components

ijijij Ps δσ      −=   . (III.2)

The deviatoric component is written directly from Eq. III.1

e
ijij es   2  µ=   .  (III.3)

For most metals, it is a good assumption to include the effects of nonlinear elasticity only in the
volumetric (pressure) component. A nonlinear expression for the pressure is referred to as the
equation of state. Consider a porous material composed of the solid material and voids.
Neglecting the gas pressure in the voids, the equation of state for this porous material may be
written as [29]

),,( )1(  ),,,( ξφξφ sss evPevP −=   .  (III.4)

In Eq. III.4, φ  is the porosity or void volume fraction. The solid material properties are

subscripted (i.e., sss Pev ,, ). Also, v and e are the specific volume and the specific internal energy

of the porous material, respectively. The difference between the solid ( se ) and porous material
(e) internal energies is related to the void surface energy, which is small [29]. Therefore, it will
be assumed that e ~ es. The equation of state for the solid material may be written, for example
[34],

ssssssHsss ePeP )1(  )1(   ),,( 02
1 ερεξε −Γ+Γ+=   .  (III.5)
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In Eq. III.5, Γs is the Gruneisen coefficient of the solid material and 0sρ  is a reference density.

The density is written in terms of the volumetric strain ( 01 sss ρρε −= ). The Hugoniot pressure
may be approximated by a polynomial,

3
3

2
21 )(  )(    sssH aaaP εεε ++=   .  (III.6)

The material coefficients in Eqs. III.5 and III.6 are obtained using a rule of mixtures (Eq. II.8) to
account for the differences in the two phases. Using Eqs. III.2 through III.4, the stress field may
be updated from the incremental expressions

φξ
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+=+

  .  (III.7)

In Eq III.7a, the term ijr  accounts for material rotation [35,36]. For example, if a Jaumann-Noll
stress rate is used, then

kjikkjikij ssr ωω −=   ,  (III.8)

where ijω  is the spin tensor. An alternative approach would be to solve the constitutive model in
the unrotated reference frame [37]. Eq. III.7b may be written as

ξεαε dKddesdBdP p
kkijijskk ++Γ+−=  (III.9)

where PB s )1( Γ+−=α . Eq. III.9 is obtained using the equations for conservation of mass,

kkd
v

dv
ε=   ,  (III.10)

and conservation of energy, in the absence of heat flux and heat source terms,

ijij dvde εσ=   .  (III.11)

Also, the growth of damage or porosity (Eq. II.17c) is expressed in terms of the volumetric
plastic strain [27]

p
kkdd εφφ )1( −=   . (III.12)

The bulk modulus ( sB ), the Gruneisen coefficient ( sΓ ), and the transformation coefficient ( sK )
for the solid constituent are defined by the thermodynamic derivatives
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It is assumed that the bulk material properties are degraded linearly with solidity (i.e., sBB ω=

where φω −= 1 ). Therefore, once an equation of state has been defined for the material, the bulk
modulus, Gruneisen coefficient, and transformation coefficient may be derived using Eqs. III.13.
In the above development, it has been assumed that the damage (D) is equivalent to the porosity
(φ ).

B. Reorientation

Consider the irreversible potential for reorientation provided by Eq. II.13,

φ εr
ij

r
ij ij

r r rs s( , )   [ ( ) ]  Σ Ω Ω Ω= − + =3
2 0 0   ,  (III.14)

where the back-stress (µ i
ij) has been neglected (Eq. II.11a). From Eqs. II.12 and III.14,

expressions for the rate of deformation (
r
ijε& ) and rate of hardening ( rε& ) due to reorientation, may

be obtained as
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The parameter rλ&  may be obtained from the consistency condition (  0  =rφ& )
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Eqs. III.15 and III.16 provide the expression for the reorientation strain rate and hardening once
the function rΩ  has been specified.
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C. Transformation

Neglecting hysteresis, the transformation potential may be written (Eq. II.13)

0     =Π=tφ   .  (III.17)

