Focused ion beam assisted three-dimensional rock imaging at submicron scale

PDF Version Also Available for Download.

Description

Computation of effective flow properties of fluids in porous media based on three dimensional (3D) pore structure information has become more successful in the last few years, due to both improvements in the input data and the network models. Computed X-ray microtomography has been successful in 3D pore imaging at micron scale, which is adequate for many sandstones. For other rocks of economic interest, such as chalk and diatomite, submicron resolution is needed in order to resolve the 3D-pore structure. To achieve submicron resolution, a new method of sample serial sectioning and imaging using Focused Ion Beam (FIB) technology has ... continued below

Physical Description

vp.

Creation Information

Tomutsa, Liviu & Radmilovic, Velimir May 9, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Computation of effective flow properties of fluids in porous media based on three dimensional (3D) pore structure information has become more successful in the last few years, due to both improvements in the input data and the network models. Computed X-ray microtomography has been successful in 3D pore imaging at micron scale, which is adequate for many sandstones. For other rocks of economic interest, such as chalk and diatomite, submicron resolution is needed in order to resolve the 3D-pore structure. To achieve submicron resolution, a new method of sample serial sectioning and imaging using Focused Ion Beam (FIB) technology has been developed and 3D pore images of the pore system for diatomite and chalk have been obtained. FIB was used in the milling of layers as wide as 50 micrometers and as thin as 100 nanometers by sputtering of atoms from the sample surface. The focused ion beam, consisting of gallium ions (Ga+) accelerated by potentials of up to 30 kV and currents up to 20,000 pA, yields very clean, flat surfaces in which the pore-grain boundaries appear in high contrast. No distortion of the pore boundaries due to the ion milling is apparent. After each milling step, as a new surface is exposed, an image of the surface is generated. Using secondary electrons or ions, resolutions as high as 10 nm can be obtained. Afterwards, the series of 2D images can be stacked in the computer and, using appropriate interpolation and surface rendering algorithms, the 3D pore structure is reconstructed.

Physical Description

vp.

Notes

OSTI as DE00812456

Source

  • 2003 International Symposium of the Society of Core Analysts, Pau (FR), 09/21/2003--09/24/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--52648
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 812456
  • Archival Resource Key: ark:/67531/metadc738552

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 9, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 7:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tomutsa, Liviu & Radmilovic, Velimir. Focused ion beam assisted three-dimensional rock imaging at submicron scale, article, May 9, 2003; California. (digital.library.unt.edu/ark:/67531/metadc738552/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.