DISCRETE FEATURE APPROACH FOR HETEROGENEOUS RESERVOIR PRODUCTION ENHANCEMENT

Final Report
October 1, 1998-September 30, 2001

By:
William S. Dershowitz
Brendan Curran
Herbert Einstein
Paul LaPointe
Dawn Shuttle
Kate Klise

Date Published: July 2002

Work Performed Under Contract No. DE-AC26-98BC15101

Golder Associates Inc.
Redmond, Washington

National Energy Technology Laboratory
National Petroleum Technology Office
U.S. DEPARTMENT OF ENERGY
Tulsa, Oklahoma
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government.

This report has been reproduced directly from the best available copy.
Discrete Feature Approach for
Heterogeneous Reservoir Production Enhancement

By
William S. Dershowitz
Brendan Curran
Herbert Einstein
Paul LaPointe
Dawn Shuttle
Kate Klise

July 2002

Work Performed Under DE-AC26-98BC15101

Prepared for
U.S. Department of Energy
Assistant Secretary for Fossil Energy

Purna Halder, Project Manager
U.S. Department of Energy
National Energy Technology Laboratory
National Petroleum Technology Office
One West Third Street, Suite 1400
Tulsa, OK 74103

Prepared by
Golder Associates Inc.
4104 148th Avenue, NE
Redmond, WA 98052
Table of Contents

1. EXECUTIVE SUMMARY

2. INTRODUCTION
 2.1 Technology Development and Demonstration
 2.2 Project Deliverables

3. RESULTS AND DISCUSSION
 3.1 Research Summary
 3.2 Task 1: Heterogeneous Reservoir Data Integration
 3.2.1 Task 1.1.1 Fracture Size Analysis
 3.2.1.1 Task 1.1.1 Fracture Size Analysis
 3.2.1.2 Seismic Wave Methods
 3.2.1.3 Ground Penetrating Radar (GPR) Methods
 3.2.1.4 Hydraulic Interference Approaches
 3.2.1.5 Analytical Development
 3.2.1.6 Estimation of True Trace Length Distribution $f(l)$
 3.2.1.7 Effect of Sampling Plane Orientation on Trace Lengths
 3.2.1.8 Verification by Numerical Simulation
 3.2.1.9 Approach Implementation
 3.2.1.10 Summary
 3.2.2 Task 1.1.2 Fracture Shape Analysis
 3.2.2.1 Literature Review
 3.2.2.2 Analysis of Existing Information on Discontinuity Shape
 3.2.2.3 Summary and Conclusions
 3.2.3 Task 1.1.3 Application of Neural Nets to the Identification of Fracture Sets
 3.2.3.1 Background
 3.2.3.2 Kohonen Neural Network Algorithm
 3.2.3.3 Implementation for Heterogeneous Reservoir Data
 3.2.3.4 Algorithm Demonstration, Yates Field Tract 17
 3.2.3.5 Applications for Heterogeneous Reservoir Data
 3.2.4 Task 1.1.4 Fractal Methods for Derivation of Fracture Statistics
 3.2.4.1 Fractal Fracture Size Distributions
 3.2.4.2 Trace Length Statistics
 3.2.4.3 Derivation of Size Distribution from Trace Data
 3.2.4.4 Verification of Fractal Algorithm for Fracture Size
 3.2.4.5 Fractal Fracture Size Distribution from Non-planar Surfaces
 3.2.5 Task 1.1.5 Transmissivity/Connectivity Analysis
 3.2.6 Task 1.1.6 Fracture Correlations
 3.2.7 Task 1.2 Data Scaling Procedures
3.2.7.1 Multiscale Modeling
3.2.7.2 Data Scaling for Equivalent Continuum Modeling
3.2.7.3 Data Scaling for Discrete Feature Network Modeling.
3.2.8 Task 1.3.0 Heterogeneous Reservoir Interdisciplinary Database

3.3 Task 2: DFN Model Development
3.3.1 Task 2.1 DFN Model Approaches
3.3.1.1 Statistical Models
3.3.1.2 Geocellular Models
3.3.1.3 Geomechanical Models
3.3.2 Tasks 2.2, 2.3, and 2.4 Site DFN Model Development, Implementation, and Validation

3.4 Task 3: Reservoir Improvement Strategy
3.4.1 Task 3.1. Strategic Plan: Yates Field Reservoir Improvement
3.4.1.1 Surfactant Flood DFN Analysis
3.4.1.2 Strategic Completion DFN Analysis
3.4.2 Task 3.2 Strategic Plan, Stoney Point Reservoir Improvement
3.4.2.1 Strategic Placement and Water Control
3.4.2.2 DFN Analysis for IOR Strategic Plan
3.4.3 Task 3.3 Strategic Plan: South Oregon Basin Reservoir Improvement
3.4.3.1 DFN Strategy for IOR
3.4.3.2 DFN Analysis for Strategic Plan
3.4.4 Task 3.4 Strategic Plan: North Oregon Basin Reservoir Improvement
3.4.4.1 Gel Treatment DFN Analysis

3.5 Task 4: Application Tasks
3.5.1 Task 4.1 Reservoir IOR Demonstration, Yates Field
3.5.1.1 Introduction to Strategic Completion Analysis
3.5.1.2 Strategic Completion Modeling
3.5.1.3 Well Productivity Correlation
3.5.1.4 Strategic Completion Recommendations
3.5.1.5 Evaluation
3.5.2 Task 4.2 Reservoir IOR Demonstration, Stoney Point
3.5.2.1 Discrete Fracture Network Model
3.5.2.2 Evaluation
3.5.3 Task 4.3 Reservoir IOR Demonstration, South Oregon Basin
3.5.3.1 South Oregon Basin DFN Model
3.5.3.2 South Oregon Basin Gel Simulations
3.5.3.3 Evaluation
3.5.4 Task 4.4 Reservoir IOR Demonstration, North Oregon Basin
3.5.4.1 Evaluation – North Oregon Basin

3.6 Task 5: Technology Transfer
3.6.1 Task 5.1. Project Web Site
3.6.2 Task 5.2.1 Reports
3.6.3 Task 5.2.3 Presentations and Publications

4. CONCLUSIONS
5. REFERENCES

LIST OF FIGURES

Figure 2-1: DFN Approach for Reservoir Characterization and Engineering 4
Figure 2-2: DFN Approaches for IOR 5
Figure 3-1 Fracture Interpolation 10
Figure 3-2 Forward Modeling Approach (after Dershowitz, 1992) 13
Figure 3-3 VSP Identification for Fracture Size 14
Figure 3-4 VSP Tomography 15
Figure 3-5 VSP Approaches (a) Offset and (b) Walkway 16
Figure 3-6 Seismic Wave Reflection by Features of Multiple Scales 17
Figure 3-7 Loss of Seismic Signals Due to Karsts and Inclusions 18
Figure 3-8 Wellbore Seismics 18
Figure 3-9 Wellbore Seismic Surveys 19
Figure 3-10 Radar Tomography 21
Figure 3-11 Hydraulic Interference Testing 22
Figure 3-12 Fracture Network Effects 23
Figure 3-13 Packer Testing 23
Figure 3-14 Tracer Testing at URL (Novakowski et al., 1985) 24
Figure 3-15 Parameters used in the definitions of discontinuity 28
Figure 3-16 Construction used in deviation of relationship between discontinuity size 29
distribution and trace length distribution
Figure 3-17 Relationship between \(h \), \(l \), and \(a \) 33
Figure 3-18 Discontinuities intersect a circular sampling window in three ways 41
Figure 3-19 Variation of mean trace length with \(\beta \) 45
Figure 3-20 Variation of standard deviation of trace length with \(\beta \) 46
Figure 3-21 (a) Simulation volume is a box, i.e., the elliptical discontinuities are 47
generated inside the box; (b) Sampling window at \(x = 0 \) m
Figure 3-22 Comparison of theoretical mean trace lengths with predicted mean trace 50
lengths from simulations
Figure 3-23 Comparison of the theoretical standard deviation of trace lengths with 53
predicted standard deviation of trace lengths from simulations
Figure 3-24 Variation of \(\mu_a \) and \(\sigma_a \) with aspect ratio \(k \) for assumed major axis orientation 55
1 (0°/0°): assuming a lognormal distribution form of \(g(a) \)
Figure 3-25 Variation of \(\mu_a \) with aspect ratio \(k \) for assumed major axis orientation 56
1 (0°/0°): assuming a negative exponential distribution form of \(g(a) \)
Figure 3-26 Variation of \(\mu_a \) and \(\sigma_a \) with aspect ratio \(k \) for assumed major axis 57
orientation 1 (0°/0°): assuming a Gamma distribution form of \(g(a) \)
Figure 3-27 Variation of \(\mu_a \) and \(\sigma_a \) with aspect ratio \(k \) for assumed major axis orientation 58
2 (30°/0°): assuming a lognormal distribution form of \(a \)
Figure 3-28 Variation of \(\mu_a \) with aspect ratio \(k \) for assumed major axis orientation 59
2 (30°/0°): assuming a negative exponential distribution form of \(a \)
Figure 3-29 Variation of \(\mu_a \) and \(\sigma_a \) with aspect ratio \(k \) for assumed major axis orientation 60
2 (30°/0°): assuming a Gamma distribution form of \(a \)
Figure 3-30 Variation of \(\mu_a \) and \(\sigma_a \) with aspect ratio \(k \) for assumed major axis orientation 61
3 (60°/0°): assuming a lognormal distribution form of \(a \)
Figure 3-31 Variation of \(\mu_a \) with aspect ration \(k \) for assumed major axis orientation 3 (60°/0°): assuming a negative exponential distribution form of \(a \)

Figure 3-32 Variation of \(\mu_a \) and \(\sigma_a \) with aspect ration \(k \) for assumed major axis orientation 3 (60°/0°): assuming a Gamma distribution form of \(a \)

Figure 3-33 (a) An unrestricted discontinuity; and (b) A restricted discontinuity

Figure 3-34 (a) Strike and dip of a discontinuity; and (b) Strike and dip traces

Figure 3-35 Dip dimension vs. strike dimension for nominally unrestricted faults from four regions (see Table 3-15) (from Nicol et al. 1996)

Figure 3-36 A polygon is used to represent an elliptical discontinuity (fracture) (from Dershowitz et al. 1993)

Figure 3-37 Three possible cases at which the average strike length is about equal to the average dip length: (a) Discontinuities are equidimensional (circular); (b) discontinuities are non-equidimensional (elliptical) with long axes in a single orientation. The discontinuities are oriented so that the average strike length is about equal the average dip length; and (c) Discontinuities are non-equidimensional with long axes such randomly oriented that the average strike length is about equal to the average dip length.

Figure 3-38 Self-Organizing (Kohonen) Network Model

Figure 3-39 Contour Plot of Test Data with Three Fracture Sets

Figure 3-40 Neural Net Performance Results for 3 Set Test Case

Figure 3-41 Contour Plot of Joint Orientations in Three Yates Wells

Figure 3-42 Contour Plot of Sets Identified by Structural Geologist

Figure 3-43 Contour Plots of Sets Identified by Neural Network

Figure 3-44 Fracture Intersection with Trace Plane

Figure 3-45 Example DFN Model for Size Analysis

Figure 3-46 Complementary Cumulative Density Functions (CCDF) for Fracture Radius

Figure 3-47 Fitted Trace Length Distributions

Figure 3-48 Flow Dimension

Figure 3-49 Channels in Fracture Plane

Figure 3-50 Channels in Faults and Fractures

Figure 3-51 Background Fracture Porosity and Connectivity

Figure 3-52 Productivity Test with Single Channel, Well on Channel

Figure 3-53 Production Test with Single Channel, Well on Fault

Figure 3-54 Production Test with Single Channel, Well in Background Fractures

Figure 3-55 Size Transmissivity Relationship at Åspö Sweden

Figure 3-56 Data Scaling for Continuum Approaches

Figure 3-57 Multiscale Modeling with Discrete Fracture Networks

Figure 3-58 Fractal Dimension Calculation

Figure 3-59 Example Strata model Data from South Oregon Basin

Figure 3-60 Example Tracer Breakthrough Curves from North Oregon Basin

Figure 3-61 Cone Photos from Orchard 14, North Oregon Basin

Figure 3-62 Yates Tops Cross Section

Figure 3-63 South Oregon Basin Seismic Lineaments

Figure 3-64 South Basin Geocellular Model Example

Figure 3-65: Stoney Point, Trenton Structure

Figure 3-66: Stoney Point, Geophysical Cross Sections

Figure 3-67: Stoney Point, Lost Circulation

Figure 3-68 Fracture Growth Model (after Swaby and Rawnsly, 1996)

Figure 3-69 3Dmove Palinspastic Reconstruction (Midland Valley, 2001)

Figure 3-70 Goesec2D Palinspastic Reconstruction
Figure 3-71 Strain Fields for Fracture Generation 146
Figure 3-72 Geomechanical Modeling of 3D Fracture Populations 146
Figure 3-73 Preliminary Yates DFN Model 147
Figure 3-74 Preliminary Stoney Point DFN Model 148
Figure 3-75 Preliminary North Oregon Basin DFN Model 149
Figure 3-76 Preliminary South Oregon Basin DFN Model 149
Figure 3-77 DFN Model Illustrating Surfactant Imbibition 151
Figure 3-78 Surfactant Injection Strategies 153
Figure 3-79 Well 2913 was treated with surfactant late in 1997 and responded with
stimulated liquid productivity and reduced water-oil ratio (WOR) after recovery of
treatment fluid. The stimulated fluid productivity has been maintained while the
WOR has resumed an upward trend. 154
Figure 3-80 Response to injection over one mile away is observed almost immediately at
a well which is producing at an elevation over 100 feet above the fracture flow
feature taking the surfactant in the injection well 155
Figure 3-81 Conceptual Fracture Model 156
Figure 3-82 Surfactant Concentration Profile in Fracture 160
Figure 3-83 Schematic View of Reservoir Model 161
Figure 3-84 Comparison of Results from Simulation and Analytical Model 162
Figure 3-85 Effects of Convection Rate on Fracture Area Treated 162
Figure 3-86 Effects of Molecular Diffusion on Fracture Area Treated 163
Figure 3-87 Intersection Statistics for Deepening Candidate Wells 164
Figure 3-88 Compartment Volume Distribution, W1304 165
Figure 3-89 Compartment Projected Area Distribution, W1304 167
Figure 3-90 Compartment Volume, Yates Deepening Candidates 169
Figure 3-91 Compartment Projected Area Distribution, Yates Deepening Candidates 169
Figure 3-92 Block Volume Statistics 172
Figure 3-93: Block Volume Distribution 173
Figure 3-94 Block Sigma Factor Statistics 174
Figure 3-95 Block Sigma Factor Distributions 175
Figure 3-96 Median Block Aspect Ratio 176
Figure 3-97 Distribution of Block Aspect Ratio 177
Figure 3-98 Median Ratio of Height to Horizontal Area 177
Figure 3-99 Mean Ratio of Height to Horizontal Area 178
Figure 3-100 Tributary Drainage Volume Algorithms 180
Figure 3-101 Compartments in Stoney Point DFN 182
Figure 3-102 Projected Areas of Compartments 183
Figure 3-103 Volumes of Compartments in Stoney Point Model 184
Figure 3-104 Well Configuration for Tributary Volume Analysis of Stoney Point Model 185
Figure 3-105 Tributary Volumes of Stoney Point Model 186
Figure 3-106 Well Pattern and Tributary Volumes Intersected in Stoney Point Model 187
Figure 3-107 South Oregon Basin Gel Treatment Analysis Region 189
Figure 3-108 Network Analysis for Gel Treatment Design 190
Figure 3-109 Gel Injection into Fracture Network 190
Figure 3-110 South Oregon Basin Compartmentalization Analysis 193
Figure 3-111 Tributary Volumes in South Oregon Basin Model for P32 = 0.2 Model 194
Figure 3-112 Tributary Volumes in South Oregon Basin Model for P32 = 0.3 Model 195
Figure 3-113 South Oregon Basin Tributary Volume Analysis 196
Figure 3-114 Tensleep Formation Water Injection DFN Study 197
Figure 3-115 Compartments in North Oregon Basin Model with P32=0.2 200
Figure 3-116 North Oregon Basin Compartmentalization Analysis 201
Figure 3-117 North Oregon Basin Model with $P_{32} = 0.2$

Figure 3-118 Side View of Tributary Volumes of Vertical and Horizontal Wells in North Oregon Basin Model with $P_{32} = 0.2$

Figure 3-119 North Oregon Basin Tributary Volume Analysis

Figure 3-120: Mean East/West Fracture Spacing

Figure 3-121: Mean North-South Fracture Spacing

Figure 3-122: Mean Vertical Fracture Spacing

Figure 3-123: Mean Vertical to East/West Fracture Spacing

Figure 3-124: Mean Vertical to North/South Fracture Spacing

Figure 3-125: Mean East/West Spacing to North/South Fracture Spacing

Figure 3-126: Mean Vertical Block Height to Cross-Sectional Area

Figure 3-127: Mean Vertical to Averaged Horizontal Fracture Spacing

Figure 3-128: Median Sigma Factor

Figure 3-129 Efficacy of Surfactant Treatment on YU 1106

Figure 3-130 Efficacy of Surfactant Treatment on Project Study Site Yates (Tract 29)

Figure 3-131: Stoney Point DFN Model, 2000 meter Extent, Fractures Only

Figure 3-132: Simulation Volume (800x400x189m) Stoney Point DFN Model (Fractures and Matrix Features)

Figure 3-133: Full Fracture Set for Stoney Point, Fractures, and Matrix

Figure 3-134: Flow solution after 0.1 hours, pre-gel treatment. Note pressure has connected directly from injector to producer

Figure 3-135: Stoney Point Flow Solution Pre-Gel treatment: Close up showing pressure bypassing matrix through fractures

Figure 3-136 Stoney Point: Pressure after 0.1 with gel treatment reducing the fracture permeability by a factor of 10.