The thermodynamic force Π (Eq. II.11) is approximated as

0000         ψρθρξρτ ∆−∆+−−≈Π sbPgh   .  (III.18)

This approximation for Π results in linear transformation boundaries in the τ-T and P-T planes,
which are used in classical approaches for shape-memory alloys. The rate of change of the
martensite volume fraction may be written (Eq. II.12)

tt
t

λλ
∂
∂φ

ξ &&&      =
Π

=   .  (III.19)

Again the parameter tλ&  may be obtained from the consistency condition (  0=tφ& )

])(     [
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The material constants are obtained in a τ-T plane as
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In Eq. III.21, the martensitic start (Ms) and finish (Mf) temperatures are the temperatures that
define the beginning and end of the phase transition from the parent (A) to the product (M)
phases for zero stress conditions. The slope of the transformation boundary ( Tcm ∆∆≡ /τ ) is
assumed constant.

D. Rate-Dependent Plasticity and Ductile Failure

The mechanical potential for plasticity, including material hardening and softening, is
expressed as [27–29]

φ
ε ε

φφp ij ij

s
p

s
p

s
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s s

Y T
Y p  

( , ˙ , )
( , )  =

[ ]
− =

3
2

2 0   .  (III.22)

There are numerous models for the plastic flow stress (Ys
p). For this development, a

phenomenological model will be used [38]
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In Eq. III.23, Tm is the melting temperature of the material, and 1
0 1 −= sε&  is a reference strain

rate. The constants ci, n, and m are material parameters. Also, p
sε&  is the equivalent plastic-strain

rate in the solid material. The equivalent plastic-strain rate for the solid may be obtained from an
expression for the balance of plastic work [27]

ρ
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ε p
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s

p
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p
sY &&

  =   .  (III.24)

In Eq. (III.24), φρρ −= 1/ s   .

The degradation of the strength of the material as a result of porosity growth is written as
[27–29]
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In Eq. III.25, q  and 0Y  are material constants. Referring to Eq. II.12, the plastic-strain rate may
be written
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The growth of porosity (Eq. II.17c) is approximated as [27]

p
kkεφφ &)1( −≈   .  (III.27)

The right-hand side of the equation for the rate of change of porosity includes only the effect of
void growth. A more general expression also should include void nucleation and coalescence
[27]. These effects will be included in a future effort.
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E. Phase Diagram

A phase diagram [14,15] provides a convenient method for representing the constitutive
model that was developed in the previous sections. The phase diagram is defined in equivalent
stress (τ) and temperature (T) space. A phase diagram, which has been used in numerous models
for shape-memory alloys, is shown in Fig. 3. For this phase diagram, crystal reorientation of the
martensitic (product) phase occurs between the critical start ( r

sτ ) and finish ( r
fτ ) stresses. Also,

plastic slip is defined by the yield stress ( pτ ). In Fig. 3, the transformation from the austenitic
(parent) phase to the martensitic phase begins at the boundary defined by the stress )(TMS

s ττ =

and ends at the boundary )(TMF
f ττ = . The reverse transformation (martensite to austenite)

begins and ends at the boundaries )(TASτ and )(TAFτ , respectively. In Fig. 3, the directions of
the phase transformations are indicated by the arrows. This phase diagram includes hysteresis in
the transformation process.
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Figure 3. Phase diagram for a representative shape-memory alloy.

The deformation of uranium-niobium (U-Nb) alloys is considered in this investigation.
The proposed τ-T phase diagram for U-Nb is shown in Fig. 4. This phase diagram was
constructed using information that is available for U-Nb alloys [1–5]. Negligible transformation
hysteresis has been observed for U-Nb [1–4]. Therefore, only one region ( 0=tφ ) is used to

define both the forward and the reverse transformations. Also, only the 0γ  and α ′′  phases are
considered in this investigation. The γ  phase will be included in future investigations, as the
necessary information related to the transformation process and the material properties for the
high-temperature phase become available. The phase transformation region is defined by the
linear boundaries )(Tsτ and )(Tfτ . Crystal reorientation, which is defined by the potential rφ ,

