Final Report

Development of Cryotribological Theories & Application to Cryogenic Devices
(DE-FG02-85ER13335)

Submitted by
Principal Investigator

Yukikazu Iwasa
Email: iwasa@jokaku.mit.edu
Voice: 617-253-5548; Fax: 617-253-5405

Francis Bitter Magnet Laboratory
and
Department of Mechanical Engineering

Massachusetts Institute of Technology
Cambridge, MA 02139

March 12, 2001

DOE Patent Clearance Granted

Mark P. Dvorscak
(630) 252-2393
E-mail: mark.dvorscak@ch.doe.gov
Office of Intellectual Property Law
DOE Chicago Operations Office
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Introduction

One of major areas of research in the Magnet Technology Division of the MIT National Magnet Laboratory (later the Francis Bitter National Magnet Laboratory and since 1995 the Francis Bitter Magnet Laboratory) has been superconducting magnet—design, construction, and operation. The so-called “high-performance” superconducting magnets, which were begun to be built in the mid 1970s for accelerators and later for NMR and MRI magnets, suffered from premature quenches. The principal causes of these premature quenches were suspected to be caused by mechanical disturbances, specifically conductor motion in the “dry” winding or cracking of epoxy resin in the winding impregnated with epoxy resin to immobilize the conductor.

In 1978, a research program aimed specifically on frictional motion in the superconducting magnet winding environment—cryotribology—was initiated by this program’s PI in collaboration with Prof. Ernest Rabinowicz of the MIT Department of Mechanical Engineering. This new cryotribology research program was complemented from the outset by an acoustic emission (AE) project that was also initiated by the PI at the about same time to improve diagnostic technique for high-performance superconducting magnets suffering from premature quenches. By 1985 it was generally agreed in the magnet community that mechanical disturbances were the principal causes of failure in high-performance superconducting magnets and various techniques were introduced to minimize or even eradicate them. During this period the PI played a major role in achieving a clear understanding of the design and manufacturing intricacies of high-performance superconducting magnets and making these magnets operate much more reliably than heretofore possible.

Below are selected papers on mechanical disturbances in high-performance superconducting magnets by the PI and his collaborators prior to the start of the present project.

H. Maeda and Y. Iwasa, Mechanical disturbances in superconducting magnet (II)—Epoxy cracking or debonding in an epoxy impregnated magnet, Telon Kogaku (Japanese) 18, 70 (1983).

Encouraged with a remarkable progress we had made in understanding mechanical behavior of superconducting magnets and left with a set of excellent tribometers that the PI had constructed, Prof. Rabinowicz and the PI decided to start a “cryotribology” project dedicated specifically to: 1) advance the theoretical understanding of low-temperature sliding behavior; 2) expand the cryogenic tribology data base; and 3) train graduate students in tribology, cryogenic engineering, and superconducting magnet technology. This program supported our cryotribology research from 1985 through 1999.

Achievements

Overall Key overall achievements of the project may be summarized below.

- Based on our exhaustive experimental results of the sliding behavior of materials at cryogenic temperatures, we conclude that the adhesion theory of friction and wear remains applicable at cryogenic temperatures.

- The attainment of absolutely stable, positive friction-velocity characteristics appears improbable at cryogenic temperatures due to the lack of materials which demonstrate strain-rate-dependent interfacial shear creep.

- Generation of cryotribological data for materials pairs used in superconducting magnets and cryogenic devices.

- Training of students in the fields of cryotribology, cryogenic engineering, and superconducting magnet technology.
Specific

Specific conclusions drawn from the project’s results are as follows.

- The adhesive friction theory suggests several alternatives for limiting this unstable first slip characteristic. The first relies on the use of relatively inert materials to reduce the asperities’ tendency towards strong interfacial bonding. A frequently used method for reducing a polymer coating’s tendency towards strong adhesive is to co-polymerize the coating with about 2~5% of a perfluorocarbon intermediate to reduce its surface energy. The perfluorocarbon intermediates typically migrate to the surface of the coating, thus providing a low-friction surface layer, while leaving the balance of the coating’s bulk mechanical properties relatively intact.

- A second method for reducing the tendency towards unstable slip is to minimize transient interfacial junction growth. For instance, flexible ceramics and cuprous sulphide coatings have been examined as insulators for wind and react Nb₃Sn conductors. Because the softening point for these insulators is markedly higher than that for conventional polymeric insulators, their tendency towards transient room-temperature creep should be greatly reduced. Hence, these inorganic insulators offer the potential advantages of being harder, more creep resistant, and less surface active than conventional polymer-based coatings; these factors should all contribute to more stable sliding initiation. An added advantage to inorganic insulators is that their transverse thermal conductivity is at least an order of magnitude larger than that for a conventional organically insulated wire. This higher transverse conductivity should further improve stability by increasing the minimum propagating zone volume, and hence, the coil’s minimum quench energy.

- An approach towards frictional stabilization is to use the conductor tension during manufacture to regulate the winding’s effective axial stiffness. Abrupt conductor motions can occur on a variety of dimensional scales. In tightly-wound solenoids, the high static friction forces provided by the conductor tension effectively pin the conductors in their as-wound positions. However, statistical variations in the conductor thickness produce short segments that are not well supported. Because of their moderate stiffness these segments frequently shift back-and-forth between equilibrium positions as the magnet is charged and discharged. The recurrent motion of these segments during magnet training frequently prevents the magnet from ever reaching its designed operating current. The effective axial stiffness of the individual turns in a loosely wound magnet are quite low in comparison. By proper preprogramming of the winding tension, the conductor turns can be made to shift to more stable equilibrium positions while the magnet is far from its critical surface. Because their axial stiffness is so low, the turns tend to retain their new equilibrium positions during subsequent charging cycles, hence, loose-wound magnets tend to train progressively as the conductors gradually shift to a more stable winding arrangement. As the inter-conductor gaps are removed from the winding its effective axial stiffness increases to a level comparable with that of a similarly configured epoxy-impregnated winding. Winding approach must aim to achieve impregnated winding reliability in a dry-wound magnet by allowing the winding to seek a natural, electromagnetically-compacted shape from the start of its energization cycle.
A review of existing material properties at cryogenic temperatures, primarily time- and temperature-dependent hardness data, indicates a virtual elimination of rate-dependent deformation at liquid helium temperatures. Most reference sources indicate that the strain-rate dependencies that we desire are typically observed only above \(0.4 - 0.5 T_m \), where \(T_m \) is melting temperature. Thus, based on our present understanding of the materials-based frictional stabilization approach, even a coating of solid hydrogen, with \(T_m = 14 \text{K} \), would be insufficient for stabilizing wire motions in a helium cooled superconducting magnet operating at 4.2 K.

List of Published Papers & Theses Generated on Cryotribology

During the final 3 years of the program, between 1997 and 1999, our effort was focused on, with the permission of Program Director, Dr. Robert Price of the Division of Engineering and Geosciences, Office of Basic Energy Sciences, DOE, study of “active” levitation involving high-temperature superconducting YBCO disks. Below is a list of selected papers published resulting from this period.