Figure 3-137 Stoney Point Pressure field at 0.1 hours after gel-treatment reduces permeability by a factor of 100

Figure 3-138: Fracture Set Orientations for South Oregon Basin

Figure 3-139: All Seismic Lineaments for South Oregon Basin

Figure 3-140 EW Seismic Lineament Set

Figure 3-141: NS Lineament Set

Figure 3-142: NE Lineament Set

Figure 3-143 ESE Seismic Lineament Set

Figure 3-144: Trace Length Distribution, All Lineaments

Figure 3-145: Trace Length Distribution, EW Lineaments

Figure 3-146: Trace Length Distribution, ESE Lineament

Figure 3-147: Trace Length Distribution, NS Lineaments

Figure 3-148 Trace Length Distribution, NS Lineaments

Figure 3-149: Simulation of ESE Lineaments 10 ft. Scale

Figure 3-150: Simulation of ESE Lineaments, 100 ft. Scale

Figure 3-151: Simulation of ESE Lineament, 500 ft. Scale

Figure 3-152 Simulation of ESE Lineaments, 1300 ft. Scale

Figure 3-153: Simulation of ESE Lineaments, 2000 Ft. Scale

Figure 3-154 Simulation of ESE Lineaments, Exponent 1.5

Figure 3-155 Simulation of ESE Lineaments, Exponent 2.5

Figure 3-156: Simulation of ESE Lineaments, Exponent 3

Figure 3-157: Simulation of ESE Lineaments, Exponent 3.5

Figure 3-158: Simulation of ESE Lineaments, Intensity $P_{32} = 0.001 \text{ m}^2/\text{m}^3$

Figure 3-159: Simulation of ESE Lineaments, Intensity $P_{32} = 0.01 \text{ m}^2/\text{m}^3$

Figure 3-160: Simulation of ESE Lineaments, Intensity $P_{32} = 0.01 \text{ m}^2/\text{m}^3$

Figure 3-161: Fractures for South Oregon Basin Simulation
Figure 3-162: Matrix Discrete Features for South Oregon Basin Simulation
Figure 3-163: Fractures and Matrix Close up for South Oregon Basin Simulation
Figure 3-164: South Oregon Basin simulation pre gel. Time = 0.001 Hours
Figure 3-165: South Oregon Basin simulation pre gel. Time = 0.01 Hours
Figure 3-166: South Oregon Basin simulation pre gel. Time = 1 Hour
Figure 3-167: South Oregon Basin simulation after gel treatment reduces fracture permeability 1 order of magnitude
Figure 3-168: South Oregon Basin simulation after gel treatment reduces fracture permeability 2 orders of magnitude
Figure 3-169: South Oregon Basin simulation after gel treatment reduces fracture permeability 3 orders of magnitude
Figure 3-170: North Oregon Basin Structure and Well Control
Figure 3-171: North Oregon Basin DFN model
Figure 3-172: North Oregon Basin DFN model before gel treatment
Figure 3-173: North Oregon Basin DFN model after gel treatment

LIST OF TABLES

Table 1-1: Major Accomplishments of DOE/FETC Project “Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement”
Table 2-1: Project Deliverables and Milestones
Table 3-1 Expression for determining μ_α and σ_α from μ_i and σ_i
Table 3-2 Expression for determining μ_α and σ_α from μ_a and σ_a
Table 3-3 Common Distribution Forms of Trace Lengths
Table 3-4 Parameters for simulation 1 using FracMan (see also Figure 3-21)
Table 3-5 Theoretical values of Trace Length Mean and Standard Deviation
Table 3-6. Comparison of theoretical (or true) and predicted mean trace lengths
Table 3-7 Comparison of theoretical (or true) and predicted standard deviation of trace lengths
Table 3-8 Derived true trace length distributions
Table 3-9 Assumed major axis orientations and their corresponding β values
Table 3-10 Predicted values of k, μ_α and σ_α at major axis orientation (30°/90°)
Table 3-11 Checking the distribution of $g(\alpha)$ for sampling window 1 ($\beta = 63.4°$)
Table 3-12 Checking the distribution of $g(\alpha)$ for sampling window 2 ($\beta = 33.7°$)
Table 3-13 Checking the distribution of $g(\alpha)$ for sampling window 3 ($\beta = 0°$)
Table 3-14 Mean of strike trace lengths and mean of dip trace lengths of two discontinuity sets (from Einstein et al. 1979)
Table 3-15 Details of the four data sets plotted in Figure 3-35 (from Nicol et al. 1996)
Table 3-16 Example Dataset for Kohonen Network Demonstration
Table 3-17 Kohonen Network for Example Data Set
Table 3-18 Kohonen Network for Yates Tract 17 Data Set
Table 3-19 Parameters used in simulations
Table 3-20 List of file names for verification tests.
Table 3-21 Verification of Fractal Fracture Size Algorithm
Table 3-22 Parameter values estimated for the observed trace lengths.
Table 3-23 Parameters for the radius distribution of fractures intersecting the trace plane.
Table 3-24: Correlation of Fracture Geometrical Hydraulic Properties
Table 3-25 Heterogeneous Reservoir Interdisciplinary Database
Table 3-26 POC Dimensions
Table 3-27 Summary of Intersection Simulations, Yates Deepening Candidates
Table 3-28 Compartment Projected Area Statistics, Well W1304
Table 3-29 Compartment Projected Area Statistics, Well W1304
Table 3-30 Compartment Volume Statistics, Yates Deepening Candidate Wells
Table 3-31 Compartment Projected Area Statistics, Yates Deepening Candidate Wells
Table 3-32 Matrix Block Volume Statistics
Table 3-33 Matrix Block Sigma Factor Statistics
Table 3-34 Matrix Block Z/X Ratio Statistics
Table 3-35 Matrix Block Aspect Ratio Z/Y Statistics
Table 3-36 Matrix Block Aspect Ratio X/Y Statistics
Table 3-37 Ratio of Block Height to Horizontal Area
Table 3-38 Compartment Area and Volume Analysis, Stoney Point
Table 3-39 Tributary Volume Analysis, Stoney Point
Table 3-40 IOR Engineering Issues, South Oregon Basin
Table 3-41 Compartment Area and Volume Analysis, South Oregon Basin
Table 3-42 Tributary Volume Analysis, South Oregon Basin
Table 3-43 Implications of Tributary Volume Analysis, South Oregon Basin
Table 3-44 IOR Engineering Issues at North Basin
Table 3-45 Compartment Area and Volume Analysis, North Oregon Basin
Table 3-46 Tributary Volume Analysis, North Oregon Basin
Table 3-47 Implications of Tributary Volume Analysis, North Oregon Basin
Table 3-48 Conditioned DFN Model for TAGS Support Simulations (Extended Tract 17 Model)
Table 3-49: Variable name acronyms and calculation definitions for matrix block shape factors
Table 3-50: Correlation coefficients for the fracture models surrounding the five wells: 1304, 1307,1495, 2513 and 2722
Table 3-51: Correlation coefficients for the fracture models surrounding all wells.
Table 3-52 Correlation coefficients with barrels of fluid per day for the five wells 1304, 1307,1495, 2513 and 2722
Table 3-53: Probability (p-values) for the regression coefficients between independent matrix block shape parameters and BFPD for five wells: 1304, 1307,1495, 2513 and 2722
Table 3-54: Stoney Point DFN Model Parameters, Trenton Formation
Table 3-55: South Oregon Basin Lineament Analysis
Table 3-56: Intensity from Lineament Data
Table 3-57: South Oregon Basin DFN Model
Table 3-58: North Oregon Basin Bed Thickness
1. EXECUTIVE SUMMARY

This report is the final report for the project, “Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement.” The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.

In the discrete feature network (DFN) approach, conductive and flow barrier structures are modeled explicitly, facilitating a more realistic analysis of flow. The DFN approach models these features at all scales simultaneously, from the individual fractures intersecting a well to the major faults which define the reservoir. These discrete features are extrapolated from geological and geophysical measurements using a combination of geological and geostatistical methods.

During this project, Golder Associates’ team improved the data analysis and geological modeling capabilities of the DFN approach, and developed practical applications of that approach for IOR in heterogeneous reservoirs.

Major accomplishments of this research project are summarized in Table 1-1. These include development of approaches for gel treatment, strategic completion, and water control in heterogeneous reservoirs. The discrete fracture network technologies developed within this project are directly applicable to a large percentage of the secondary and tertiary oil recovery projects currently underway in the United States, and can be of significant value to the design of future oil recovery projects.

This project achieved significant technological advances in the development of the discrete fracture network modeling approach for heterogeneous oil reservoirs. Advances include:

- the first large scale, fracture network multiphase DFN flow simulations (Oregon Basin)
- direct DFN simulation of gel injection to realistic fracture networks (Oregon Basin, Stoney Point)
- three dimensional, heterogeneous, geo-cellular based DFN modeling for strategic completion (Yates)
- neural network algorithm development for fracture set identification
- fractal, analytical, and numerical solutions for calculation of fracture size distributions from geological and geophysical trace data
- a discrete fracture network approach for conditioning of fractured reservoir connectivity based on tracer tests
- new approaches to evaluating fracture shapes and correlations between fracture properties.
Table 1-1: Major Accomplishments of DOE/FETC Project “Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement”

<table>
<thead>
<tr>
<th>Production Issue</th>
<th>Study Site</th>
<th>Geology</th>
<th>DFN Approach to Support Secondary/Tertiary Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declining oil production due to decreases in formation pressures and higher viscosity of remaining OIP</td>
<td>Yates, Texas</td>
<td>Thick, high quality carbonate reservoir with heterogeneous, solution enhanced fracture connectivity</td>
<td>Strategic completions to maximize fracture intersections for steam injections and gravity drainage. Location of strategic completions using a DFN model based on a geological extrapolation of fracture patterns measured in geophysical logs</td>
</tr>
<tr>
<td>Higher water cut due to discrete flow in solution enhanced fractures</td>
<td>South Oregon Basin, Wyoming</td>
<td>Permian age carbonate with several scales of fracture overprint</td>
<td>Gel treatment to improve sweep efficiency through the interbedded sandstones, while reducing water cut</td>
</tr>
<tr>
<td>Higher water cut during water injections, as fracture networks at interbeds provide direct pathways from water injection wells to production wells</td>
<td>North Oregon Basin, Wyoming</td>
<td>High quality eolian dune sandstones of varying connectivity interbedded with lower permeability dolomites</td>
<td>Gel treatment to improve sweep efficiency through the interbedded sandstones, while reducing water cut</td>
</tr>
<tr>
<td>Interwell connectivity of highly oriented fractures along a wrench fault providing imperfect fracture connections throughout a very low quality dolomite matrix</td>
<td>Stoney Point, Michigan</td>
<td>Dolomitized carbonates containing significant large scale karstic porosity and fracture connectivity</td>
<td>Strategic completion placement to improve the probability of fracture connections to supplement flow through the dolomite</td>
</tr>
<tr>
<td>Water production due to discrete connections to overlying aquifers</td>
<td>Stoney Point, Michigan</td>
<td>Dolomitized carbonates containing significant large scale karstic porosity and fracture connectivity</td>
<td>DFN gel injection simulations to assess the feasibility of blocking water pathways</td>
</tr>
</tbody>
</table>
2. INTRODUCTION

2.1 Technology Development and Demonstration

Often less than half of the original oil in place (OIP) in reservoirs is recovered. In reservoirs where discontinuous features such as fractures or discontinuous sands play a significant role in reservoir permeability, the ultimate recovery can be less than 10% of the estimated OIP. The remaining oil is either technically or economically unrecoverable. This unrecovered oil represents a significant potential resource for the mature petroleum industry in the United States.

During this project, the Golder Associates team developed and demonstrated the use of discrete feature network (DFN) models as the key tool for integrating geological, geophysical, and engineering data to improve reservoir development and increase oil production efficiency. Discrete feature network approaches have a unique ability to integrate the data used to characterize reservoir heterogeneity from a wide range of scales into a comprehensive model which can be used directly to improve reservoir engineering. This is possible because unlike conventional continuum approaches, the DFN approach is based on parameters directly gained from field measurements (Figure 2-1).

This project developed and demonstrated practical technologies for improvement of production efficiency in heterogeneous reservoirs through integration of diverse data at a range of scales. DFN approaches were used to directly address key issues which control oil production (Figure 2-2):

1. **Strategic Completion Placement:** In heterogeneous depositional systems as well as in fractured reservoirs, the placement of injection and production completions can have a key role in determining production efficiency and ultimate recovery. For example, fracture networks delivering water to the well need to be avoided in production wells, while fractures that are part of extensive fracture networks feeding oil to the well need to be intersected. The key to efficient production thus requires an understanding of the flow architecture in the fracture network at the scale of the well, as well as an understanding of the larger scale networks which feed oil and water toward production wells.

2. **Enhanced Completion Connection:** In reservoirs of highly varying flow capacity there is often a need to improve the connection between the well completion and the discrete reservoir flow network. Marathon Oil has developed advanced techniques for hydraulic fracture stimulation, extreme overbalanced perforation-stimulation, and horizontal well placement. These techniques can be applied most effectively with an understanding of the discrete feature network flow characteristics of the reservoir.
Figure 2-1: DFN Approach for Reservoir Characterization and Engineering
Figure 2-2: DFN Approaches for IOR
3. **Strategic Completion Connection Reduction-Gel Treatment.** Gel treatment provides a method for effectively sealing the fractures and discrete feature networks, forcing injected water to sweep oil from the rock matrix rather than flowing directly to production wells. The key issue for gel treatment is therefore the identification of well intervals that contain the fractures or discrete features which would benefit from gel treatment, and the quantity and type of gel which would most effectively seal the flow. The DFN approach was used to integrate geological, geophysical, and well production data to identify these intervals. The benefit of gel treatment, and the benefit of the DFN approach for data integration and decision support can then be quantified by comparing production before and after gel treatment.
2.2 Project Deliverables

Table 2-1: Project Deliverables and Milestones

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Milestones Included in Report</th>
<th>Scheduled Date</th>
<th>Date Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Progress Report</td>
<td>M1, M2, M4, M9, M10, M11, M25-M28, M60</td>
<td>Jan 15, 1999</td>
<td>Feb 19, 1999</td>
</tr>
<tr>
<td>Third Progress Report</td>
<td>M1, M4, M7, M23, M33-M36, M60, M16, M17</td>
<td>Feb 15, 2000</td>
<td>March 7, 2000</td>
</tr>
<tr>
<td>Fourth Progress Report</td>
<td>M1, M2, M7, M4, M63, M49-M60, M16, M17</td>
<td>July 15, 2000</td>
<td>August 15, 2001</td>
</tr>
<tr>
<td>Fifth Progress Report</td>
<td>M5, M6, M49, M50, M52, M53, M55, M56, M58, M59, M18, M19</td>
<td>Feb 15, 2001</td>
<td>April 18, 2001</td>
</tr>
</tbody>
</table>

M1: Feature Size; M2: Feature Shape; M3: Feature Orientation; M4: Spatial Structure; M5: Hydraulic Properties; M6: Correlations; M7: Data Integration Procedures (Prelim); M8: Data Integration Procedures (Final); M9: Data Available on WWW; M10-M22 Data Updates; M23: Prelim Data Integration Procedure; M24: Data Integration Procedure

M25: Yates Field; M26: North Stoney Point; M27: South Oregon Basin; M28: North Oregon Basin
M29: Yates Field; M30: North Stoney Point; M31: South Oregon Basin; M32: North Oregon Basin
M33: Yates Field; M34: North Stoney Point; M35: South Oregon Basin; M36: North Oregon Basin
M37: Prelim. Strategy; M38: DFN Simulations; M39: Strategic Plan; M40: Prelim. Strategy; M41: DFN Simulations; M42: Strategic Plan;
M43: Prelim. Strategy; M44: DFN Simulations; M45: Strategic Plan; M46: Prelim. Strategy; M47: DFN Simulations; M48: Strategic Plan
M49: Yates Initial Phase; M50: Second Phase; M51: Evaluation Phase
M52: Stoney Point Initial Phase; M53: Second Phase; M54: Evaluation Phase
M55: South Oregon Basin Initial Phase; M56: Second Phase; M57: Evaluation Phase
M58: North Oregon Basin Initial Phase; M59: Second Phase; M60: Evaluation Phase
M60-M72: Milestone Reports and Biannual reports available online
3. RESULTS AND DISCUSSION

3.1 Research Summary

This project was carried out according to a phased approach, in which technologies were applied as they were developed, and project study site applications were successively refined as more information was assembled. In this report, research is organized by technology, and by study site.

3.2 Task 1: Heterogeneous Reservoir Data Integration

This section describes research carried out under Task 1: Heterogeneous Reservoir Data Integration. Golder Associates developed the DFN approach as an integrated structure from site characterization data at multiple scales, through data analysis to an integrated DFN model, and finally to application of the DFN model to reservoir production enhancement.

Field data collection can be a very expensive aspect of reservoir development, and the economic benefit of this data is frequently unclear. Geological, geophysical, and well test results are collected and compiled, but do not always find a useful application in reservoir design and engineering. To some extent, ineffective use of field data is caused by adopting a continuum modeling approach for even the most fractured or heterogeneous reservoirs.

For each of the project study sites, data was assembled and directed from each discipline with the view as to how that data can be used to support an integrated DFN model (see Figure 2-1). In Task 1, we developed the overall methodology and specific technologies to support the DFN approach for integration of heterogeneous reservoir characterization using data from multiple scales.

3.2.1 Task 1.1.1 Fracture Size Analysis

Fracture size is a key parameter for discrete feature network (DFN) modeling for heterogeneous reservoir production enhancement. Fracture size strongly influences fracture connectivity, both within the fracture network and to injection and production wells. In general, the data available is limited to data available at the wellbore. Thus, the problem becomes one of extrapolation from measurements at wells to describe fracture size within the fracture network (Figure 3-1).
3.2.1.1 Task 1.1.1 Fracture Size Analysis

Discontinuities (or fractures) have a profound effect on the mechanical and hydraulic properties of rock masses. Characterizing discontinuities in the rock mass such as the number of discontinuity sets, and for each discontinuity set, the number, orientation, spacing, location, shape and size of discontinuities is, therefore, very important. Because rock mass properties are three-dimensional (3D) entities, discontinuities must be characterized in 3D space.
As the rock structure cannot be directly examined in three dimensions, discontinuity characteristics must be inferred from data sampled at exposed rock faces (including both natural outcrops and excavations faces) and/or in wells (Priest 1993). Taking measurements on exposed rock faces, either at or below the ground surface, enables one to obtain data on orientation, spacing, trace lengths and number of traces. In most cases, wellbore sampling provides the only viable exploratory tool that directly reveals geologic evidence of subsurface site conditions. In normal-size wellbore sampling various techniques can be used for acquiring the data on orientation and spacing of discontinuities, either from core samples or through inspection of the well walls. From all this one can conclude that information of discontinuity size can be obtained indirectly from trace lengths on exposed rock faces while wellbore sampling usually provides no relevant information.

Hence, characterizing 3D discontinuity size distributions is an important but difficult problem in rock engineering. Currently, there are two groups of methods for estimating the discontinuity size distributions: analytical/numerical methods and the forward modeling method. The analytical/numerical methods use stereological relations between the discontinuity size distribution and the (true) trace length distribution to infer the discontinuity size distribution. The trace length distribution is derived from the measured trace lengths at exposed rock faces by correcting the sampling biases (Baecher and Lanney 1978; Einstein et al. 1979; Priest and Hudson 1981; Kulatilake and Wu 1984; Zhang and Einstein 1998). In order to use the stereological relations between the discontinuity size distribution and the (true) trace length distribution to infer the discontinuity size distribution, assumptions need to be made about the discontinuity shape. Due to the mathematical convenience, discontinuities are often assumed to be thin circular discs in 3D space (Baecher et al. 1977; Warburton 1980a; Chan 1986; Kulatilake 1993). However, in many cases, discontinuities may be non-equidimensional (Bridges 1975; Einstein et al. 1979; Warburton 1980b). Therefore, Warburton (1980b) assumed that discontinuities in a set are parallelograms of various sizes. For simplicity, he also assumed that discontinuities in a set are geometrically similar (i.e., the ratio of longer to shorter sides for all parallelograms is a constant). It is noted that the equations for the discontinuity size distribution for the parallelogram assumption are more complex and difficult to solve than those at the circle assumption.

The forward modeling method infers discontinuity parameters by constructing 3D discrete models of discontinuity systems (Figure 3-2) (Dershowitz, 1992). Based on an initial analysis of field data, a statistical description of discontinuity orientation, size, shape and spatial distribution is assumed. The process used to collect the available data is then simulated, including processes of bias, censoring and truncation. This produces a simulated set of field data, which can then be compared to field measurements. Based on this comparison, the assumed statistical description can then be modified. The process is repeated until a statistical description is found to be consistent with field observations. The goodness of fit between measured and simulated measurements can be evaluated visually, by comparison of observed and predicted analytical functions, and by statistical tests such as the χ^2 and Kolmogorov-Smirnov tests.