is initiated at the stress rrr
0Ω+Ω=τ . Based on experimental observations [6,7], it was

determined that reorientation of the low-temperature phase (α ′′ ) is initiated at a critical stress
( rτ ) and continues until dislocation slip is observed. This approach differs from previous
methods [16,17] where it was concluded that an elastic region exists between the reorientation
and dislocation slip regimes with the elastic moduli of the twinned and detwinned states being
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different. Although reorientation and plasticity occur simultaneously, they will be modeled as
separate processes in this model. Therefore, the reorientation process is assumed to end at the

start of crystal slip, which is defined by φτ YY p
s

p = . This assumption is justified by the
experimental observation that below 7% strain, most of the strain may be recovered by heating.
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Figure 4. Phase diagram used for U-6Nb studies.

IV. Numerical Implementation

For a dynamic analysis, the material state may be obtained knowing the rate of
deformation ( ijε& ) and the temperature (T) fields, which result from solutions to the conservation

of momentum and energy equations, respectively. A robust and numerically efficient implicit
numerical algorithm [39,40] has been used to implement the proposed model. An implicit
approach offers the advantage of placing no additional stability constraints on the time-step size
( tδ ) of the dynamic analysis, which utilizes the constitutive model. Consequently, compared to
an explicit algorithm, larger time-step sizes may be used and hence a significant reduction in the
cost of the analysis can be achieved. In this development, τs is the stress defining the start
( 0=ξ ) of the phase transformation region and τf is the stress defining the end ( 1=ξ ) of the

phase transformation region for a specified temperature (T). The values of sτ and fτ are
obtained from the transformation potential ( tφ ). Also, the plastic stress is defined as

φτ YY p
s

p = . Similarly, the reorientation stress is rrr
0Ω+Ω=τ  (Fig. 4).
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For each computational cell, a trial-material state [s*
ij, P

*, φ*, ξ*] is computed first,
assuming a purely elastic deformation
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where n
ijs , nP , nφ , and nξ are the values of the material state at the end of the previous time

step. The trial-material state obtained from Eqs. IV.1 is used to determine where the material
state lies on the phase diagram (Fig. 4).

A. Reorientation

If the trial-stress state satisfies the conditions τr < τ* < τp and τ* > τf, then the new
material state is obtained utilizing the system of equations that apply for crystal reorientation
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where rr δεδλ = . Also, rδλ  is the incremental change in the variable rλ  for the time step (i.e.,
trr δλδλ &= ). Eqs. IV.2 are used to develop the following equations for the new material state

(
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  ,  (IV.3)

where *** 2
3

ijij ss=τ . Eliminating τ, Eq. IV.3 provides a simple nonlinear equation for the

reorientation strain. The remaining variables may be obtained by a back-substitution procedure.

B. Plasticity

If the trial state satisfies the conditions τ* > τp and τ* < τs or τf < τ*, then the new material
state is determined by the equations that define plastic deformation, including porosity growth
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A solution for Eqs. IV.4 can be obtained by solving a system of nonlinear equations for the
material state ( pP δλφτ ,,, )
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In deriving Eqs. IV.5, the following expressions for the incremental plastic strains were used:

δ δλ

δε
φ

δλ

e
s

Y

q

Y

P

Y

ij
p ij

s
p

p

kk
p p

=
( )

=
−









3

3 3
2

2

0 0

sinh

  .  (IV.6)

In the numerical strategy, a solution of Eqs. IV.5 is obtained by eliminating the von Mises stress
(τ ). Next, an iterative solution for the pressure (P) and plastic multiplier ( pδλ ) is obtained,
holding the porosity (φ) fixed. The remaining state variables are obtained using a back-
substitution process.