Uniqueness is a problem for both the analytical/numerical and the forward modeling methods. E.g., for the analytical/numerical methods, it is possible to obtain two different size distributions from the same trace length distribution (Baecher et al. 1977). In the forward modeling method, it is possible to obtain more than one “best” description of the in situ discontinuity system, with each of the obtained descriptions being consistent with field observations.

In this report, a new approach is proposed for estimating the discontinuity size distributions. To be general, discontinuities are assumed to be elliptical in shape. By changing the aspect ratio k (i.e., the ratio of the major to minor axes) of the ellipses, most of the discontinuities in reality can
be reasonably represented. With this assumption, a general stereological relationship between trace length distributions and discontinuity size (expressed by the major axis length a of the ellipse) distributions is derived for area (or window) sampling, following the methodology of Warburton (1980a, b). From this relationship, expressions are derived for calculating the mean (μ_a) and standard deviation (σ_a) of the discontinuity size a, respectively for lognormal, negative exponential and Gamma distributions of discontinuity sizes. To overcome the problem of uniqueness, a relationship between the ratio of the 4th and 1st moments of the discontinuity size distribution and the 3rd moment of the trace length distribution is derived to check the suitability of the assumed discontinuity size distribution form (Section 3.2.1.5).

The trace length distribution in the derived stereological relationship is the true distribution of trace lengths. The true trace length distribution corresponds to trace lengths in a sampling window or surface of infinite size. Since, in practice, sampling windows are of finite size and only the portions of traces within the window can be measured in window sampling, the measured trace lengths are usually biased. Zhang and Einstein (2000a) developed a method for estimating the true trace length distribution by considering the sampling biases for circular window sampling. For convenience, the method is presented in Section 3.2.1.6.

In Section 3.2.1.7, the effect of sampling plane orientation on trace lengths is investigated by using the derived stereological relationship. The results show that the sampling plane orientation has an important effect on both the mean and standard deviation of trace lengths.
Figure 3-2 Forward Modeling Approach (after Dershowitz, 1992)
Finally, in Section 3.2.1.8, the derived stereological relationship between the trace length distribution and the discontinuity size distribution is used to analyze the trace (length) data simulated using the FracMan discrete fracture code. In the simulation, the size of a discontinuity set is described by a lognormal distribution, following Baecher et al. (1977), Barton (1978) and Warburton (1980a, b). For simplicity, only one discontinuity set with a deterministic orientation is considered. The discontinuities are generated in a 20 m × 20 m × 20 m box. Three circular sampling windows in different orientations are used to collect the trace (length) data.

3.2.1.2 Seismic Wave Methods

The seismic wave method has been widely used in petroleum exploration (Selley, 1998). To characterize fractures between wells, the seismic wave method may be used in two ways: (a) measuring the seismic waves reflected from the fracture, and (b) measuring the sound transmitted along the fracture.

The simplest way to detect fractures is to place both the energy source and the receivers at the ground surface (see Figure 3-3). The energy source is used to produce seismic waves and the receivers are used to record the amplitudes and travel times of waves returning to the surface after being reflected from the goal fracture (i.e., the fracture that one wants to characterize). By analyzing the recorded data about the reflected waves, the goal fracture can be detected (characterized). The seismogram obtained [Figure 3-4(b)] can successfully detect the fracture zones [Figure 3-4(a)]. For example, the narrow band of reflections between 15.5 ms and 19.5 ms is related to fracture zone 2.

![Figure 3-3 VSP Identification for Fracture Size](image)
Figure 3-5 VSP Approaches (a) Offset and (b) Walkway
The receivers can also be placed in the wells as shown in Figure 3-5. This is the vertical seismic profiling (VSP) technique. The simplest instance of this technique is the offset VSP in which there is only a single energy source at the surface located immediately adjacent to the well [Figure 3-5(a)]. Using the walkway VSP in which a series of surface energy sources are arranged in a straight line away from the well or even in radial patterns like the spokes of an umbrella [Figure 3-5(b)], a 3D image adjacent to well can be produced and thus the fracture characterized in 3D.

The processing and interpretation of recorded seismic wave data is critically important in detecting (characterizing) fractures in the rock mass. For the details about data processing and interpretation in seismic surveying, one can refer to Selley (1998). It should be noted that the reflected wave method might not be effective in following two cases:

(a) the rock mass contains many other fractures in addition to the goal fracture (see Figure 3-6).

(b) the rock mass is heterogeneous; e.g., there is a cave in the rock mass (see Figure 3-7).

In the above two cases, the goal fracture can be characterized by measuring the sound transmitted along it, as described in Section 3.2.1.2.

Figure 3-6 Seismic Wave Reflection by Features of Multiple Scales
Figure 3-7 Loss of Seismic Signals Due to Karsts and Inclusions

Figure 3-8 Wellbore Seismics
As shown in Figure 3-9, a sound source or a pressure pulse is placed near the goal fracture in a wellbore. If the fracture is connected to other wells, the sound will transmit along the fracture and can be heard (measured) in those wells. It is assumed that gas, water or oil is in the fracture. The principle used here is similar to that for sound transmission along a pipe, although the fracture case is 2D while a pipe case is 1D.

For this method, the following special cases should be considered:

(a) If there is clay filler in the fracture, the sound transmitted through the fracture may not be strong enough to be measured because the clay filler absorbs the sound.

(b) Measuring the sound at different locations in the receiver well can be used to check the intersections of the goal fracture with other fractures, although the intersection locations cannot be determined (see Figure 3-9).

Conventionally, VSP is used to identify specific, major discrete features. The distribution of size can then be derived by extrapolation from the sizes of measured fractures.

![Figure 3-9 Wellbore Seismic Surveys](image)

However, it may also possible to use VSP to obtain a distribution for the sizes of fractures which cannot be positively identified. This might be done by adapting the VSP imaging software to detect lineaments of different sizes, and then using this information to build size distributions.

3.2.1.3 Ground Penetrating Radar (GPR) Methods

Ground Penetrating Radar (GPR), also known as ground probing radar, ground radar or georadar, has been widely used in high-resolution mapping of soil and rock stratigraphy (Deng 1996; Sharma 1997). The GPR method uses high-frequency (80 to 1,000 MHz) electromagnetic (EM)
waves transmitted from a radar antenna to probe the earth. The transmitted EM waves are reflected from various interfaces within the ground and are detected by the radar receiver. Reflecting interfaces may be soil horizons, the groundwater surface, soil/rock interfaces, man-made objects, or any other interfaces possessing a contrast in dielectric properties. The GPR method is analogous to seismic reflection except for the energy source (Sharma 1997; ASCE 1998).

Contrasts in dielectric properties across an interface cause EM waves to be reflected. Fracture fillings with dielectric properties differing from their adjacent rock materials can cause radar reflections and thus can be detected.

The GPR method is that the penetration depth of radar is limited (usually less than 20 meters) (Cummings 1990; Kearey and Brooks 1991; Sharma 1997; ASCE 1998). At the Gypsy Outcrop Site in Northeastern Oklahoma, the maximum depth with noticeable radar response is about 10 meters (Deng 1996). Therefore, the GPR method can only be used to detect fractures at shallow depth or a short distance from the well. While this is useless for conventional oil reservoir stratigraphic characterization, it is potentially useful for deriving the size distribution for fractures to be incorporated in DFN models. GPR methods can potentially fill in the portion of the size distribution between the 0.1 to 10 m features seen in wells and the 100 m and larger features seen in VSP and 3D seismics.

Similar to the seismic wave method, the processing and interpretation of recorded GPR data is critically important. Due to the kinematic similarities between radar and seismic wave propagation, seismic processing techniques are widely used to process the GPR data (Deng 1996; Sharma 1997).

GPR was successfully used to detect fracture zone 2 in Figure 3-4(a) (Soonawala et al. 1990; Stevens et al. 1995). As shown in Figure 3-10, there is a large continuous reflection, 40 m deep at the northwest end of the profile and about 50 m deep at the southeast end. This reflection corresponds to the location of fracture zone 2 which is also shown in the fracture log of well M-10 located near the northwest end of the profile. Other examples of GPR applied to fracture detection in hard rocks can be found in Grasmueck (1996) and Grandjean and Gourry (1996).

During 2000, we plan to develop approaches for deriving size distributions for intermediate scale features from GPR data.
3.2.1.4 Hydraulic Interference Approaches

Hydraulic interference analysis can be used to identify the hydraulic connections between wells in three ways: (a) pumping and observation, (b) injection and observation, and (c) chemical/radioactive tracers.

Pumping and Observation

Paillet (1993) used the pumping and observation method to identify the hydraulic connections between wells. By measuring the vertical flows in both the pumped and observation wells, the points where water enters and exits the wellbore can be found and then the hydraulic connections between wells can be identified (see Figure 3-11).

If there are multiple water entrance points in the pumped well and multiple water exit points in observation well, it may be difficult to identify how these fractures are interconnected (see Figure 3-12). To address this problem, we suggest the following procedure (see Figure 3-12):

(a) Isolate the entrance points in the pumped wellbore with packers.

(b) Pump water from one interval including only one entrance point.

(c) Find the water exit point(s) in the observation wellbore and identify the hydraulic connections to the fracture in the pumping interval.

(d) For other entrance points in the pumped well, repeat steps (b) and (c).
Obviously, the pumping and observation method can be used only in saturated rock masses with water or oil.

Figure 3-11 Hydraulic Interference Testing
Figure 3-12 Fracture Network Effects

Figure 3-13 Packer Testing
Injection and Observation

The injection and observation method can be used to characterize fractures with the following procedure (see Figure 3-13):

(a) Isolate the target fracture from other fractures in the injection well.

(b) Inject a fluid (generally oil or water) to the target fracture.

(c) Find the water entrance point(s) in the observation well and identify the hydraulic connections to the goal fracture.

(d) For other fractures in the injection well, repeat steps (a) to (c).

The injection and observation method can be used in both saturated or unsaturated rock masses. Benito et al. (1999) used the injection and observation method to assess the pneumatic connectivity of unsaturated fractured basalt by injecting air.
Chemical/Radioactive Tracers

The chemical/radioactive tracer method can be considered an extension of the injection and observation method. By injecting a chemical or radioactive tracer (which is usually diluted in water) into a well and monitoring its movement in observation wells around the injection well, fractures or fracture zones connecting the injection well and the observation wells can be identified.

Novakowski et al. (1985) described an experiment carried out at the Chalk River Nuclear Laboratories, Ontario, Canada, to identify fracture zones using a radioactive tracer \(^{131}I\). Figure 3-14 shows the instrumentation used for the \(^{131}I\) tracer test. After injecting the \(^{131}I\) tracer (which is diluted with water) into a fractured interval isolated by straddle packers in a central well, the research team monitored its movement in observation wells surrounding the injection well, using a \(\gamma\)-ray logging device.

Hydraulic interference tests are used extensively in heterogeneous oil reservoirs to characterize hydraulic compartments and design infill drilling campaigns. Both thermal (steam) and chemical tracers have been used at the project study site in Yates, Texas to understand hydraulic connectivity. In theory, a series of hydraulic interference tests could be deconvolved fracture size distributions from fracture network responses. This has been attempted as part of the SKB Stripa project in Sweden (Doe and Geirer, 1991) and the SKB Åspö project (Winberg et al., 1999). However, these results have not yet been successful for derivation of fracture size distributions due to the complexity of fracture network behavior, and uncertainties arising from boundary conditions.

3.2.1.5 Analytical Development

3.2.1.5.1 Basic Assumptions

The following are the assumptions that underlie the constructions of the model:

1) All discontinuities are planar.
2) Discontinuities are elliptical in shape. Discontinuities in a set are geometrically similar, i.e., all discontinuities in a set have the same aspect ratio \(k\) (i.e., the ratio of major to minor axes of an ellipse).
3) The centers of discontinuities are randomly and independently distributed in space. The volume density of discontinuity centers has a Poisson distribution with mean \(N_v\), i.e., the probability density function of the number of discontinuity centers in a given region denoted by \(x\) is

\[
p(N;N_v, x) = \frac{e^{-N_v x} (N_v x)^N}{N!}, \quad N = 0, 1, 2,
\]

4) The size distribution of discontinuities is independent of spatial location.

In some cases, the above assumptions may not be valid in describing a given discontinuity network. However, these are postulated here, as they provide an elementary but still not totally unrealistic means of describing discontinuity geometry. Eventually, some of these assumptions can be relaxed. Following is a discussion of the above assumptions.

Planar Discontinuities: The assumption of planar discontinuities is made in order to obtain a simple parametric description of the discontinuity geometry. Although discontinuities can be curved or wavy in some cases, this curvature is often negligible (Warburton 1980a). It is a
common practice in rock engineering to assume that discontinuities to be planar (Priest and Hudson 1976; Baecher et al. 1977; Warburton 1980a, b; Kulatilake 1993).

Elliptical Discontinuities: Zhang and Einstein (2000b) conducted a brief literature review about the shape of (unrestricted) discontinuities, including the reported in situ data and the shapes assumed by different researchers. Analysis of the available information on the shape of discontinuities leads to the following conclusions (Zhang and Einstein 2000b):

1. The conclusion that discontinuities are equidimensional (circular) drawn from the fact that the average strike length of a discontinuity set is approximately equal to its average dip length is questionable. Investigators assume circular discontinuity shape possibly because of mathematical convenience.

2. The possible shape of unrestricted discontinuities is more likely to be elliptical than circular.

3. Elliptical discontinuities can be effectively represented by polygons with a large number of sides. This is one of the reasons why polygons are used to represent discontinuities in discrete fracture codes. Convenience of numerical analysis and the ability to represent irregular discontinuities, such as restricted discontinuities, are another two reasons for using polygons to represent discontinuities in discrete fracture codes.

In this study, discontinuities are assumed to be elliptical in shape so that an analytical relationship between trace length distributions and discontinuity size (expressed by the major axis length \(a \) of the ellipse) distributions can be derived. By changing the aspect ratio \(k \) (i.e., the ratio of major to minor axes) of the ellipses, most of the discontinuities in reality can be reasonably represented.

Discontinuities Randomly Distributed in Space: The hypothesis that discontinuities are randomly distributed in space is very convenient and is widely adopted by investigators. The assumption leads to an exponential distribution of trace spacings along a sampling line, in agreement with most reported field studies (e.g., Priest and Hudson 1976, Call et al. 1976, Baecher et al. 1977, Einstein et al. 1979). This assumption is convenient, but implies that clustering is not considered.

Discontinuity Sizes Independent of Position: This is again an assumption for the sake of simplicity. Although this assumption is open to debate, it is implicit in most rock mechanics analysis (Baecher et al. 1977). To make this and the former assumptions more acceptable, one can divide the site into regions in which this assumption seems approximately correct (see, e.g., Meyer et al. 1999). Again, this implies that clustering is not considered.

It is noted that the above assumptions are made so that a general stereological relationship between trace length distributions and discontinuity size distributions can be conveniently derived. However, these assumptions, while convenient, are not necessary. For example, the clustering of discontinuities could be considered using the methodology proposed by Dershowitz (1993), Ivanova (1998) and Meyer (1999).

Figure 3-15 shows the parameters used in the definition of discontinuity shape. To simplify the derivation, the parameters are specified with reference to the trace directions that would be produced on a sampling plane. \(\beta \) is the angle between the discontinuity major axis and the trace line (note that \(\beta \) is measured in the discontinuity plane). Obviously, \(\beta \) will change for different sampling planes. For a specific sampling plane, however, there will be only one \(\beta \) value for a
discontinuity set with a deterministic orientation. The parameter a, which is a characteristic dimension (c.d.) defining the discontinuity size, is chosen to be the length of the discontinuity major axis. The length of the discontinuity minor axis is a/k, where k is the aspect ratio of the discontinuity. The probability density (or frequency) function $g(a)$ for the characteristic dimension is independent of spatial location.

Consider a sampling plane located inside the rock mass. Every discontinuity that intersects this plane creates a linear trace, which is in fact a chord of the discontinuity. For simplicity we shall initially consider a typical discontinuity with c.d. a. Let us examine under what conditions the discontinuity produces a trace with midpoint at a given point O in the sampling plane. Obviously one way in which this can occur is if the discontinuity center coincides with the point O, as shown in Figure 3-16(a). Let us draw lines, such as line A, on the discontinuity planes and parallel to the trace line through point O. These lines will intersect the discontinuity producing cords, such as cord A_1A_2 produced by line A. If the discontinuity center is at the midpoint A_0 of cord A_1A_2, the discontinuity will produce a trace with midpoint at point O. Extending this argument, we can find that if the discontinuity center is on a straight line $B_0A_0OC_0D_0$, the discontinuity will produce a trace with midpoint at point O. The angle between the straight line $B_0A_0OC_0D_0$ and the trace line through point O is

$$\beta_0 = \beta + \beta_1 = \beta + \arctan \left(\frac{1}{k^2 \tan \beta} \right)$$

Equation 1
Figure 3-15 Parameters used in the definitions of discontinuity
Figure 3-16 Construction used in deviation of relationship between discontinuity size distribution and trace length distribution.
Consider the construction of the box in Figure 3-16(b). The page represents the sampling plane, and the discontinuity normal is inclined at an angle α to the plane. Since in the figure this angle is taken to lie in a vertical plane normal to the page, the discontinuity would create a horizontal trace where it intersects the page. The box extends equally on both sides of the page following the contour of line $B_0A_0OC_0D_0$. The distance h_0 of the front or back of the box from the page in the discontinuity plane is

$$h_0 = \frac{a \sqrt{k^2 \tan^2 \beta + 1}}{2k \sqrt{\tan^2 \beta + 1}}$$

Equation 2

where β is the angle between the discontinuity major axis and the trace line [see Figure 3-16(a)]. If the center of our typical discontinuity is at this distance from the page, the discontinuity will touch the page. So if the discontinuity is to intersect the page its center must be somewhere between the front and back of the box. It is also noted that all cross sections of the box parallel to the page have the same unit area. The significance of the box now becomes apparent: each of our typical discontinuities whose center is in the box will produce a trace whose midpoint is in the unit area, and the number of such trace midpoints will be equal to the number of typical discontinuities with centers in the box [see Figure 3-16(b)].

Since the volume of the box is

$$V = \frac{\sqrt{k^2 \tan^2 \beta + 1}}{k \sqrt{\tan^2 \beta + 1}} a \cos \alpha$$

Equation 3

the total number of discontinuity centers in the box, on the average, is

$$N_V \frac{\sqrt{k^2 \tan^2 \beta + 1}}{k \sqrt{\tan^2 \beta + 1}} a \cos \alpha$$

Equation 4

where N_v is the mean volume density of discontinuity centers (see assumption 3 above). A fraction $g(a)\, da$ of these discontinuities have c.d. between a and $a + \, da$ and can be considered to be our typical discontinuities, where $g(a)$ is the probability density function of a. Consequently, the average number of trace midpoints per unit area produced by discontinuities with c.d. between a and $a + \, da = \text{the average number of such discontinuities with centers in the marked volume}$.
Integrating (5) over the range of all discontinuity c.d. a and assuming a theoretically infinite upper limit, we find that the average total number of trace midpoints per unit area is given by

$$N_A = N_V \frac{\sqrt{k^2 \tan^2 \beta + 1}}{k \sqrt{\tan^2 \beta + 1}} \cos \alpha \mu_a$$ \hspace{1cm} \text{Equation 6}$$

where the mean of a is, by definition,

$$\mu_a \equiv \int_0^\infty ag(a)da$$ \hspace{1cm} \text{Equation 7}$$

Dividing (5) by (6), the fraction of total traces produced by discontinuities with c.d. between a and $a + da$

$$= \frac{a}{\mu_a} g(a)da$$ \hspace{1cm} \text{Equation 8}$$

Eq. (8) applies over the whole plane section [the “plane section” is parallel to the “unit area” in Figure 3-16(b)]. It is worth noting that Eq. (8) shows that the probability density function of traces produced by discontinuities with c.d. a is given by

$$f(a) = \frac{a}{\mu_a} g(a)$$ \hspace{1cm} \text{Equation 9}$$

Figure 3-17 illustrates a typical discontinuity of c.d. a. The discontinuity intersects a sampling plane to produce a trace of length l located at a distance h from the discontinuity center in the
discontinuity plane. It is assumed that the discontinuity is located randomly relative to the sampling plane; this means that the distance \(h \) will be distributed uniformly in the range 0 to

\[
h_0 = \frac{a \sqrt{k^2 \tan^2 \beta + 1}}{2k \sqrt{\tan^2 \beta + 1}}
\]

and hence with a constant density of \(\frac{2k \sqrt{\tan^2 \beta + 1}}{a \sqrt{k^2 \tan^2 \beta + 1}} \). Of these discontinuities that have c.d. between \(a \) and \(a + \Delta a \) and are intersected by the sampling plane there, a fraction \(\frac{2k \sqrt{\tan^2 \beta + 1}}{a \sqrt{k^2 \tan^2 \beta + 1}} dh \) have centers at distances between \(h \) and \(h + dh \) from their intersections with the sampling plane. Multiplying this fraction by the probability density given by Eq. (8) gives the fraction of the total number of traces that have parent discontinuity c.d. between \(a \) and \(a + \Delta a \) and discontinuity center locations in the range \(h \) to \(h + dh \), as follows

\[
P_{ah} = \frac{2k \sqrt{\tan^2 \beta + 1}}{a \sqrt{k^2 \tan^2 \beta + 1}} g(a) \Delta a dh
\]
Equation 10

The length \(l \) of a trace is related to its distance \(h \) from the discontinuity center in the discontinuity plane as follows

\[
l = \frac{2 \sqrt{\tan^2 \beta + 1} \sqrt{(a/2)^2 (k^2 \tan^2 \beta + 1) - h^2 k^2 \tan^2 \beta + 1}}{k^2 \tan^2 \beta + 1}
\]
Equation 11

When \(h = 0 \), \(l \) takes the maximum value

\[
l_{max} = \frac{\sqrt{\tan^2 \beta + 1}}{\sqrt{k^2 \tan^2 \beta + 1}} a = Ma
\]
Equation 12

which is the maximum trace length of a discontinuity with c.d. \(a \). In Eq. (12),
By deriving h as a function of l from Eq. (11) and then taking the derivative of h over l, we have

\[
M = \frac{\sqrt{\tan^2 \beta + 1}}{\sqrt{k^2 \tan^2 \beta + 1}} \quad \text{Equation 13}
\]

\[
\frac{dh}{dl} = \frac{-(k^2 \tan^2 \beta + 1)dl}{2k(\tan^2 \beta + 1)\sqrt{\frac{\tan^2 \beta + 1}{k^2 \tan^2 \beta + 1}}a^2 - l^2} \quad \text{Equation 14}
\]

Figure 3-17 Relationship between h, l, and a
Here the negative sign simply means that I decreases as h increases. Taking the absolute value and substituting for dh in Eq. (10) gives the fraction of total traces that have lengths between I and $I + dl$ and that are produced by discontinuities with c.d. between a and $a + da$

$$P_{al} = \frac{\sqrt{k^2 \tan^2 \beta + 1} g(a) da}{\mu a \sqrt{\tan^2 \beta + 1}} \frac{ldl}{\sqrt{\frac{\tan^2 \beta + 1}{k^2 \tan^2 \beta + 1} a^2 - l^2}}$$ \hspace{1cm} \text{Equation 15}$$

$$= \frac{g(a) da}{M \mu a} \frac{ldl}{\sqrt{(Ma)^2 - l^2}}$$

A trace length between I and $I + dl$ could be produced by a discontinuity with a c.d. a that is greater than l/aM [see Eq. (12)]. Consequently, the proportion, P_l, of the total number of traces that have lengths between I and $I + dl$ is found by integrating Eq. (15) over the range of all possible discontinuity c.d. a between l/aM and ∞, as follows

$$P_l = \frac{ldl}{M \mu a} \int_{l/aM}^{\infty} \frac{g(a) da}{\sqrt{(Ma)^2 - l^2}}$$ \hspace{1cm} \text{Equation 16}$$

This gives the probability density function of trace length l

$$f(l) = \frac{I}{M \mu a} \int_{l/aM}^{\infty} \frac{g(a) da}{\sqrt{(Ma)^2 - l^2}} \quad (l \leq aM)$$ \hspace{1cm} \text{Equation 17}$$

It is noted that when $k = 1$ (i.e., the discontinuities are circular), $M = 1$ and Eq. (17) reduces to:

$$f(l) = \frac{l}{\mu a} \int_{l}^{\infty} \frac{g(a) da}{\sqrt{a^2 - l^2}}$$ \hspace{1cm} \text{Equation 18}$$

This is the result derived by Warburton (1980a) for circular discontinuities.
3.2.1.5.2 Inference of Discontinuity Size Distribution from Trace Length Distribution or Vice Versa

With the probability density function of the trace length, \(f(l) \), the \(m \)th moment of the trace length, \(E(l^m) \), can be obtained by

\[
E(l^m) = \int_0^\infty l^m f(l) dl
\]

Equation 19

Substitution of Eq. (17) into Eq. (19) gives

\[
E(l^m) = \frac{1}{M \mu a} \int_0^\infty l^m dl \int_0^{M \mu} \frac{lg(a) da}{\sqrt{(Ma)^2 - l^2}} \quad (l \leq aM)
\]

Equation 20

Reversing the order of integration in Eq. (20) and performing the resulting integration with respect to \(l \), we obtain

\[
E(l^m) = \frac{1}{M \mu a} \int_0^\infty g(a) da \int_0^{Ma} \frac{l^{m+1} dl}{\sqrt{(Ma)^2 - l^2}}
\]

Equation 21

\[
= \frac{M^m J_{m+1}}{\mu a} \int_0^\infty a^{m+1} g(a) da
\]

where
\[J_{m+1} = \begin{cases} \frac{(1)(3)\cdots(m)}{(2)(4)\cdots(m+1)} \frac{\pi}{2} & \text{if } m \text{ is odd} \\ \frac{(2)(4)\cdots(m)}{(3)(5)\cdots(m+1)} & \text{if } m \text{ is even} \end{cases} \]

Equation 22

\[\int_0^\infty a^{m+1} g(a) da \] is the \((m+1)\)th moment of \(a\), i.e.,

\[E(a^{m+1}) = \int_0^\infty a^{m+1} g(a) da \]

Equation 23

So Eq. (21) can be rewritten as

\[E(l^m) = \frac{E(a^{m+1})}{\mu_a} M^m J_{m+1} \]

Equation 24

For \(m=1\) and \(m=2\), we have

\[E(l) = \frac{\pi ME(a^2)}{4\mu_a} \]

Equation 25

and

\[E(l^2) = \frac{2M^2 E(a^3)}{3\mu_a} \]

Equation 26
Using \(E(l) = \mu_l \), \(E(l^2) = [(\mu_\alpha)^2 + (\sigma_\alpha)^2] \), \(E(a) = \mu_a \) and \(E(a^2) = [(\mu_a)^2 + (\sigma_a)^2] \), Eqs. (25) and (26) can be rewritten as

\[
\mu_l = \frac{\pi M [(\mu_a)^2 + (\sigma_a)^2]}{4 \mu_a}
\]

Equation 27

and

\[
(\mu_l)^2 + (\sigma_l)^2 = \frac{2M^2 E(a^3)}{3 \mu_a}
\]

Equation 28

(a) If \(g(\alpha) \) is lognormally distributed with mean \(\mu_a \) and standard deviation \(\sigma_a \), then

\[
E(a^3) = \left[\frac{(\mu_a)^2 + (\sigma_a)^2}{\mu_a} \right]^3
\]

Equation 29

Substituting Eq. (29) into Eq. (28) and solving Eqs. (27) and (28) for \(\mu_a \) and \(\sigma_a \) gives

\[
\mu_a = \frac{128(\mu_l)^3}{3\pi^3 M^2 [(\mu_l)^2 + (\sigma_l)^2]}
\]

Equation 30

and

\[
(\sigma_a)^2 = \frac{1536\pi^2 [(\mu_l)^2 + (\sigma_l)^2]}{9\pi^6 M^2 [(\mu_l)^2 + (\sigma_l)^2]^2}
\]

Equation 31

(b) If \(g(\alpha) \) has a negative exponential distribution with mean \(\mu_a \), then \(\sigma_a = \mu_a \) and from Eq. (27) we obtain
\[\mu_a = \frac{2}{\pi M} \mu_i \]

Equation 32

(c) If \(g(a) \) has a Gamma distribution with mean \(\mu_a \) and standard deviation \(\sigma_a \), then

\[E(a^3) = \frac{[(\mu_a)^2 + (\sigma_a)^2][(\mu_a)^2 + 2(\sigma_a)^2]}{\mu_a} \]

Equation 33

Substituting Eq. (33) into Eq. (28) and solving Eqs. (27) and (28) for \(\mu_a \) and \(\sigma_a \) gives

\[\mu_a = \frac{64(\mu_i)^2 - 3\pi^2[(\mu_i)^2 + (\sigma_i)^2]}{8\pi M\mu_i} \]

Equation 34

and

\[(\sigma_a)^2 = \frac{64(\mu_i)^2 - 3\pi^2[(\mu_i)^2 + (\sigma_i)^2]}{64\pi^2 M^2 (\mu_i)^2} \{3\pi^2[(\mu_i)^2 + (\sigma_i)^2] - 32(\mu_i)^2\} \]

Equation 35

Table 3-1 summarizes the above expressions for determining \(\mu_a \) and \(\sigma_a \) from \(\mu_i \) and \(\sigma_i \), respectively for lognormal, negative exponential and Gamma distribution of discontinuity diameters. Conversely, with known \(\mu_i \) and \(\sigma_i \), and the distribution form of \(g(a) \), the mean \(\mu_i \) and standard deviation \(\sigma_i \) of trace lengths can also be obtained. The expressions are summarized in Table 3-2.

It is noted that, with the same \(\mu_i \) and \(\sigma_i \), we can have different \(\mu_a \) and \(\sigma_a \) if the assumed distribution form of \(g(a) \) is different. This means that the estimation of discontinuity size distributions from Eq. (17) or (19) may not be robust. To overcome the problem of uniqueness, a relationship between the ratio of the 4th and 1st moments of the discontinuity size distribution and the 3rd moment of the trace length distribution will be used to check the suitability of the assumed discontinuity size distribution form.
Table 3-1 Expression for determining μ_a and σ_a from μ_t and σ_t

<table>
<thead>
<tr>
<th>Distribution form of $g(a)$</th>
<th>μ_a</th>
<th>$(\sigma_a)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lognormal</td>
<td>$\frac{128(\mu_t)^3}{3\pi^3 M[(\mu_t)^2+(\sigma_t)^2]}$</td>
<td>$\frac{1536\pi^2(\mu_t)^2+(\sigma_t)^2^4-128^2(\mu_t)^6}{9\pi^6 M^2[(\mu_t)^2+(\sigma_t)^2]^2}$</td>
</tr>
<tr>
<td>Negative exponential</td>
<td>$\frac{2}{\pi M}\mu_t$</td>
<td>$\left[\frac{2}{\pi M}\mu_t\right]^2$</td>
</tr>
<tr>
<td>Gamma</td>
<td>$\frac{64(\mu_t)^2-3\pi^2[(\mu_t)^2+(\sigma_t)^2]}{8\pi M\mu_t}$</td>
<td>$\frac{{64(\mu_t)^2-3\pi^2[(\mu_t)^2+(\sigma_t)^2]}^2}{{3\pi^2[(\mu_t)^2+(\sigma_t)^2]-32(\mu_t)^2}}{64\pi^2 M^2(\mu_t)^2}$</td>
</tr>
</tbody>
</table>

Table 3-2 Expression for determining μ_t and σ_t from μ_a and σ_a

<table>
<thead>
<tr>
<th>Distribution form of $g(a)$</th>
<th>μ_t</th>
<th>$(\sigma_t)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lognormal</td>
<td>$\frac{\pi M[(\mu_a)^2+(\sigma_a)^2]}{4\mu_a}$</td>
<td>$\frac{32 M^2[(\mu_a)^2+(\sigma_a)^2]^3}{48(\mu_a)^4}$</td>
</tr>
<tr>
<td>Negative exponential</td>
<td>$\frac{\pi M}{2}\mu_a$</td>
<td>$\frac{(16-\pi^2) M^2}{4}(\mu_a)^2$</td>
</tr>
<tr>
<td>Gamma</td>
<td>$\frac{\pi M[(\mu_a)^2+(\sigma_a)^2]}{4\mu_a}$</td>
<td>$\frac{32 M^2[(\mu_a)^2+(\sigma_a)^2][(\mu_a)^2+2(\sigma_a)^2]}{48(\mu_a)^2}$ $-\frac{3\pi^2 M^2[(\mu_a)^2+(\sigma_a)^2]^2}{48(\mu_a)^2}$</td>
</tr>
</tbody>
</table>

For $m = 3$, Eq. (24) becomes

$$\frac{E(a^4)}{E(a)} = \frac{16E(l^3)}{3\pi M^3}$$

Equation 36

For the three distribution forms of $g(a)$ discussed above, Eq. (36) can be rewritten as:

39
(a) If \(g(a) \) is lognormally distributed with mean \(\mu_a \) and standard deviation \(\sigma_a \),

\[
\left(\frac{\alpha^2 + (\sigma_a)^2}{\mu_a^9}\right)^6 = \frac{16E(l^3)}{3\pi M^3}
\]

Equation 37

(b) If \(g(a) \) has a negative exponential distribution with mean \(\mu_a \),

\[
24(\mu_a)^2 = \frac{16E(l^3)}{3\pi M^3}
\]

Equation 38

(c) If \(g(a) \) has a Gamma distribution with mean \(\mu_a \) and standard deviation \(\sigma_a \),

\[
\frac{((\mu_a)^2 + (\sigma_a)^2)[(\mu_a)^2 + 2(\sigma_a)^2][(\mu_a)^2 + 3(\sigma_a)^2]}{(\mu_a)^3} = \frac{16E(l^3)}{3\pi M^3}
\]

Equation 39

So the following procedure can be used to infer the discontinuity size distribution \(g(a) \):

1. Obtain the true trace length distribution of \(f(l) \) (see Section 3.2.1.6 for the details) and compute \(E(l^3) \).
2. Assume one of the distribution forms for \(g(a) \) in Table 3-3 and compute \(\mu_a \) and \(\sigma_a \) using corresponding expressions, e.g., for a lognormal distribution form of \(g(a) \), equations (30) and (31) are used.
3. Check the equality of equation (36) corresponding to the assumed distribution form of \(g(a) \), e.g., for a lognormal distribution form of \(g(a) \), the equality of equation (37) is checked. The assumed distribution form of \(g(a) \) corresponding to the case that the left and right sides are the closest to, is the best distribution form of \(g(a) \) and thus can be used, together with the corresponding \(\mu_a \) and \(\sigma_a \), to represent the discontinuity distribution.

3.2.1.6 Estimation of True Trace Length Distribution \(f(l) \)

Because the discontinuity size distribution \(g(a) \) is related to the true trace length distribution \(f(l) \), we need to estimate \(f(l) \) from the measured trace (length) data by correcting the sampling biases. Zhang and Einstein (2000a) developed a method for estimating the true trace length distribution
by considering the sampling biases for circular window sampling, which is reproduced in the following.

Measured trace lengths can be obtained from three types of sampling on an exposure (including natural outcrops, rock cuts and tunnel walls): (a) sampling the traces that intersect a line drawn on the exposure, which is known as scanline sampling; (b) sampling the traces that intersect a circle drawn on the exposure, which is known as circle sampling; and (c) sampling the traces within a finite size area (usually rectangular or circular in shape) on the exposure, which is known as area (or window) sampling. It is important to note that in window sampling as it is defined here only the portions of the discontinuity traces within the window are measured, while the portions of traces intersecting such a window but lying outside are not considered. In this study, circular window sampling (see Figure 3-18) is considered. If the outcrop is circular in shape, it can be conveniently used as a sampling window. Circular window sampling has the advantage that no discontinuity orientation data is needed when estimating the true mean trace lengths (Mauldon 1998; Zhang and Einstein 1998).

In sampling for trace lengths, errors can occur due to the following biases (Baecher, Lanney, and Einstein 1978; Einstein et al. 1979; Priest and Hudson 1981; Kulatilake and Wu 1984):

1. Orientation bias: the probability of a joint appearing in an outcrop depends on the relative orientation between the outcrop and the joint (see also Terzaghi 1965);

![Figure 3-18 Discontinuities intersect a circular sampling window in three ways](image)
2. Size bias: large joints are more likely to be sampled than small joints. This bias affects the results in two ways: (a) a larger joint is more likely to appear in an outcrop than a smaller one; and (b) a longer trace is more likely to appear in a sampling area than a shorter one.

3. Truncation bias: Very small trace lengths are difficult or sometimes impossible to measure. Therefore, trace lengths below some known cutoff length are not recorded.

4. Censoring bias: Long joint traces may extend beyond the visible exposure so that one end or both ends of the joint traces can not be seen.

In inferring the true trace length distribution (i.e., the trace length distribution on an infinite sampling surface) from the measured trace lengths on a finite size area on this surface, biases (2b), (3) and (4) should be considered. Biases (1) and (2a) should be considered when inferring the discontinuity size distribution from the true trace length distribution. Truncation bias (3) can be corrected using the method of Warburton (1980a). Decreasing the truncation-level in discontinuity surveys can reduce effects of truncation bias on trace length estimates. It is practically feasible to observe and measure trace lengths as low as 10 mm both in the filed and from photographs (Priest and Hudson 1981). Truncation at this level will have only a small effect on the data, particularly if the mean trace length in the order of meters (Priest and Hudson 1981; Einstein and Baecher 1983). Therefore, the effect of truncation bias on trace length estimates is usually ignored (Kulatilake et al. 1993; Zhang and Einstein 1998). However, biases (2b) and (4) are important and will be considered.

According to Zhang (1999), the following procedure is proposed for estimating \(f(l) \):

(a) Estimate the true mean trace length \(\bar{\mu}_l \) by (Zhang and Einstein 1998)

\[
\bar{\mu}_l = \frac{\pi (\hat{N} + \hat{N}_0 - \hat{N}_2)}{2(\hat{N} - \hat{N}_0 + \hat{N}_2)} c
\]
Equation 40

where \(\hat{N} \), \(\hat{N}_0 \) and \(\hat{N}_2 \) are respectively the total number of traces that appear on the window, the number of traces with both ends censored and the number of traces both ends observable; and \(c \) is the radius of the sampling window (see Figure 3-18).