C. Transformation

If the trial state satisfies the conditions τs < τ* < τf and τ* < τp, then the new material state
is determined by the equations that define phase transformation
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Eqs. (IV.7) may be used to develop a system of nonlinear equations for the stress state [τ,P,ξ]

)(

*1

*
3

1

0000

0

θψρξρτ

δξ

ττδξ
µ
µ

τ
µ

sbPgh

PP
B

B

h

∆−∆=−−

=






 ∆
−

=














 ∆
−+

  .  (IV.8)

By eliminating the von Mises stress (τ ), a simple iterative technique is used to solve for the
pressure (P) and martensite volume fraction (ξ ). The remaining state variables are obtained by
back substitution.

D. Plasticity and Transformation

If the trial state satisfies the conditions τs < τ* < τf and τ* > τp, then the new stress state is
determined by the equations that define combined phase transformation and plasticity, including
porosity growth,
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Eqs. IV.9 may be used to develop a system of nonlinear equations for the material state
[ δξδλφτ ,,,, pP ]
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The plastic strains ( p
ijδε ) and transformation strains ( t

ijδε ) are obtained from Eqs. IV.6 and IV.7,
respectively. Again, the von Mises stress (τ ) is eliminated from Eqs. IV.10. A new material state
is obtained by iteratively solving for the pressure (P), martensite volume fraction (ξ ), and the

plastic multiplier ( pδλ ), while holding the porosity (φ ) fixed. The remaining state variables are
obtained by back substitution.

V. Results

The model developed in the previous sections is used to simulate both high- and low-
strain-rate deformations of U-6Nb, including the effects of phase transformations, crystal
reorientation, plasticity, and failure. A limited number of properties for U-6Nb are available in
the literature [1–5,41–46]. Unfortunately, the available properties vary significantly with the
pedigree of the material (i.e., heat treatment, forming process, impurities, grain size, etc.). It also
is difficult to obtain all of the necessary material parameters, especially the properties for the
high-temperature phases (γ and 0γ ) and those necessary to define the phase diagram.

Consequently, only the 0γ  and α ′′  phases are modeled in the simulations provided. The γ  phase
will be included when the data necessary to define the material properties are available. Two
material pedigrees are considered in this investigation. The material used in the experiments of
Cady, et al. [5] was chosen as the baseline material. The material properties are provided in
Table I. With the exception of the yield strength, the properties for the 0γ  phase were taken to be

identical to the α ′′  phase. The yield strength (c1) for the α ′′  and 0γ  phases were taken to be
0.780 and 0.875 GPa, respectively. These values were based on data for U-6Nb and U-8Nb [5].
The material used by Vandermeer, et al. [1–4] was chosen as the second pedigree. Only the
initial yield strength was modified (c1 = 0.640 GPa) relative to the baseline parameters in Table I
for the second material. The phase transformation start (Ms) and finish (Mf) temperatures were
obtained from Vandermeer, et al. [1–4]. Additional data are being pursued to define better the
necessary material properties. The values of the bulk modulus (Bs) and the Gruneisen coefficient
(Γs) are assumed constant for the simulations.
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Table I. Material parameters (yield strength for the material of Vandermeer
[1–4] is provided in parentheses).

Material Parameter U-Nb   [1–5 and 41–46] Quartz   [50–53]
ρ (gm/cm3) 17.42 2.65
µ (GPa) 28.0 10.0
B (GPa) 114.0 95.4
Γ 2.03 0.653
c (cal/gm K) 0.0275 0.1863
Tmelt (K) 1475
T0 (K) 270 270

cm (GPa/K) 0.0005

q 1.0
φ0 0.001
Y0 (GPa) 0.55
γ0 –0.34
γd 2.50
γa –0.50
φf 0.30

c1 (GPa) 0.780 (0.640) / 0.875
c2  (GPa) 0.253
c3 0.0118
n 0.220
m 1.0

h0 0.09
g0 0.0

Ms (K) 430
Mf (K) 340

Crystal reorientation is modeled for the α ′′  phase only. A piecewise linear function was
used to model the inelastic potential ( rφ ) for crystal reorientation. That is, the functional form
for the reorientation flow stress is
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Values for the parameters ( a b a b aYk Yk mk mk k, , , , ,ε and kbε ) in Eq. V.1 are provided in Table II for

both the materials of Cady and Vandermeer (in parentheses). Only quasi-static experiments were
available for the Vandermeer material. Consequently, the strain-rate effect was not modeled for
this material ( b b bYk mk k= = =ε 0). These parameters were chosen to provide a good comparison to
the uniaxial stress experiments.