(b) Analyze the measured trace lengths to obtain the mean \((\bar{\mu}_m) \), the standard deviation \((\sigma)_m \), the coefficient of variation \(\text{COV}_m = (\sigma)_m / (\bar{\mu}_m) \) and the suitable distribution form of the measured trace lengths. To find the suitable distribution \(h(l) \) of the measured trace lengths of each discontinuity set, the distribution forms in Table 3-3 can be checked by using \(\chi^2 \) and Kolmogorov-Smirnov goodness-of-fit tests.

(c) Obtain the true trace length distribution \(f(l) \) by assuming: (1) \(f(l) \) and \(h(l) \) have the same distribution form; and (2) the mean and standard deviation of \(f(l) \) are respectively \(\bar{\mu}_l \) and \(\bar{\mu}_l (\text{COV}_m) \).

When applying Eq. (40), the following two special cases may occur and should be avoided:
1) If $N_o = N$, then $\mu_I \to \infty$. In this case, all the discontinuities intersecting the sampling window have both ends censored. This implies that the area of the window used for the discontinuity survey may be too small.

2) If $N_2 = N$, then $\hat{\mu}_I = 0$. In this case, all the discontinuities intersecting the sampling window have both ends observable. According to Pahl (1981), this results is due to violation of the assumption that the midpoints of traces are uniformly distributed in the two dimensional space.

These two special cases can be addressed by increasing the sampling window size and/or changing the sampling window position (Zhang 1999). Another method to address these two special cases is to use multiple windows of the same size and at different locations (Zhang and Einstein 1998).

Table 3-3 Common Distribution Forms of Trace Lengths

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Distribution Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robertson (1970)</td>
<td>Exponential</td>
</tr>
<tr>
<td>McMahon (1974)</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Bridges (1975)</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Call et al. (1976)</td>
<td>Exponential</td>
</tr>
<tr>
<td>Barton (1977)</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Cruden (1977)</td>
<td>Exponential</td>
</tr>
<tr>
<td>Baecher et al (1977)</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Einstein et al. (1979)</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Priest and Hudson (1981)</td>
<td>Exponential</td>
</tr>
<tr>
<td>Kulatilake (1993)</td>
<td>Exponential and Gamma (Gamma better)</td>
</tr>
<tr>
<td>Barton and Hsieh (1989)</td>
<td>Power Law</td>
</tr>
<tr>
<td>Barton and Larsen (1985)</td>
<td>Power Law</td>
</tr>
<tr>
<td>LaPointe and Hudson (1985)</td>
<td>Power Law</td>
</tr>
</tbody>
</table>

3.2.1.7 Effect of Sampling Plane Orientation on Trace Lengths

In this section, the effect of sampling plane orientation on trace lengths is investigated by using the derived stereological relationship between the trace length distribution and the discontinuity size distribution. For simplicity, only one discontinuity set with a deterministic orientation is considered. The discontinuity size of the set is assumed to be in lognormal distribution with $\mu_o = 8.0$ m and $\sigma_o = 4.0$ m.

Figure 3-19 shows the variation of the mean trace length with β. Since β is the angle between the trace line and the discontinuity major axis, it is an indication of the sampling plane orientation relative to the discontinuity. It can be seen from Figure 3-19 that, despite the considerable difference between the maximum and the minimum of mean trace length, there are extensive
ranges of sampling plane orientations reflected by β over which the mean trace lengths show little variation, especially for large k values.

Figure 3-20 shows the variation of the standard deviation of trace lengths with β. It can be seen that the standard deviation of trace lengths varies with the sampling plane orientation reflected by β in the same general way as the mean trace length.

The results in Figure 3-19 and Figure 3-20 could well explain why Bridges (1975), Einstein (1979) and McMahon (1982) found different mean trace lengths on differently oriented sampling planes, whereas Robertson (1970) and Barton (1977) observed them to be approximately equal. In each of these reports, the number of differently oriented sampling planes was very limited and, depending on the relative orientations of the sampling planes, the authors could observe either approximately equal mean trace lengths or significantly different mean trace lengths. For example, in Bridges (1975), Einstein (1979) and McMahon (1982), the strike and dip sampling planes might be respectively in the $\beta = 0^\circ - 20^\circ$ (or $160^\circ - 180^\circ$) range and the $\beta = 40^\circ - 140^\circ$ range, or vice versa. From Figure 3-19, this would result in very different mean trace lengths. On the other hand, in Robertson (1970) and Barton (1977), the strike and dip sampling planes might be both in the $\beta = 40^\circ - 140^\circ$ range (i.e., in the “flat” trace length part of Figure 3-19) or respectively in some β ranges approximately symmetrical about $\beta = 90^\circ$. It should be noted that the above is just an assumption because no information about the β values can be found in the original papers or reports.

The implications of Figure 3-19 and Figure 3-20 about field sampling are as follows:

If different sampling planes are used to collect trace (length) data, the sampling planes should be oriented such that significantly different mean trace lengths can be obtained from different planes. For example, if two sampling planes are used, one should be oriented in the $\beta = 0^\circ - 20^\circ$ (or $160^\circ - 180^\circ$) range and the other in the $\beta = 60^\circ - 120^\circ$ range.
3.2.1.8 Verification by Numerical Simulation

To check the derived stereological relationship between trace length distributions and discontinuity size distributions, the trace data simulated using the FracMan discrete fracture code (Dershowitz et al. 1998) are analyzed. It should be noted that the FracMan discrete fracture code is just used to create discontinuity networks with known discontinuity size distribution and intensity, and to simulate the field sampling processes so that the proposed method can be checked. The assumptions used in FracMan do not affect the effectiveness for checking the
proposed method. The parameters for the simulations are shown in Table 3-4. Following Baecher et al. (1977), Barton (1978) and Warburton (1980a, b), the size of a discontinuity set is described by a lognormal distribution. For simplicity, only one discontinuity set with a deterministic orientation is considered. 2000 discontinuities are generated in a $20 \text{ m} \times 20 \text{ m} \times 20 \text{ m}$ box [see Figure 3-21(a)]. Three circular sampling windows of radius 8 m respectively in plane $x = 0 \text{ m}, y = 0 \text{ m}$ and $z = 0 \text{ m}$ are used to collect the trace (length) data [see Figure 3-21(b)].

![Figure 3-20 Variation of standard deviation of trace length with β](image)

$g(a)$ is lognormal with $\mu_a = 8.0 \text{ m}$ and $\sigma_a = 4.0 \text{ m}$
Figure 3-21 (a) Simulation volume is a box, i.e., the elliptical discontinuities are generated inside the box; (b) Sampling window at $x = 0$ m
Table 3-4 Parameters for simulation 1 using FracMan (see also Figure 3-21)

<table>
<thead>
<tr>
<th>Discontinuities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>2000</td>
</tr>
<tr>
<td>Pole direction (θ/φ)</td>
<td>300.0°/60.0°</td>
</tr>
<tr>
<td>Shape</td>
<td>Elliptical</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>4.0</td>
</tr>
<tr>
<td>Direction of major axis</td>
<td>30.0°/0.0°</td>
</tr>
<tr>
<td>Size a (Distribution)</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Size a (Mean μₐ)</td>
<td>8.0 m</td>
</tr>
<tr>
<td>Size a (Standard deviation σₐ)</td>
<td>4.0 m</td>
</tr>
<tr>
<td>Simulation volume</td>
<td>20 m × 20 m × 20 m box</td>
</tr>
</tbody>
</table>

Sampling windows

<table>
<thead>
<tr>
<th>Circular window 1</th>
<th>c = 8.0 m; (θ/φ)= (0.0°/0.0°); β* = 63.4°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular window 2</td>
<td>c = 8.0 m; (θ/φ)= (90.0°/0.0°); β* = 33.7°</td>
</tr>
<tr>
<td>Circular window 3</td>
<td>c = 8.0 m; (θ/φ)= (0.0°/90.0°); β* = 0.0°</td>
</tr>
</tbody>
</table>

*β is the angle between the trace line and the major axis of a discontinuity (see Figure 3-15)

For the three sampling windows shown in Table 3-4 and Figure 3-21, the theoretical (true) mean and standard deviation values of trace lengths can be obtained using the expressions for lognormal g(a) is shown in Table 3-5.
Table 3-5. Theoretical values of Trace Length Mean and Standard Deviation

<table>
<thead>
<tr>
<th>Sampling Window</th>
<th>M</th>
<th>Trace Length Mean (\mu_l)</th>
<th>Trace Length Standard Deviation (\sigma_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.277</td>
<td>2.18</td>
<td>1.29 m</td>
</tr>
<tr>
<td>2</td>
<td>0.422</td>
<td>3.31</td>
<td>1.96</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>7.85</td>
<td>4.65</td>
</tr>
</tbody>
</table>

For each discontinuity network realization, the discontinuity traces in a sampling window can be obtained. With the trace data, the values of \(\hat{N} \), \(\hat{N}_o \) and \(\hat{N}_2 \), respectively for each realization and for each sampling window, can be determined and the corresponding mean trace length \(\bar{\mu}_l \) can then be predicted using Eq. (40). The predicted mean trace length values are shown in Figure 3-22. The average values of the predicted mean trace lengths of 10 realizations, for each sampling window, are shown in Table 3-5. For comparison, the theoretical mean trace length values obtained above from the expressions in Table 3-2 are also shown in Figure 3-22 and Table 3-5. It can be seen that the theoretical and the predicted mean trace lengths are in excellent agreement.

Table 3-6. Comparison of theoretical (or true) and predicted mean trace lengths

<table>
<thead>
<tr>
<th>Sampling Window</th>
<th>(\mu_l) (m)</th>
<th>(\bar{\mu}_l) (m)</th>
<th>Error (= (\bar{\mu}_l - \mu_l) / \mu_l) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular window 1 ((\beta = 63.4^\circ))</td>
<td>2.18</td>
<td>2.16</td>
<td>-0.9</td>
</tr>
<tr>
<td>Circular window 2 ((\beta = 33.7^\circ))</td>
<td>3.31</td>
<td>3.36</td>
<td>1.5</td>
</tr>
<tr>
<td>Circular window 3 ((\beta = 0.0^\circ))</td>
<td>7.85</td>
<td>7.63</td>
<td>-2.8</td>
</tr>
</tbody>
</table>

Note: \(\bar{\mu}_l \) is the average of the predicted mean trace lengths \(\hat{\mu}_l \) of 10 realizations; \(\mu_l \) is the theoretical mean trace length obtained from the expressions in Table 3-2.
Figure 3-22 Comparison of theoretical mean trace lengths with predicted mean trace lengths from simulations
From the trace length data of each realization, the mean \((\mu_i)_m\) standard deviation \((\sigma_i)_m\) and coefficient of variation \(\text{COV}_m\), which is the ratio of the standard deviation and mean, of measured trace lengths in each sampling window can be obtained. The obtained \(\text{COV}_m\) can then be combined with the corresponding mean trace length \(\hat{\mu}_I\) to estimate the standard deviation \(\hat{\sigma}_I\) as \(\hat{\mu}_I (\text{COV}_m)\). The estimated standard deviation values are shown in Figure 3-23. The average values of the estimated standard deviation values of 10 realizations, for each sampling window, are shown in Table 3-7. For comparison, the theoretical standard deviation values obtained from the expressions in Table 3-2 are also shown in Figure 3-23 and Table 3-7. It can be seen that the theoretical and the estimated standard deviation values are in good agreement.

The good agreement between the theoretical and estimated values is a validation of both the derived expressions in Table 3-2 and the method presented in Section 3.2.1.6 for predicting the true mean and standard deviation of trace lengths.

The distribution forms of the measured trace lengths of 10 realizations for each sampling window are also investigated. \(\chi^2\) and Kolmogorov-Smirnov goodness-of-fit tests are used to check the suitability of lognormal and Gamma distributions (the negative exponential distribution is a special case of the Gamma distribution) in representing the measured trace lengths. The results of both \(\chi^2\) and Kolmogorov-Smirnov goodness-of-fit tests show that the lognormal distribution can represent the measured trace length distributions for all sampling windows at the 0.05 significance level. The Gamma distribution, however, can represent the measured trace length distributions in only some of the sampling windows at the 0.05 significance level. Therefore, according to Section 3.2.1.6, the true trace length distribution is assumed to be lognormal.

3.2.1.9 Approach Implementation

In this section, we show how to use the estimated true trace length distributions corresponding to different sampling windows to infer the major axis orientation, aspect ratio and size distribution of discontinuities.

Using the average of 10 realizations for each sampling window, the true trace length distributions can be derived as shown in Table 3-8.
Table 3-7 Comparison of theoretical (or true) and predicted standard deviation of trace lengths

<table>
<thead>
<tr>
<th>Sampling Window</th>
<th>σ_i (m)</th>
<th>$\bar{\sigma}_I$ (m)</th>
<th>$Error = (\bar{\sigma}_I - \sigma_i)/\sigma_i$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular window 1 ($\beta = 63.4^\circ$)</td>
<td>1.29</td>
<td>1.29</td>
<td>0</td>
</tr>
<tr>
<td>Circular window 2 ($\beta = 33.7^\circ$)</td>
<td>1.96</td>
<td>2.07</td>
<td>5.6</td>
</tr>
<tr>
<td>Circular window 3 ($\beta = 0.0^\circ$)</td>
<td>4.65</td>
<td>4.19</td>
<td>-9.9</td>
</tr>
</tbody>
</table>

Note: $\bar{\sigma}_I$ is the average of the predicted standard deviations of trace lengths σ_I of 10 realizations; σ_i is the theoretical standard deviation of trace lengths obtained from the expressions in Table 3-2.
Figure 3-23 Comparison of the theoretical standard deviation of trace lengths with predicted standard deviation of trace lengths from simulations.
Table 3-8 Derived true trace length distributions

<table>
<thead>
<tr>
<th>Sampling Window</th>
<th>μ_t (m)</th>
<th>σ_t (m)</th>
<th>Distribution Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular window 1 ($\beta = 63.4^\circ$)</td>
<td>2.16</td>
<td>1.29</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Circular window 2 ($\beta = 33.7^\circ$)</td>
<td>3.36</td>
<td>2.07</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Circular window 3 ($\beta = 0.0^\circ$)</td>
<td>7.63</td>
<td>4.19</td>
<td>Lognormal</td>
</tr>
</tbody>
</table>

Note: μ_t is from column 3 of Table 3-5 and σ_t from column 3 of Table 3-6.

To simulate the actual sampling condition, we assume that we know the pole orientation (i.e., $300.0^\circ/60.0^\circ$) but not the major axis orientation of discontinuities. This is a reasonable assumption given the fact that discontinuity orientations can be quite reliably observed. Thus the unknowns that we need to infer are:

1. The major axis orientation
2. The aspect ratio k
3. μ_a, σ_a and distribution form of $g(a)$.

Assuming three major axis orientations, the corresponding β values for each sampling window can be obtained (see Table 3-9). For each assumed major axis orientation and by assuming an aspect ratio k and a distribution form of $g(a)$, μ_a and σ_a can be calculated from μ_t and σ_t obtained for each sampling window. The relations between the calculated values of μ_a and σ_a and aspect ratio k for lognormal, negative exponential and Gamma distribution forms of $g(a)$ are shown in Figure 3-24, Figure 3-26 to Figure 3-29 and Figure 3-30 to Figure 3-32 for the three assumed major axis orientations, respectively. Since the trace length data of the three sampling windows correspond to a single discontinuity network, the relations between inferred μ_a (and σ_a) and k corresponding to the three sampling windows, i.e., the curves in Figure 3-24 to Figure 3-32, should intersect in one point. This point corresponds to the actual major axis orientation, which in practice is not known and needs to be inferred. Inspection of Figure 3-24 to Figure 3-32 show that the μ_a (and σ_a) versus k curves intersect only in Figure 3-27 to Figure 3-29 but do so very distinctly. Figure 3-27 to Figure 3-29 are for the major axis orientation of $30^\circ/0^\circ$, which is the actual major axis orientation, used in the simulation. The k, μ_a and σ_a values at the intersection points (see Figure 3-27 to Figure 3-29) are the corresponding predicted values. The prediction results for the lognormal, negative exponential and Gamma distribution forms of $g(a)$ are also shown in Table 3-10.
Figure 3-24 Variation of μ_a and σ_a with aspect ratio k for assumed major axis orientation 1 ($0^\circ/0^\circ$): assuming a lognormal distribution form of $g(a)$
Figure 3-25 Variation of μ_a with aspect ratio k for assumed major axis orientation 1 ($0^\circ/0^\circ$): assuming a negative exponential distribution form of $g(a)$.
Figure 3-26 Variation of μ_a and σ_a with aspect ratio k for assumed major axis orientation 1 ($0^\circ/0^\circ$): assuming a Gamma distribution form of $g(a)$
Figure 3-27 Variation of μ_a and σ_a with aspect ration k for assumed major axis orientation 2 ($30^\circ/0^\circ$): assuming a lognormal distribution form of a
Figure 3-28 Variation of μ_a with aspect ratio k for assumed major axis orientation 2 (30°/0°): assuming a negative exponential distribution form of a
Figure 3.2: Variation of μ and σ with aspect ratio χ for assumed major axis orientation ϕ. Assuming a Gamma distribution form of χ.

$\chi = 4.22$
Assuming a lognormal distribution form of a.

Figure 3-30: Variation of θ_a and ϕ_a with aspect ratio for assumed major axis orientation along z. The graph shows the predicted θ_a and ϕ_a values for different aspect ratios. The data points are represented by markers and lines connecting them, indicating trends for different angle configurations.
Figure 3-31 Variation of μ_a with aspect ratio k for assumed major axis orientation 3 ($60^\circ/0^\circ$): assuming a negative exponential distribution form of a
Figure 3-32 Variation of μ_a and σ_a with aspect ratio k for assumed major axis orientation 3 $(60^\circ/0^\circ)$: assuming a Gamma distribution form of a
Table 3-9 Assumed major axis orientations and their corresponding β values

<table>
<thead>
<tr>
<th>Assumed major axis orientation (1)</th>
<th>β (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Window 1</td>
</tr>
<tr>
<td>0°/0°</td>
<td>63.4</td>
</tr>
<tr>
<td>30°/0°</td>
<td>90</td>
</tr>
<tr>
<td>60°/0°</td>
<td>39.2</td>
</tr>
</tbody>
</table>

Table 3-10 Predicted values of k, μ_a and σ_a at major axis orientation (30°/0°)

<table>
<thead>
<tr>
<th>Assumed distribution form of $g(\alpha)$ (1)</th>
<th>k (2)</th>
<th>μ_a (m) (3)</th>
<th>σ_a (m) (4)</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lognormal</td>
<td>4.08</td>
<td>8.06</td>
<td>3.99</td>
<td>See Figure 3-24, Figure 3-27, and Figure 3-30⁴¹</td>
</tr>
<tr>
<td>Negative exponential</td>
<td>3.85</td>
<td>4.86</td>
<td>4.86</td>
<td>See Figure 3-25, Figure 3-28 and Figure 3-31</td>
</tr>
<tr>
<td>Gamma</td>
<td>4.22</td>
<td>7.73</td>
<td>4.42</td>
<td>See Figure 3-26, Figure 3-29, and Figure 3-32⁴¹</td>
</tr>
</tbody>
</table>

a) The intersection point of μ_a curves is chosen to estimate k, μ_a and σ_a.

Since we have the results for three distribution forms of $g(\alpha)$, what we need to do next is to find the best distribution form by checking the equality of equation (36) corresponding to each assumed distribution form of $g(\alpha)$. For a lognormal distribution of $f(l)$, we have

$$\frac{16E(l^3)}{3\pi M^3} = \frac{16[(\mu_l)^2 + (\sigma_l)^2]^3}{3\pi M^3 (\mu_l)^3}$$ \hspace{1cm} \text{Equation 41}

Hence, using the data in Table 3-8 and Eq. (41), the values of $16E(l^3)/3\pi M^3$, for each sampling window, can be determined. The results are shown in Table 3-11 to Table 3-13 (column 2). The
left side of equation (36) can be obtained from Eq. (37), (38) or (39) and the corresponding data in Table 3-10. The results are also shown in Table 3-11 to Table 3-13 (column 6). Comparing the equality of both sides of Eq. (36) for each sampling window, we find that \(g(a) \) can be best represented by the lognormal distribution, which is the actual distribution form of \(g(a) \).

In summary, the predicted major axis orientation, aspect ratio, and size distribution are:

- Major axis orientation = \((30^\circ/0^\circ)\);
- \(k = 4.08; g(a) = \) lognormal with \(\mu_a = 8.06 \) m and \(\sigma_a = 3.99 \) m
- which compare very well with the actual major axis orientation, aspect ratio and size distribution used in the simulations
- Major axis orientation = \((30^\circ/0^\circ)\);
- \(k = 4.0; g(a) = \) lognormal with \(\mu_a = 8.0 \) m and \(\sigma_a = 4.0 \) m

Table 3-11 Checking the distribution of \(g(a) \) for sampling window 1 \((\beta = 63.4^\circ)\)

<table>
<thead>
<tr>
<th>(k) (1)</th>
<th>(M) (1)</th>
<th>(\frac{16E(f^3)}{3\pi M^3}) (2)</th>
<th>Assumed distribution form of (g(a)) (3)</th>
<th>(\mu_a) (4)</th>
<th>(\sigma_a) (5)</th>
<th>(\frac{E(a^4)}{E(a)}) (6)</th>
<th>Recommended distribution form of (g(a))? (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>42.72</td>
<td>Lognormal</td>
<td>2.19</td>
<td>1.11</td>
<td>41.16</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>1.37</td>
<td>1.37</td>
<td>62.38</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>2.05</td>
<td>1.20</td>
<td>39.51</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>0.542</td>
<td>267.6</td>
<td>Lognormal</td>
<td>4.04</td>
<td>2.04</td>
<td>257.9</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>2.53</td>
<td>2.53</td>
<td>390.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>3.77</td>
<td>2.21</td>
<td>247.6</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>0.277</td>
<td>2001</td>
<td>Lognormal</td>
<td>7.89</td>
<td>3.99</td>
<td>1928</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>4.95</td>
<td>4.95</td>
<td>2921</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>7.38</td>
<td>4.33</td>
<td>1851</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>0.186</td>
<td>6666</td>
<td>Lognormal</td>
<td>11.79</td>
<td>5.96</td>
<td>6423</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>7.40</td>
<td>7.40</td>
<td>9733</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>11.02</td>
<td>6.46</td>
<td>6166</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>0.139</td>
<td>15729</td>
<td>Lognormal</td>
<td>15.70</td>
<td>7.93</td>
<td>15155</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>9.85</td>
<td>9.85</td>
<td>22967</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>14.67</td>
<td>8.60</td>
<td>14549</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: The recommended distribution form of \(g(a) \) corresponds to the case that columns (2) and (6) are the closest to each other.
Table 3-12 Checking the distribution of $g(a)$ for sampling window 2 ($\beta = 33.7^\circ$)

<table>
<thead>
<tr>
<th>k (1)</th>
<th>M (1)</th>
<th>$\frac{16E(I^3)}{3\pi M^3}$ (2)</th>
<th>Assumed distribution form of $g(a)$ (3)</th>
<th>μ_4 (4)</th>
<th>σ_4 (5)</th>
<th>$\frac{E(a^4)}{E(a)}$ (6)</th>
<th>Recommended distribution form of $g(a)$? (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>169.1</td>
<td>Lognormal</td>
<td>3.35</td>
<td>1.76</td>
<td>162.9</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>2.14</td>
<td>2.14</td>
<td>234.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>3.09</td>
<td>1.91</td>
<td>155.5</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>0.721</td>
<td>451.0</td>
<td>Lognormal</td>
<td>4.65</td>
<td>2.44</td>
<td>434.6</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>2.97</td>
<td>2.97</td>
<td>626.4</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>4.29</td>
<td>2.66</td>
<td>414.8</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>0.422</td>
<td>2251</td>
<td>Lognormal</td>
<td>7.94</td>
<td>4.18</td>
<td>2169</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>5.07</td>
<td>5.07</td>
<td>3126</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>7.33</td>
<td>4.54</td>
<td>2070</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>0.291</td>
<td>6831</td>
<td>Lognormal</td>
<td>11.50</td>
<td>6.05</td>
<td>6582</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>7.34</td>
<td>7.34</td>
<td>9487</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>10.61</td>
<td>6.57</td>
<td>6282</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>0.221</td>
<td>15572</td>
<td>Lognormal</td>
<td>15.13</td>
<td>7.96</td>
<td>15004</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>9.66</td>
<td>9.66</td>
<td>21626</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>13.97</td>
<td>8.65</td>
<td>14322</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: The recommended distribution form of $g(a)$ corresponds to the case that columns (2) and (6) are the closest to each other.
Table 3-13 Checking the distribution of $g(a)$ for sampling window 3 ($\beta = 0^\circ$)

<table>
<thead>
<tr>
<th>k (1)</th>
<th>M (1)</th>
<th>$16E(I^3)$ (\frac{3\pi M^3}{\text{(2)}})</th>
<th>Assumed distribution form of $g(a)$ (3)</th>
<th>μ_a (4)</th>
<th>σ_a (5)</th>
<th>$E(a^4)$ (6)</th>
<th>Recommended distribution form of $g(a)$? (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1663</td>
<td>Lognormal</td>
<td>8.06</td>
<td>3.65</td>
<td>1602</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>4.86</td>
<td>4.86</td>
<td>2749</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>7.73</td>
<td>3.92</td>
<td>1558</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1663</td>
<td>Lognormal</td>
<td>8.06</td>
<td>3.65</td>
<td>1602</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>4.86</td>
<td>4.86</td>
<td>2749</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>7.73</td>
<td>3.92</td>
<td>1558</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1663</td>
<td>Lognormal</td>
<td>8.06</td>
<td>3.65</td>
<td>1602</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>4.86</td>
<td>4.86</td>
<td>2749</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>7.73</td>
<td>3.92</td>
<td>1558</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>1663</td>
<td>Lognormal</td>
<td>8.06</td>
<td>3.65</td>
<td>1602</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>4.86</td>
<td>4.86</td>
<td>2749</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>7.73</td>
<td>3.92</td>
<td>1558</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
<td>1663</td>
<td>Lognormal</td>
<td>8.06</td>
<td>3.65</td>
<td>1602</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential</td>
<td>4.86</td>
<td>4.86</td>
<td>2749</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gamma</td>
<td>7.73</td>
<td>3.92</td>
<td>1558</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: The recommended distribution form of $g(a)$ corresponds to the case that columns (2) and (6) are the closest to each other.

3.2.1.10 Summary

The procedure to infer the major axis orientation, aspect ratio k and size distribution $g(a)$ (probability density function of the major axis) of elliptical discontinuities from trace length sampling on different sampling windows can be summarized as follows:

1. **Sampling**
 (a) Trace length: Use two or more sampling windows at different orientations to conduct trace (length) sampling. The sampling windows (planes) should be oriented such that significantly different mean trace lengths can be obtained from different windows (see Section 3.2.1.7).
 (b) Orientation: Use exposed rock surface or wellbore sampling so that the normal orientation of each discontinuity set can be obtained.

2. Conduct trace length analysis to estimate the true trace length distribution $f(l)$ on different sampling windows: μ_l, σ_l and form of $f(l)$ (see Section 3.2.1.7).

3. Infer the major axis orientation, aspect ratio k and size distribution $g(a)$ of discontinuities from trace length sampling on different sampling windows:
 (a) Assume a major axis orientation and compute the β value for each sampling window.
(b) For the assumed major axis orientation, compute \(\mu_0 \) and \(\sigma_a \) from \(\mu_i \) and \(\sigma_i \) of each sampling window, by assuming aspect ratios \(k = 1, 2, 4, 6, 8 \) and lognormal, negative exponential and Gamma distribution forms of \(g(a) \). The results are then used to draw the curves relating \(\mu_0 \) (and \(\sigma_a \)) with \(k \), respectively, for the lognormal, negative exponential and Gamma distribution forms of \(g(a) \) (see, e.g., Figure 3-24, Figure 3-25, and Figure 3-26).

(c) Repeat steps (a) and (b) until the curves relating \(\mu_0 \) (and \(\sigma_a \)) with \(k \) for different sampling windows intersect in one point (see, e.g., Figure 3-27, Figure 3-28, Figure 3-29). The major axis orientation for this case is the inferred actual major axis orientation. The \(k \), \(\mu_a \) and \(\sigma_a \) values at the intersection points are the corresponding possible characteristics of the discontinuities.

(d) Find the best distribution form of \(g(a) \) by checking the equality of equation (36) (see Section 3.2.1.5). The \(k \), \(\mu_a \) and \(\sigma_a \) values found in Step (c) and corresponding to the best distribution form of \(g(a) \) are the inferred characteristics of the discontinuities.

A general stereological relationship between trace length distributions and elliptical discontinuity size (expressed by the major axis length \(a \) of the ellipse) distributions for area sampling of discontinuities has thus been derived. Based on the general stereological relationship, an approach was developed for using the estimated true trace length distributions corresponding to different sampling windows to infer the major axis orientation, aspect ratio and size distribution of discontinuities. The validity of the developed method was checked by applying it to analyze data produced with simulations. In the simulations, discontinuities were generated and then sampling processes were simulated by using the FracMan code. The results show that the developed approach for inferring the major axis orientation, aspect ratio and size distribution of discontinuities can produce satisfactory results.

The effect of sampling plane orientation on trace lengths was investigated by using the derived stereological relationship between the trace length distribution and the discontinuity size distribution. The results show that the sampling plane orientation has an important effect on both the mean and standard deviation of trace lengths. If different sampling planes are used to collect trace (length) data, the sampling planes should be such oriented that significantly different mean trace lengths can be obtained from different planes.

3.2.2 Task 1.1.2 Fracture Shape Analysis

Research results have shown that the planar shape of discontinuities (or fractures) has a profound effect on the connectivity of discontinuities and on fluid flows (Petit et al. 1994; Dershowitz 1998). Consequently, it is important to know the planar shape of discontinuities when characterizing discontinuities in a rock mass. Since a rock mass is usually inaccessible in three dimensions, the real discontinuity shape is rarely known. Information on discontinuity shape is limited and open to more than one interpretation (Warburton 1980a; Wathugala 1991).

Discontinuities can be classified into two categories: unrestricted and restricted. Unrestricted discontinuities are blind and effectively isolated discontinuities whose growth has not been perturbed by adjacent geological structures such as faults and free surfaces [see Figure 3-33(a)]. In general, the edge of unrestricted discontinuities is a closed convex curve. In many cases, the growth of discontinuities is limited by adjacent preexisting discontinuities and free surfaces [see Figure 3-33(b)]. Such discontinuities are called restricted discontinuities. One way to represent
restricted discontinuities is to use polygons, some of the polygon sides being those formed by intersections with the adjacent preexisting discontinuities and free surfaces.

In this discussion, only unrestricted discontinuities will be considered. First, a brief literature review about the shape of (unrestricted) discontinuities is presented, including the reported in situ data and the shapes assumed by different researchers. This followed by the analysis of the available data, which leads to the conclusion that the possible shape of discontinuities is more likely to be elliptical than circular.

3.2.2.1 Literature Review

In the past thirty years, a number of articles and reports have appeared discussing possible shapes of discontinuities.

3.2.2.1.1 In Situ Data about the Discontinuity Shape

Robertson (1970), after analyzing nearly 9,000 traces from the De Beer mine, South Africa, concluded that the strike trace length and the dip trace length of discontinuities have about the same distribution, possibly implying discontinuities to be equidimensional (circular). Figure 3-34 shows the strike and dip traces of a discontinuity.
Figure 3-33 (a) An unstructured discontinuity and (q) A restricted discontinuity.
Figure 3-34 (a) Strike and dip of a discontinuity; and (b) Strike and dip traces
Bridges (1975) stated that “there is good evidence for” individual discontinuities to be taken to have a rectangular (elongated?) shape. However, no specific data can be found in the original paper to support this statement.

Barton (1977) presented a geotechnical analysis of rock structure and fabric at the C.S.A. Mine, Cobar, New South Wales. The country rock within the mine area is overwhelmingly composed of chloritic and quartzitic siltstone to slaty claystone. Based on observations of trace lengths along the strikes and dips of different rock exposures, Barton (1977) made an assumption of circular discontinuity shape.

Einstein et al. (1979) investigated discontinuities at a site in southern Connecticut. The country rock at this site is the Monson Gneiss, a thinly banded rock with feldspathic and biotitic layers. There are two major discontinuity sets at this site. Set 1 dips steeply to the southeast and Set 2 is nearly horizontal. Trace lengths of discontinuities were measured on both the horizontal and vertical surfaces of excavations. The results indicate that discontinuities are non-equidimensional (see Table 3-14).

Table 3-14 Mean of strike trace lengths and mean of dip trace lengths of two discontinuity sets (from Einstein et al. 1979)

<table>
<thead>
<tr>
<th>Discontinuity Set #</th>
<th>Mean of strike trace lengths (ft.)</th>
<th>Mean of dip trace lengths (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.3</td>
<td>16.1</td>
</tr>
<tr>
<td>2</td>
<td>25.2</td>
<td>21.1</td>
</tr>
</tbody>
</table>

According to Mostyn and Li (1993), McMahon (1982) used a dip length equal to 60% of the strike length for discontinuities in slope design. Since the original paper of McMahon (1982) is not published, it is not clear if McMahon based his assumption on in situ data.

Petit et al. (1994) presented results of a field study to determine the shape of discontinuities in sedimentary rocks. Pelites with isolated sandstone layers in the red Permian sandstones of the Lodeve Basin were studied. The exposed discontinuities (i.e., one of the discontinuity walls had been removed by erosion) appear as rough ellipses with a shape ratio L/H of about 2.0, where L and H are respectively the largest horizontal and vertical dimensions. For non-exposed discontinuities, the distributions of the dimensions of the horizontal and vertical traces were measured. The ratio of the mean L to the mean H of such traces is 1.9, which is very close to the L/H ratio of the observed individual discontinuity planes. This suggests that most of the discontinuities are elliptical with a shape ratio of about 2.0, independent of the discontinuity size.

Nicol et al. (1996) presented data about the shape of simple normal faults (see Figure 3-35 and Table 3-15). The results show that normal faults have an approximately elliptical shape with the major axis sub-horizontal. Aspect ratios of fault surfaces range from 1.0 to 3.4 with a mean of 2.15.
Figure 3-35 Dip dimension vs. strike dimension for nominally unrestricted faults from four regions (see Table 3-15) (from Nicol et al. 1996)

Table 3-15 Details of the four data sets plotted in Figure 3-35 (from Nicol et al. 1996)

<table>
<thead>
<tr>
<th>Name and location</th>
<th>Lithologies</th>
<th>Number of faults</th>
<th>Aspect ratio (average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derbyshire Coal mines, UK</td>
<td>Carboniferous sandstone, shale and coal</td>
<td>12</td>
<td>2.3</td>
</tr>
<tr>
<td>Timor Sea</td>
<td>Cenozoic limestone, claystone and sandstone</td>
<td>9</td>
<td>2.2</td>
</tr>
<tr>
<td>Gulf Coast</td>
<td>Late Miocene to recent sandstone with minor shales</td>
<td>7</td>
<td>1.6</td>
</tr>
<tr>
<td>North Sea</td>
<td>Jurassic sandstone and shales</td>
<td>7</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Note: Data from the Derbyshire Coal field are from coal-seam plans, the remainder are from two- and three-dimensional offshore reflection seismic data sets.
3.2.2.1.2 Assumptions about the Discontinuity Shape by Different Researchers

Due to the mathematical convenience, many investigators assume that discontinuities are thin circular discs randomly located in space (Baecher et al. 1977; Warburton 1980a; Chan 1986; Villaescusa and Brown 1990; Kulatilake 1993). With circular discontinuities, the trace patterns in differently oriented sampling planes will be the same. In practice, however, the trace patterns may vary with the orientation of sampling planes (Warburton 1980b). Therefore, Warburton (1980b) assumed that discontinuities in a set are parallelograms of various sizes. Dershowitz et al. (1993) used polygons to represent discontinuities in the FracMan discrete fracture code. The polygons are formed by inscribing a polygon in an ellipse (see Figure 3-36). Ivanova (1995, 1998) and Meyer (1999) also used polygons to represent discontinuities in their discrete fracture code GeoFrac. It is noted that polygons can be used to effectively represent elliptical discontinuities when the number of polygon sides is large (say > 10) (Dershowitz et al. 1993).

3.2.2.2 Analysis of Existing Information on Discontinuity Shape

As seen from above, most of the researchers infer the discontinuity shape from the study of trace lengths in both the strike and dip directions (see Figure 3-34). The conclusion that discontinuities are equidimensional (circular) is drawn only from the fact that the average strike length of a discontinuity set is approximately equal to its average dip length. However, the average strike length of a discontinuity set being the same as its average dip length does not necessarily mean that the discontinuities of such a set are equidimensional; instead, there exist the following three possibilities:

a) The discontinuities are indeed equidimensional [see Figure 3-37(a)].

b) The discontinuities are non-equidimensional such as elliptical or rectangular with long axes in a single (or deterministic) orientation. However, the discontinuities are oriented such that the average strike length is approximately equal to the average dip length [see Figure 3-37(b)].

c) The discontinuities are non-equidimensional such as elliptical or rectangular with long axes randomly oriented. The random discontinuity orientation distribution makes the average strike length approximately equal to the average dip length [see Figure 3-37(c)].
Figure 3-36 A polygon is used to represent an elliptical discontinuity (fracture) (from Dershowitz et al. 1993)
Figure 3-37 Three possible cases at which the average strike length is about equal to the average dip length: (a) Discontinuities are equidimensional (circular); (b) discontinuities are non-equidimensional (elliptical) with long axes in a single orientation. The discontinuities are oriented so that the average strike length is about equal the average dip length; and (c) Discontinuities are non-equidimensional with long axes such randomly oriented that the average strike length is about equal to the average dip length.
Therefore, the conclusion that discontinuities are equidimensional (circular) drawn from the fact that the average strike length of a discontinuity set is about equal to its average dip length is questionable. Investigators assume circular discontinuity shape possibly because of mathematical convenience.

On the other hand, if the average strike length differs greatly from the average dip length, the discontinuities are non-equidimensional. Since the reported exposed discontinuities (i.e., one of the discontinuity walls had been removed by erosion) appear as rough ellipses, it is appropriate to assume that discontinuities are elliptical.

Elliptical discontinuities can be effectively represented by polygons with a large number of sides. This may be one of the reasons why polygons are used to represent discontinuities in discrete fracture codes. Convenience of numerical analysis and ability to represent irregular discontinuities such as restricted discontinuities might be the other two reasons for using polygons to represent discontinuities in discrete fracture codes.