Table II. Material parameters for crystal reorientation (properties for the material of
Vandermeer [1–4] are provided in parentheses).

k  = 1 2 3
aYk  (GPa) 0.04453 (0.04200) 0.23004 (0.15800) 0.40451 (0.25200)

bYk  (GPa  s) 1.170 × 10–4 (0.0) 0.827 × 10–4 (0.0) 0.354 × 10–4 (0.0)

amk  (GPa) 35.47 (26.40) 6.61 (5.60) 16.29 (0.0)

bmk  (GPa  s) –6.59 × 10–3 (0.0) –7.83 × 10–4 (0.0) 1.10 × 10-5 (0.0)

a kε
0.00033 (0.00030) 0.0056 (0.0047) 0.0319 (0.0214)

b kε  (s) 3.85 × 10-7 (0.0) 3.95 × 10-7 (0.0) –4.90 × 10-6 (0.0)

Void nucleation has not been modeled in the existing theory. Void nucleation may be
included by the addition of a term ( nφ& ) to Eq. III.27 [27]. Void coalescence may be included by

accelerating the rate of production of porosity after a critical value ( fφ ) is achieved [27]. In the
existing approach, however, the stiffness of a computational cell is set to zero when the stress
state reaches a surface defined in stress-triaxiality ( τ/P ), plastic strain ( pe ), and porosity (φ )
space [29,38]
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Values for the constants in Eq. V.2 also are provided in Table I [41].

A representative stress-versus-strain path using the proposed model is provided in Fig. 5.
The conditions of uniaxial stress and a constant temperature (750 K), which is higher than the
martensitic start temperature (Ms = 430 K), are imposed for this simulation. The material initially
is in the austenitic ( 0γ ) phase. An elastic response (εe) is followed up to a stress of
approximately 0.16 GPa. Between approximately 0.16 GPa and 0.20 GPa the deformation path is
within the phase transformation regime (εt), where the material is converted from austenite ( 0γ )
to martensite (α ′′ ). Crystal reorientation (εr) follows between 0.20 GPa and approximately 0.57
GPa. The remaining part of the loading path is within the plastic regime (εp) up to a strain of
0.20. The unloading path initially follows a linear elastic path (εe) followed by the transformation
from martensite to austenite (εt) and finally, linear elastic unloading to a state of zero stress. A
residual strain of approximately 0.125 is realized for this representative deformation.
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Figure 5. Representative mechanical response using the material model.

Consider the experimentally observed thermomechanical cycles [3] shown in Fig. 6. The
self-accommodated (multiple variant or twinned) α ′′  phase is loaded in tension at room
temperature (Fig. 6a). The elastic limit is reached at a strain of approximately 0.3%, where the
reorientation process is initiated. At a strain of approximately 7%, dislocation slip begins. After a
strain of 7% is reached, the load is removed. A nonlinear unloading path is observed. Then the
strained specimen is heated to a temperature of 1100K (Tmax) and cooled to room temperature
(Fig. 6b). The 5% strain, which remains after unloading, is recovered in two stages during this
thermal process. The initial 3% strain is recovered during the heating process, when the α ′′
phase transforms back to the γ phase. Most of the heat-activated shape recovery is observed

during the heating process for the temperature range of 350 K < T < 435 K, where the α ′′  to 0γ
reversion occurs. Depending on the maximum amount of strain applied to the specimen, between
90% to 100% of the heat-activated recovery process occurs between room temperature and 500
K. This deformation and heating process is analogous to the shape memory effect. The remaining
2% recovery in strain is obtained during the cooling process. Above 7% strain (Fig. 6a),
irreversible deformations (dislocation slip) are observed. A loading path to 17% strain followed
by unloading, heating, and cooling also is provided in Fig. 6b. The irreversible deformation may
be observed for the 17% strain experiment.
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Figure 6. Comparison of simulations and data [3] for stress and temperature paths versus strain for U-6Nb.
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A comparison of the model and data [1–4] is provided in Figs. 6 a + b. A linear equation of state
is used in the simulations. The recovery strain (h0) was decreased linearly with maximum applied
strain in the simulations. Also, h0 was degraded linearly during heating from its initial value at
the martensitic finish temperaure (Mf) to zero at the martensitic start temperature (Ms). It may be
seen from Fig. 6a that the theory models the mechanical features of the experiments well. That
is, an elastic deformation is obtained for small stress (τ < 0.042 GPa). Between 0.042 GPa and
0.64 GPa, the simulated stress-versus-strain path is a result of crystal reorientation. Above 0.64
GPa, the model enters the regime of slip plasticity. Unlike the experimental data, the model
predicts a linearly elastic unloading path. Following the loading-unloading path, a heating-
cooling path between room temperature and approximately 800 K was considered. Heating the
strained state between room temperature and the martensitic finish temperature results in a
thermal-elastic response. Between the martensitic finish (Mf = 340 K) and start (Ms = 430 K)
temperatures, the transformation from α ′′  to 0γ  occurs and the strain decreases with increasing
temperature. In the simulation, a thermoelastic response is obtained on further heating followed
by cooling. It may be seen from Fig. 6b that the theory models the thermal response
qualitatively. The difference between the experiment and the simulation is due partly to
excluding the 0γ  to γ  phase transformation in the model. Also, better transformation potential

( tφ ) and kinetics (ξ& ) will improve the comparison between theory and experiment. The
thermoelastic cooling path is a result of heating above the martensitic start temperature where the
recovery strain has degraded to zero.

The model was compared to data for uniaxial stress and uniaxial strain experiments for
the baseline material in Figs. 7 and 8. A comparison of model with uniaxial stress experiments is
provided in Fig. 7. A linear equation-of-state was used to generate the simulations in Fig. 7. It
may be observed that the model compares well to both the low-strain-rate (0.1 s-1) and high-
strain-rate (2000 s-1) data for U-6Nb (Fig. 7a). The elastic and reorientation (twinning) regimes
are accurately modeled. The uniaxial stress simulations result in a smaller hardening response for
plastic deformation, especially for the low-strain-rate simulation. This is a result of the smaller
strain and strain-rate hardening as well as larger thermal softening for the simulations. The
comparison between the simulations and experiment in the plastic regime can be improved by
replacing the existing phenomenological flow stress ( p

sY ) model [38] with a physically based

model [47]. This will be pursued in the future. Properties for the austenitic ( 0γ ) phase were

obtained by recognizing that U-8Nb is in the 0γ  phase at room temperature (Fig. 1). Setting the
initial volume fraction (ξ) to zero, the uniaxial stress simulation is compared to U-8Nb data in
Fig. 7b. Because room temperature was assumed for the initial state, the model predicts a
reorientation response to the deformation during loading. Again, a good comparison is obtained
between the simulation and experimental data.
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Figure 8. Comparison of simulations and data for plate impact experiments [49].
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A comparison of the uniaxial strain analysis and data [48,49] is provided in Fig. 8 for
three (3) plate impact experiments. A nonlinear equation of state was used for the plate impact
simulations. The initial velocity of the flyer plate (Vf) and the dimensions of the flyer (xf) and
target (xt) plates are provided in Table III. A schematic diagram of the plate impact experiments
is shown in Fig. 9. The particle velocity at the back of the U-6Nb target plate was measured in
each of the experiments. For all three experiments, the flyer plate was made of z-cut quartz.
Material parameters for the U-6Nb and z-cut quartz [50–53] used in the plate impact simulations
are provided in Table I. The Hugoniot elastic limit (HEL) is not observed in either the
simulations or the data for all three cases. The absence of an HEL may be a result of the crystal
reorientation process that is present during compressive loading. The comparisons between the
simulations and data for the plate impact experiments are good. An improvement of the
simulation at the peak particle velocity (t ~ 1.5 µs) can be obtained by employing a physically
based, rate-dependent model for the flow stress ( p

sY ). The simulations did not closely match the
data for the “pull-back” region of the plate experiments (2.5 µs < t < 2.7 µs). This was expected,
however, because a rate-independent failure model was employed in the analysis. Consequently,
a larger amount of porosity was calculated than observed in the post-mortem specimens. Also,
the rate-independent model results in a sharper failure response (i.e., a shorter failure response
time) than the experiment. A rate-dependent failure model [54], which will be implemented in