3.2.2.3 Summary and Conclusions

A brief literature review about the shape of unrestricted discontinuities was conducted, which included reported in situ data and the shapes assumed by different researchers. Analyzing this information one can state:

- The conclusion that discontinuities are equidimensional (circular) drawn from the fact that the average strike length of a discontinuity set is approximately equal to its average dip length is questionable. Investigators assume circular discontinuity shape possibly because of mathematical convenience.
- The possible shape of unrestricted discontinuities is more likely to be elliptical than circular.

3.2.3 Task 1.1.3 Application of Neural Nets to the Identification of Fracture Sets

3.2.3.1 Background

The key first step in the analysis of data from heterogeneous systems is to identify natural groups of data. Without first grouping the data for separate analysis, the variability in data values inherent in heterogeneous reservoirs unnecessarily reduces the spatial and statistical resolution of the data.

Any heterogeneous reservoir feature, such as fractures, laminations or shale lenses, has parameters that define it. More often than not, there may have been several depositional or tectonic events that have produced these features. Each event may produce features with different characteristics. This is often evident in fracture patterns where multiple fracture sets are developed, each with their own defining characteristics. Sometimes the differences are obvious, for example, when there are two sets formed at right angles to one another. Other times the differences are more subtle, for example, when orientations are highly overlapping, but other features like planarity, mineral infillings, surface roughness and size may be the parameters that distinguish one set from another. In this situation, it may be difficult for the geologist to easily evaluate the natural groupings in the data.
The identification of groupings or sets within heterogeneous data is often addressed by using a form of statistical cluster analysis. There are several different types of clusters:

- Disjoint clusters in which the populations of each cluster do not overlap at all;
- Overlapping clusters, in which feature properties overlap to a greater or lesser extent such that there is some ambiguity as to which cluster each feature belongs to; and
- Hierarchical clusters, in which members of one cluster simultaneously, include features of another cluster.

All three of these types of clusters can be expressed as “Fuzzy clusters” defined by a probability of membership in each cluster. This probabilistic concept of cluster membership was the foundation for the development of the NeurISIS 1.0 fracture set orientation algorithm (Dershowitz et al., 1996). The NeurISIS 1.0 algorithm used a “probabilistic neural network” to assign features to clusters based on their relative probability of membership, and then iteratively defined the clusters based on the statistics of their members. The weakness of the NeurISIS 1.0 algorithm is that it does not determine the initial fracture set definitions, relying on the user to provide the initial set definitions.

Other common clustering algorithms include: single-linkage methods (neighbor and dendritic), Ward’s minimum variance, and Gower’s medium method. These clustering methods were evaluated but failed to provide appropriate capabilities for fractured reservoir data. The appropriate clustering algorithm depends on a number of factors, including:

- type of data,
- shape of the clusters,
- underlying probability distribution of the data,
- degree of heterogeneity, and
- degree of overlap.

Regarding data type, fracture data from heterogeneous reservoirs is generally a combination of four types of data:

- ordinal parameters, such as joint roughness classes,
- class parameters, such as type of fracture or mineralization,
- continuous parameters such as aperture and permeability, and
- vector parameters, such as orientation.

Very few common clustering methods can effectively use ordinal and class data; they are typically designed for using continuous variables only. Many of the common clustering methods make assumptions such as approximately equal covariance matrices and multinormality. Unfortunately, data typically associated with features in heterogeneous reservoirs is unlikely to satisfy these constraints. Probability distributions are frequently not normal, and covariance matrices are rarely approximately equal. It is not even clear what a covariance matrix of mineral fillings would be.
Thus, the clustering algorithm for heterogeneous reservoir fracture data must satisfy a number of requirements:

- ability to handle all four parameter types,
- freedom from restrictions of normality, and
- ability to function with varying covariance matrices.

One approach which satisfies these requirements is the family of neural networks termed “self-organizing” or “Kohonen” networks (Kohonen, 1988). During this project we developed the Kohonen networks for application to clustering of fracture data.

3.2.3.2 Kohonen Neural Network Algorithm

The topology of Kohonen networks consists of two layers, an input layer and an output layer. Each node in the input layer is connected to each node in the output layer by a connection with an associated weight.

A slab is a group of nodes with similar attributes. These attributes include parameters like the activation function, learning coefficient and momentum factor, as discussed later. All nodes in a slab receive their input from the same sources, be they other slabs or the initial input values, and they transmit their information to a common output destination. Figure 3-38 illustrates the basic Kohonen network topology.

The first step in application of the Kohonen network is to initialize the network by assigning values to the weights. These are typically random values selected in one of several ways depending upon the network analyst’s preference, since there still remains much discussion as to the best way to assign these weights.

The next step is to train the network. This is done by using quantitative clustering criteria to measure how well the network is working in defining clusters. These “distance metrics” depend on the data being considered. Distance metrics for fracture data include Euclidean and Normalized. Both were evaluated, and as expected, Euclidean distance metrics outperformed normalized metrics.
Once the network distance metrics have been defined, the weights assigned to the Kohonen network are iterated until stable groups appear. This iteration proceeds as follows:

1. An input pattern is presented to the network, which can consist of geological attributes of each fracture and its orientation represented by the direction cosines of its normal vector.

2. Input patterns are assigned to output nodes to which it is found to be closest in terms of the selected distance metric.

3. Once this winning output node has been selected, the nodes within a neighborhood of the winning node are adjusted to have similar properties.

4. This process is repeated, continuously reducing the learning rate and the neighborhood site until the calculated clusters or sets have stabilized.

The neighborhood starts off relatively large (although less than the number of output nodes). As training progresses, the properties of the output nodes tend to stabilize, and the neighborhood decreases along with the learning rate. Eventually, the neighborhood goes to 0, and only the winning node has its weight changed. At this point, the learning rate is also much smaller, and the clusters are as well defined, as they are likely to be.

3.2.3.3 Implementation for Heterogeneous Reservoir Data

The application of Kohonen networks to heterogeneous reservoir data requires conversion of fracture data to formats, which can be used to provide input to the networks. This is achieved by converting ordinal data to ranks and class data to presence/absence. For example, roughness
might have three classes: (1) smooth, (2) rough, or (3) very rough. A roughness-input variable would be assigned to the number 1, 2, or 3 depending on which class it belonged to. For class variables, such as mineral filling - calcite, the fracture would be assigned the value 0 or 1 to reflect absence or presence. As a final stage, all input data are normalized over their actual or theoretical range of values.

An example Kohonen network application is illustrated in Table 3-16. This test case consists of four types of properties: Vector data (orientation), ordinal data (planarity, opening), continuous data (size), and class data (filling).

Table 3-16 Example Dataset for Kohonen Network Demonstration

<table>
<thead>
<tr>
<th>Set #</th>
<th>Orientation</th>
<th>Planarity</th>
<th>Filling</th>
<th>Size</th>
<th>Open/ Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horizontal, Fisher Dispersion</td>
<td>Smooth</td>
<td>Calcite</td>
<td>Normal, mean = 15, stdev = 2</td>
<td>Open</td>
</tr>
<tr>
<td>2</td>
<td>Mean Pole Trend, Plunge = (0,0) Fisher Dispersion</td>
<td>Moderately Rough</td>
<td>Calcite</td>
<td>Normal, mean = 7, stdev = 2</td>
<td>Closed</td>
</tr>
<tr>
<td>3</td>
<td>Mean Pole Trend, Plunge = (0,45) Fisher Dispersion</td>
<td>Rough</td>
<td>None</td>
<td>Normal, mean = 10, stdev = 3</td>
<td>Open</td>
</tr>
</tbody>
</table>

The example dataset was generated from the stochastic properties given in Table 3-16, using FracMan/FracWorks discrete feature network model (Dershowitz et al., 1998). The sets were defined with overlapping parameter distributions of, for example, orientation, size filling and openness. Figure 3-39 is a stereoplot of the three sets, showing the overlap in orientation distributions.

Three parameters must be specified to apply the Kohonen network for heterogeneous reservoir data. For the example network, the following parameters were specified as summarized in Table 3-17.
Table 3-17 Kohonen Network for Example Data Set

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assumption</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Sets (Clusters)</td>
<td>3</td>
<td>Visual inspection of data</td>
</tr>
<tr>
<td>Initial Weighting of Neurons</td>
<td>Uniform Distribution U[0,1]</td>
<td>Lack of conditioning</td>
</tr>
<tr>
<td>Neighborhood Scale</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Learning Rate</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Distance Metric</td>
<td>orientation (vector data):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>euclidean distance on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stereonet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>planarity (ordinal data)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>infilling (class data)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>size (continuous data)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>opening (ordinal data)</td>
<td></td>
</tr>
</tbody>
</table>

All 600 fractures were correctly clustered by the net. The classification results maybe expressed as neuron values; the smallest value indicates the closest match to a cluster. For example, fracture #1 had values of 0.054, 1.888 and 3.303 for clusters #1, #2 and #3. The smallest value was for cluster #1, so that is the cluster or set to which it is assigned.

Figure 3-39 Contour Plot of Test Data with Three Fracture Sets
Figure 3-40 shows these neuron probability values for all 600 fractures in the example case. The separation between the three sets of points for the fractures 1-200 and 401-600 show that the net had little problem in distinguishing Set #1 from the other sets, or Set #3 from the other sets; the neuron values for each set are very different from each other. Set #2 is slightly different; while the net had no problem correctly clustering it, the neuron values for the two other sets are similar to each other. This suggests that the characteristics of Set #2 are intermediate between Set #1 and Set #3 (which is also seen by the intermediate position of neuron values for Set #2 for fractures 1-200 and 401-600). Set #1 is more unlike Set #3 than it is unlike Set #2.

3.2.3.4 Algorithm Demonstration, Yates Field Tract 17

The Kohonen neural network was applied using data from Tract 17 in the Yates Field, west Texas, one of the four project study site window areas. This data provides a rigorous test of a self-organizing network’s ability to distinguish orientational sets in a complex data set. Figure 3-41 shows the stereoplot of joint orientations from three wells, YU1711, YU1755 and YU2511. An expert structural geologist (T. Cladouhos) was given the stereoplot and asked to identify sets based upon orientation. The geologist’s picks are shown in Figure 3-42.

There were five sets identified by the geologist, labeled G1 through G5 on Figure 3-42.

A Kohonen network was applied to the orientation data. The parameters assumed for the Kohonen network are summarized in Table 3-18.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assumption</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Sets (Clusters)</td>
<td>5</td>
<td>Structural geologist</td>
</tr>
<tr>
<td>Initial Weighting of Neurons</td>
<td>Uniform Distribution U[0,1]</td>
<td>Lack of conditioning</td>
</tr>
<tr>
<td>Neighborhood Scale</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Learning Rate</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Distance Metric</td>
<td>orientation (vector data):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>euclidean distance on stereonet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>planarity (ordinal data)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>infilling (class data)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>size (continuous data)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>opening (ordinal data)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3-40 Neural Net Performance Results for 3 Set Test Case
Figure 3-41 Contour Plot of Joint Orientations in Three Yates Wells
Figure 3-42 Contour Plot of Sets Identified by Structural Geologist
The five sets selected by the neural net are labeled as N1 through N5 in Figure 3-43.

The G sets and the N sets are very similar. G1 matches N1 exactly. The neural net made a slightly different selection of G2 and N3 versus G2 and G3. The region of the stereoplot covered by the combination of G2 and G3 is the same as that covered by N2 and N3. The difference is in the boundary between the two sets. The boundary between the G2 and G3 is approximately a few degrees west of north, while the boundary between N2 and N3 is about 20 degrees east of north. The difference is that the concentration of orientations represented by poles trending north is included with the N3 set by the neural network, but was included with the G2 set by the geologist.

Likewise, sets N4 and N5 cover the same region of the stereoplot covered by G4 and G5, the difference being where the boundary between the two sets is positioned. The boundary selected by the geologist was taken to be a few degrees south of due west, placing the concentration of poles trending around 250 degrees into G5. The neural net chose a boundary more to the southwest at around 240 degrees, moving this concentration of poles into N4.

Overall, the sets identified by the self-organizing neural net are very similar, but not identical to those picked by the geologist. The differences are minor, and would need to be resolved by either collecting additional parameter data or by considering other information on the tectonic or structural history of the reservoir. For example, the G3 set might have different sizes, fillings or roughness than the other fractures included in N3. Or it might be that the G3 fractures were in the orientation expected for a particular tectonic event, while the additional fractures found in N3 were not.

The fact that the geologist and the neural network came up with slightly different groupings is a useful result in itself. Just as two geologists might define sets differently, and thereby stimulate discussion, the network illustrates alternative interpretations and set definitions. The difference between the neural network’s set identifications are useful for focusing further considerations as to the geological origins of each set.

3.2.3.5 Applications for Heterogeneous Reservoir Data

There are several potential applications of neural network technology to heterogeneous reservoirs. The first application is that described above: identification of clusters in the data in order to guide statistical analysis and to stimulate further investigations into the possible geological explanations of the groupings.

Another use of the self-organizing network analysis is as a classification tool for rapidly assigning additional data into the proper sets. This is particularly useful for mature reservoirs where there may be an abundance of data that can require a lot of time for a skilled geologist to classify. Once the self-organizing net has been trained on a small subset of data to the geologist’s satisfaction, then the trained net can be used to automatically assign set probabilities to all the remaining data. The assignment is both quick and consistent, and does not require the time of a skilled geologist.
Figure 3-43 Contour Plots of Sets Identified by Neural Network
3.2.4 Task 1.1.4 Fractal Methods for Derivation of Fracture Statistics

Fractal methods are particularly useful for extrapolating information from the scale of measurement to scales at which measurements are difficult. During this project, we developed new and innovative approaches for use of fractal methods to extrapolate fracture size information from the scales of measurement such as VSP lineament to smaller scales, to provide usable fracture size distributions for DFN modeling.

Published methods to estimate fracture size combine Discrete Fracture Network (DFN) modeling with a forward modeling approach to match various statistical parameters of the 1D or 2D data (Dershowitz et al., 1998; La Pointe et al., 1993). While these methods are very general and powerful, they require sophisticated numerical simulations.

Many researchers who have analyzed fracture geometry in wells, outcrop, lineament maps or seismic profiles have concluded that individual fracture sets often exhibit Power Law or fractal characteristics for many of their parameters, including fracture size. If a fracture set does conform to a fractal size distribution model, then it is possible to derive a host of useful equations that relate statistics for the observed fracture trace lengths to the statistics that describe the unobserved three-dimensional parent fracture population, making numerical simulations unnecessary. The sections that follow detail the derivation of these equations, and illustrate through numerical DFN simulations that they provide accurate estimates of the parent fracture population size statistics.

3.2.4.1 Fractal Fracture Size Distributions

For the equations developed below, fractures are assumed to be planar and circular. The representation of fractures as circular discs, rather than as some other shape, is not a required assumption, but is convenient for the mathematical development presented in these sections. It turns out that the derived equations apply with minor modifications to fractures of other shapes, as discussed in Section 3.2.2.5.

It is also convenient to characterize fracture size by the effective radius of the fracture, since this parameter is often used in modeling simulations or engineering calculations. The effective radius of a fracture is defined as the radius of a circular fracture that has the same area as the actual fracture.

A group of fractures that have a Power Law or fractal radius distribution implies that the Complementary Cumulative Density Function (CCDF) of the fracture radii conforms to a power law. The CCDF is defined as the probability that a fracture radius is equal to or greater than a particular radius. Power Law distributions require the specification of a minimum value for their distributional mass and moments to be finite. The probability that a value is equal to or greater than the minimum value is 1.0, while the probability that the radius is greater than or equal to infinity is 0.0. The formal representation of the CCDF is given by Equation 42:

\[G(x) = \left(\frac{x_0}{x} \right)^D \]
Equation 42

where \(x_0 \) is the minimum (radius) value,
\(x \) is any fracture radius between \(x_0 \) and \(\infty \),

\(D \) is the exponent of fractal dimension, and

\(G(x) \) is the probability that \(x \) is greater than or equal to \(x_0 \).

The Cumulative Density Function (CDF) of the three-dimensional radius distribution, is defined as:

\[
F(x) = 1 - G(x) = 1 - \left(\frac{x_0}{x} \right)^D
\]
Equation 43

The Probability Density Function (PDF) defined as the derivative of the cumulative density function:

\[
f(x) = \frac{d}{dx} F(x) = \frac{Dx_0^D}{x^{D+1}}
\]
Equation 44

Note that the PDF and CCDF have a power law functional form, and so would plot as a straight line on doubly logarithmic axes, while the CDF does not have a power law functional form, and would not plot as a straight line on doubly logarithmic axes.

Statistical distributions can be characterized by their moments, such as their mean or standard deviation. Power law distributions differ from many common distributions, like the lognormal or the exponential, in that their moments are not. For power law distributions, the value of \(D \) governs whether a particular moment is finite or not, as is shown in this section. These considerations are important for using trace length data to infer the population characteristics of the parent fracture population.

The mean radius (\(\mu \)) is defined as the expected value \((E[I]) \) of the radius distribution, or:
\[\mu = E[f(x)] = \int_{x_0}^{\infty} xf(x) \, dx \] \hspace{1cm} (a)
\[= Dx_0^D \int_{x_0}^{\infty} x^{-D} \, dx \] \hspace{1cm} (b)
\[= \frac{Dx_0^D}{1-D} x_0^{-D+1} \bigg|_x_{x_0}^{\infty} \] \hspace{1cm} (c)
\[= \frac{Dx_0^D}{1-D} \left[x_0^{1-D} - x_0^{1-D} \right] \] \hspace{1cm} (d)

\text{Equation 45}

Now the term \(\infty^{-D} \) will not vanish unless \(D > 1.0 \), which implies that the mean value is not finite unless \(D > 1.0 \). For \(D > 1.0 \), Equation 45d becomes:

\[\mu = \frac{Dx_0^D}{D-1} x_0^{1-D} \] \hspace{1cm} \text{Equation 46a}

or

\[\mu = \frac{Dx_0}{D-1} \] \hspace{1cm} \text{Equation 46b}

Equation 46b represents the expected value, or mean radius for the distribution for the case where \(D > 1.0 \).

The variance of a function is defined as:

\[\sigma^2 = \int_{x_0}^{\infty} f(x)(x-\mu)^2 \, dx \] \hspace{1cm} \text{Equation 47}

where
- \(f(x) \) is the probability density function (pdf) for \(x \),
- \(\mu \) is the mean or expected value of \(x \), and
- \(x_0 \) is the minimum value of \(x \) and
- \(\sigma^2 \) is the variance.