Table III. Plate impact experiments

Material Impact Stress
    (kbar)

Flyer Velocity
    (Vf, km/s)

Flyer Thickness
     (xf, mm)

Target Thickness
       (xt, mm)

U-6Nb 28.4 0.223 4.075 2.55
U-6Nb 42.5 0.328 4.081 2.52
U-6Nb 55.0 0.419 4.078 2.53

Xf Xt

Figure 9. Schematic diagram of the plate impact experiments [49].

Vf

VISAR

Flyer Plate
(Quartz)

Target Plate
(U-6Nb)
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the future, will improve the simulations in the region of material failure. Better agreement
between theory and data also can be achieved by including a void nucleation model. In Fig. 8a,
simulations for two values of the exponential coefficient ( dγ ) for the strain to failure are

provided. The larger value ( 50.2=dγ ), which was the base-line value, results in no material

failure for the simulation. The smaller value ( 84.1=dγ ) results in material failure and the

ensuing “pull-back” response of the particle velocity. The experimental data lie between these
two simulations. With the exception of carbides, which were crushed during the initial
compression, no damage was observed in the post-mortem specimen for the 28.4 kbar
experiment (Fig. 8a). Comparisons between the model predictions and data for the base-line
value of 5.2=dγ  are provided in Figs. 8b and 8c for impact stresses of 42.5 kbar and 55.0 kbar,

respectively.

VI. Summary

A framework for the development of a three-dimensional constitutive model that includes
crystal reorientation, phase transformation, plasticity, and failure for the conditions of high strain
rate has been provided. This framework was used to develop a phenomenological model that also
includes nonlinear elasticity (equation of state), rate-dependent plasticity, and porosity growth. A
phase diagram in stress-versus-temperature space was used to guide the solution procedure for
the material state. An implicit numerical algorithm was developed to obtain a solution to the
system of equations for the material model. Consequently, the model imposes no additional time-
step constraints on a structural analysis that utilizes the theory. The model was compared to
experimental data for uranium-niobium alloys. The numerical simulations demonstrate the
ability of the model to capture the effects of crystal reorientation, phase transformation, rate-
dependent plasticity, and failure. Material parameters were chosen for two pedigrees of material.
It was observed that loading-unloading as well as heating-cooling simulations resulted in the
observed material responses. Simulations of the model for constant temperature uniaxial stress
and uniaxial strain (plate impact) experiments provided good agreement with data. Simulations
with heating and cooling experiments, however, provided only qualitative agreement. This
poorer agreement was due, in part, to the absence of the high-temperature transformation
( 0γγ − ) and the high-temperature phase (γ ). These features were omitted because of the lack of
information related to both the transformation and properties of the high-temperature phase ( γ ).

Better transformation potential ( tφ ) and kinetics (ξ& ) also will improve agreement between
theory and experiments. It also was demonstrated that improved models for rate-dependent
plasticity and ductile failure would result in better agreement with experimental data. Further
improvements to the failure model include the addition of a void-nucleation and a void-
coalescence model. Improvements to the material model include a physically based, rate-
dependent, flow-stress model and a rate-dependent porosity growth model. Also, improved
models for the degradation of the recovery strain (h0) with plastic strain and temperature will be
considered. Future consideration will be given to kinematic hardening and the nonassociative
behavior of the inelastic strains related to crystal reorientation and phase transformation. Better
descriptions for these inelastic strains will provide an improved material response for multiple
loading and unloading deformation paths. These additions will be made as the necessary data
become available.
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