As has been shown, the PDF of \(x \) for a Power law distribution is given by:

\[f(x) = \frac{Dx_0^D}{x^{D+1}} \] \hspace{1cm} \text{Equation 48}
and the mean or expected value of the distribution is:

\[\mu = \frac{x_0 D}{D - 1} \]

Equation 49

So, inserting these two expressions into Equation 47 yields:

\[\sigma^2 = \int_{x_0}^{\infty} \left(\frac{Dx_0^D}{x^{D+1}} \right) \ast (x - \frac{x_0 D}{D - 1})^2 \, dx \]

Equation 50

Expanding the terms in brackets and bringing quantities not dependent upon \(x \) outside of the integration brackets yields:

\[\sigma^2 = Dx_0^D \int_{x_0}^{\infty} \left[x^{1-D} - \frac{2x_0 Dx^{-D}}{D - 1} + \frac{x_0^2 D^2 x^{-D-1}}{(D - 1)^2} \right] \, dx \]

Equation 51

Carrying out the integration produces:

\[\sigma^2 = Dx_0^D \left[\frac{x_0^{2-D}}{2-D} - \frac{2x_0 D x_0^{-D+1}}{D - 1} + \frac{x_0^2 D^2 x_0^{-D}}{(D - 1)^2} \right]_{x_0}^{\infty} \]

Equation 52

Now this quantity is finite iff \(D > 2.0 \). Thus,

\[\forall D > 2.0, \]

\[\sigma^2 = -Dx_0^D \ast \left[\frac{x_0^{2-D}}{2-D} + \frac{2x_0 D x_0^{-D+1}}{(D - 1)^2} - \frac{x_0^2 D^2 x_0^{-D}}{D(D - 1)^2} \right] \]

Equation 53

\((a) \)

\[= -Dx_0^D \ast x_0^{2-D} \ast \left(\frac{1}{2-D} + \frac{D}{(D - 1)^2} \right) \]

Equation 54

\((b) \)

or

\[\sigma^2 = \frac{x_0^2}{(D - 1)^2} \ast \frac{D}{D - 2} \]

Since the standard deviation, \(\sigma \), equals \(\sqrt{\sigma^2} \), the standard deviation of the radius distribution is:
3.2.4.2 Trace Length Statistics

The traces observed on a planar surface, such as an outcrop, are biased in that larger fractures have a higher probability of intersecting the surface than do smaller ones. The solution to the problem of how the scaling properties of trace lengths relate to the scaling properties of the parent fracture radius distribution requires decomposition of the problem into two stages:

(a) The relation between the radius distribution of the parent fracture population and the radius distribution of the fracture population intersecting the trace plane; and

(b) The relation between the radius distribution of fractures intersecting a trace plane and the observed trace length distribution.

Section 3.2.4.3 analyzes the relation between the fracture and trace distributions.

3.2.4.3 Derivation of Size Distribution from Trace Data

La Pointe and Hudson (1985) showed that, for the assumption that fractures are circular, planar discs, the probability of a fracture intersecting a plane is linearly proportional to the fracture radius. In general, if the fracture is represented by any convex polygonal shape, the probability of the intersection is proportional to the dimension of the polygon parallel to the plane. For simplicity, we consider circular fractures in the following derivations.

Denoting the radius distribution of the parent fracture population by \(f(x) \) as in Equation 48, the radius distribution for fractures intersecting a plane is given by:

\[
\sigma(x) = xf(x) = D \left(\frac{x_0}{x} \right)^D
\]

Equation 56

where

\(\sigma(x) \) is the radius distribution of the intersecting fractures.

The above expression is not a proper probability distribution function, since it does not integrate to 1.0 between \(x_0 \) and \(\infty \). A correction \((C)\) must be made to insure that the total probability density equals 1.0:
\[C \int_{x_0}^{\infty} o(x) \, dx = 1.0 \quad \text{or} \quad (a) \]
\[C \frac{Dx_0}{D-1} = 1.0 \quad \text{(b)} \]
\[C = \frac{D-1}{Dx_0} \quad \text{(c)} \]

So
\[f_{\text{int}}(x) = \frac{D-1}{Dx_0} x f(x) \quad \text{(d)} \]

or
\[f_{\text{int}}(x) = (D-1) \frac{x_0^{D-1}}{x^D} \quad \text{(e)} \]

Equation 57

Now the CDF is the integral of the PDF, or:

\[F_{\text{int}}(x) = \frac{D-1}{Dx_0} \int_{x_0}^{x} f_{\text{int}}(x) \, dx \quad \text{(a)} \]
\[= \frac{D-1}{Dx_0} \frac{Dx_0}{1-D} \left[x^{1-D} - x_0^{1-D} \right] \quad \text{(b)} \]
\[= -x_0 \left[x^{1-D} - x_0^{1-D} \right] \quad \text{(c)} \]
\[= \left(\frac{x_0}{x} \right)^{D-1} + 1 \quad \text{(d)} \]

\[F_{\text{int}}(x) = 1 - \left(\frac{x_0}{x} \right)^{D-1} \quad \text{(e)} \]

Equation 58

This implies that \(G_{\text{int}}(x) \), the CCDF of the trace lengths, is:

\[G_{\text{int}}(x) = 1 - F_{\text{int}}(x) = \left(\frac{x_0}{x} \right)^{D-1} \quad \text{Equation 59} \]

Thus, if it were possible to plot the CCDF of the radii of the intersecting circular fractures, the slope of the line would be equal to slope for the true, three-dimensional radius distribution.
It is straightforward to derive the expected value, or mean radius value for the intersecting fractures:

\[
\mu_{\text{int}} = E[f(x)] = \frac{D-1}{Dx_0} \int_{x_0}^{\infty} x^2 f(x) dx = (D-1)x_0^{D-1} \int_{x_0}^{\infty} x^{1-D} dx
\]

(a)

\[
= \left(\frac{(D-1)x_0^{2-D}}{2-D} \right) x^{2-D} \bigg|_{x_0}^{\infty}
\]

(b)

\[
= \left(\frac{(D-1)x_0^{2-D}}{2-D} \right) \left[0 - x_0^{2-D} \right]
\]

(c)

\[
= \left(\frac{(D-1)x_0^{D-1}}{2-D} \right)
\]

(d)

Equation 60

The equation above is finite iff \(D>2.0\). So, for \(D>2.0\), the above equation becomes:

\[
\frac{(D-1)}{(D-2)} x_0^{D-1} x_0^{2-D}
\]

(a)

\[
\mu_{\text{int}} = \frac{x_0 (D-1)}{D-2}
\]

(b)

Equation 61

The derivation of the variance of the radii of intersecting fractures can be simplified by making a simple variable transformation and considering the independence of \(D\) and \(x\).

Let \(D' = D - 1.0\)

Equation 62

Then Equations 57e, 58e, 59a and 61b become:
These equations show that the statistical quantities associated with intersecting fracture radius distribution are identical in form to the three-dimensional radius distribution if the substitution $D' = D - 1$ is made in the three-dimensional radius formulae.

Because D' does not depend upon x, the variance (σ^2_{trace}) and standard deviation (σ_{trace}) for the intersecting fracture radius distributions will have the forms:

$$\sigma^2_{\text{int}} = \frac{x_0^2}{(D' - 1)^2} * \frac{D'}{D' - 2}$$

Equation 67

$$\sigma_{\text{int}} = \frac{x_0}{D' - 1} * \sqrt{\frac{D'}{D' - 2}}$$

Equation 68

where $D' = D - 1$.

This implies that the exponent for the radius distribution of fractures intersecting a plane can be used to calculate the correct three-dimensional radius distribution by simply adding 1.0 to the exponent, and statistics such as the mean and standard deviation of radius size can be calculated from the intersecting fracture distribution. Although the radius distribution of the intersecting fractures cannot be directly measured, it can be estimated from the trace length distribution as described in the next section.

Unfortunately, the radius of a fracture cannot be measured in outcrop, so it is impossible to compute the scaling properties of the intersecting fracture population. This is true whether the fracture sizes are fractal or follow any other distribution. However, it turns out that for the
fracture shape geometry often assumed for fractures, it is possible to derive relatively simple relations between the observed fracture trace length population and the radius distribution of the intersecting fractures. It turns out that the scaling properties of the radii of fractures intersecting a plane is identical to the scaling properties of the observed trace lengths!

As an illustration, consider a single circular fracture of radius R, oriented perpendicular to a trace plane. If the fracture intersects the plane, then the trace can vary in length from 0.0 to $2R$. As shown in Figure 3-44, the trace length can be expressed as a function of distance z between the fracture center and the trace plane, and the fracture radius, according to the equation:

$$T = 2\sqrt{R^2 - z^2}$$

Equation 69

The mean observed trace length, T_μ, is calculated as:

$$T_\mu = \frac{1}{R} \int_0^R 2\sqrt{R^2 - z^2} \, dz$$

Equation 70

or, carrying out the integration,

$$T_\mu = \frac{\pi R}{2}$$

Equation 71

Equation 71 is significant in that it shows that the mean observed trace length is equal to the radius multiplied by a constant. This means that the expected distribution of trace lengths is equal to the distribution of radii of the intersecting fractures multiplied by the constant $\pi/2$. In a log-log plot, multiplication of a power law function by a constant does not change its slope. This implies that the scaling exponent of trace lengths will be the same as the scaling exponent of the radius distribution of intersecting fractures. Moreover, the scaling exponent of the trace lengths will be equal to one less than the scaling exponent of the radius distribution of the parent fracture population.

Figure 3-44 Fracture Intersection with Trace Plane
Now consider fractures of other shapes. For rectangular fractures in which at least two sides are parallel to the plane, the trace of an intersecting fracture will always be equal to the length of the side that is parallel. This type of fracture shape would represent a fracture that is confined between two bedding planes or terminates on the upper and lower surfaces of a mechanical layer. In this situation, the relation between the observed trace length and the intersecting fracture is:

\[T = L \]

Equation 72

Where \(T \) is the observed trace length, and \(L \) is the length of the side that intersects the bedding or layer boundary. \(T_\mu = T \), and so \(T_\mu \) in Equation 72 is also directly proportional to \(R \), as in Equation 71. The only difference is that the multiplicative constant is 1.0 instead of \(\pi/2 \). Thus, the scaling exponent for the trace lengths will also be equal to the scaling exponent of the intersecting fracture polygon radius (or edge length) distribution.

These two simple examples indicate that for any planar, anisotropic convex polygon, so long as one of its directions of anisotropy is parallel to the trace plane, the scaling exponent of the traces should be equal to the scaling exponent of the dimension of the intersecting fracture that parallels the trace plane. This, in turn, will be equal to the scaling exponent of the same dimension of the parent fracture population minus 1.0.

3.2.4.4 Verification of Fractal Algorithm for Fracture Size

Since it is not possible to verify the equations derived in Sections 3.1 and 3.2 from field data, as the three-dimensional fracture population cannot be observed directly or through others means, such as geophysics, numerical models of fractures were constructed for this purpose. These numerical models idealized fractures as planar polygons (Figure 3-45).
The orientation of each fracture polygon, its size and location can be specified according to statistical distributions or constrained by lithology and structural development. Such models, which represent fractures as discrete objects, are commonly referred to as Discrete Fracture Network (DFN) models (Dershowitz et al., 1999).

Three DFN models were constructed to verify the equations. The models had different combinations of values of the exponent and minimum size, and also orientation. The parameter values are summarized in Table 3-19 below.

Table 3-19 Parameters used in simulations

<table>
<thead>
<tr>
<th>Simulation #</th>
<th>D</th>
<th>Minimum Size</th>
<th>Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.5</td>
<td>1.0</td>
<td>Constant, (90., 0.)</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>5.0</td>
<td>Constant, (45., 45.)</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.5</td>
<td>Fisher, (0., 0.), (\kappa = 0.0)</td>
</tr>
</tbody>
</table>

All fractures were generated within a 100-m cube embedded with a larger 200 m cube in order to minimize truncation effects on observed trace lengths of fractures terminating against the outer surfaces of the model. 5000 fractures were generated in each model simulation. Locations were selected at random throughout the 100-m cube generation region.

After each simulation was created, a horizontal trace plane was inserted into each of the three models, and the traces saved in a file for subsequent trace length analysis. The names of the files containing the three-dimension DFN model, the trace plane results, and the horizontal plane sampling file are listed in Table 3-20.

Table 3-20 List of file names for verification tests.

<table>
<thead>
<tr>
<th>Simulation #</th>
<th>3D DFN file</th>
<th>Trace Length File</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sim1.fab</td>
<td>Sim1.f2d</td>
</tr>
<tr>
<td>2</td>
<td>Sim2.fab</td>
<td>Sim2.f2d</td>
</tr>
<tr>
<td>3</td>
<td>Sim3d.fab</td>
<td>Sim3d.f2d</td>
</tr>
<tr>
<td>Trace Plane</td>
<td>Htplane.sab</td>
<td></td>
</tr>
</tbody>
</table>

The first series of verification tests are on the 3D DFN model itself. Each simulation is created essentially through the generation of a uniformly random field of numbers over the interval (0,1), and then transformation of this field into a power law distribution through Gaussian anamorphosis. This procedure sets the cumulative probability of the uniform field equal to the cumulative probability of the power law distribution, or:

\[
U = 1 - \left(\frac{x_0}{x} \right)^D, \text{ where } U \in (0.0, 1.0)
\]

Equation 73

Solving this equation for \(x \) yields:
The resulting random realization of x will have a power law distribution characterized by Equations 42, 43, 44, 46b, and 57.

D and x_0 were estimated (denoted in Table 3-21 as D^* and x_0^*) through non-linear estimation of the CCDF function (Equation 44) for the radii of the 5000 fractures actually generated. In addition, the mean radius and the standard deviation of the radius distribution were estimated from Equations 46b and 55, respectively, from D^* and x_0^* for the cases where these moments were finite. These were then compared to the values actually calculated from the 5000 radius values for each of the fractures. The results shown in Table 3-21 verify that the simulation method produced three-dimensional fracture models with the desired power law characteristics, and that the mean and standard deviation of the radius distribution can be reliably estimated through Equations 46b and 55. Figure 3-46 shows the results of the non-linear fits for each CCDF.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Specified D</th>
<th>Specified x_0</th>
<th>Estimated D (D^*)</th>
<th>Estimated x_0 (x_0^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.5</td>
<td>1.0</td>
<td>3.47</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>5.0</td>
<td>2.44</td>
<td>5.00</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.5</td>
<td>1.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Predicted Mean</th>
<th>Predicted σ</th>
<th>Calculated Mean</th>
<th>Calculated σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.40</td>
<td>0.62</td>
<td>1.40</td>
<td>0.57</td>
</tr>
<tr>
<td>2</td>
<td>8.48</td>
<td>8.20</td>
<td>8.47</td>
<td>6.29</td>
</tr>
<tr>
<td>3</td>
<td>1.49</td>
<td></td>
<td>1.47</td>
<td></td>
</tr>
</tbody>
</table>

In Table 3-21, the standard deviations for Simulation 3 were not calculated since $D < 2.0$, which violates the constraint used to derive Equation 55.
The next stage in the verification process is to trace length distributions using the files listed in Table 3-20. The scaling exponents of the trace length distributions are given in Table 3-23, and non-linear fits to the trace length distributions are shown in Figure 3-47.
Table 3-22 Parameter values estimated for the observed trace lengths.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>D</th>
<th>x₀</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.50</td>
<td>84.53</td>
<td>2.55</td>
</tr>
<tr>
<td>2</td>
<td>1.52</td>
<td>16218.1</td>
<td>20.32</td>
</tr>
<tr>
<td>3</td>
<td>0.54</td>
<td>31117.2</td>
<td>10.27</td>
</tr>
</tbody>
</table>

Table 3-23 Parameters for the radius distribution of fractures intersecting the trace plane.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>D</th>
<th>x₀</th>
<th>Mean</th>
<th>Mean Predicted From Mean Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.51</td>
<td>1.00</td>
<td>1.67</td>
<td>1.62</td>
</tr>
<tr>
<td>2</td>
<td>1.48</td>
<td>5.02</td>
<td>12.85</td>
<td>12.94</td>
</tr>
<tr>
<td>3</td>
<td>0.51</td>
<td>0.51</td>
<td>7.15</td>
<td>6.54</td>
</tr>
</tbody>
</table>

In Table 3-22, the mean radius has been predicted from the mean trace length using Equation 71, which multiplies the mean trace length by \(2/\pi\). A comparison of Table 3-22 and Table 3-23 shows that the trace length exponent and the radius exponent are in excellent agreement, and also that the mean radius is well-predicted from the mean trace length.

Equation 66 shows that the parameter, \(x₀\), can be estimated from \(D\) and \(\mu\) or \(\sigma\). For Simulation 1, the only simulation in which both first- and second-order moments are finite (since \(D > 2.0\)), the values of \(D\) and \(\mu\) can be used to estimate \(x₀\):
\[x_0 = \frac{\mu(D-1)}{D} \]

Equation 75a

or

\[x_0 = \frac{1.62 \times (2.50 - 1.00)}{2.50} = 0.972 \]

Equation 75b

This is very close to the actual simulation mean of 1.00.

Since \(x_0 \) and \(D \) are now estimated for the radius distribution of fractures intersecting the plane, the values for the parent fracture population radius distribution are:

\[D_{fractures} = 2.50 + 1.0 = 3.50 \]

Equation 76a

\[X_0 \text{ (fractures)} = x_0 \text{ (intersecting fractures)} = 0.972 \]

Equation 76b

In turn, these values can be put into Equations 46b and 55 to compute the mean and standard deviation of the radius distribution of the parent fracture population:

\[\mu_{fractures} = \frac{0.972 \times 3.50}{3.50 - 1.0} = 1.36 \]

Equation 77a

\[\sigma_{fractures} = \frac{0.972}{3.50 - 1.00} \sqrt{\frac{3.50}{1.50}} = 0.59 \]

Equation 77b

The actual values for the simulation are 1.40 and 0.57, respectively. This illustration shows that it is possible to make quite accurate predictions of the parent population from trace length data alone, and that the scaling exponent of trace lengths for a fractal fracture population is 1.0 less than the scaling exponent of the parent fracture radius distribution.

3.2.4.5 Fractal Fracture Size Distribution from Non-planar Surfaces

Natural objects, such as fractures, have been shown to have many fractal properties. However, these properties are typically sampled by methods that have a particular dimension. For example, wellbores or scanlines have a dimension of 1.0, since they are (if their width is neglected) line samples. Another typical sample is a surface, which may or may not be approximately planar. Examples include outcrops, underground exposures, lineament maps and two-dimensional seismic profiles.

The equations developed above were for perfectly planar surfaces. This section extends the equations in those sections to any general fractal or Euclidean sampling object. The basis for the method relies upon a theorem in topology (Mandelbrot, 1983) that states that the co-dimension of the intersection of two sets is equal to the sum of the co-dimensions of each set.
The theorem also extends to \(n \) sets. This theorem does not require the sets to be fractal, but certainly can be used for fractal sets.

The co-dimension of a set is denoted by \(C \). The dimension of the set is denoted by \(D \). Then, the co-dimension is related to the dimension as:

\[
C = E - D
\]

Equation 78

where:

\(E \) is the Euclidean dimension of the space in which the sets exist.

For a volume of rock, \(E = 3.0 \).

Suppose a set of fractures has a dimension \(D_f \). Then the co-dimension is:

\[
C_f = E_3 - D_f
\]

Equation 79

where

\(E_3 \) is the Euclidean dimension of the embedding space, in this case, 3.0.

A plane within a volume has a dimension of 2.0, and a line has a dimension of 1.0. Thus:

\[
C_{\text{plane}} = E_3 - 2.0
\]

Equation 80a

\[
C_{\text{line}} = E_3 - 1.0
\]

Equation 80b

According to the theorem, the intersection of the fracture set and a plane has a co-dimension equal to the sum of the individual co-dimensions, or:

\[
C_{\text{fractures}} = C_{\text{fractures}} + C_{\text{plane}}
\]

Equation 81

which implies that:

\[
C_{\text{fractures}} = E_3 - D_{\text{fractures}} + E_3 - D_{\text{plane}}
\]

Equation 82

or
\[D_{traces} = E_3 - (E_3 - D_{fractures} + E_3 - D_{plane}) \]
\[\text{or} \]
\[D_{traces} = D_{fractures} + D_{plane} - E_3 \]

and, after inserting the numerical values for \(D_{plane} \) and \(E_3 \),

\[D_{traces} = D_{fractures} + 2 - 3 = D_{fractures} - 1 \]

Thus, the dimension of the trace plane pattern is equal to the dimension of the parent fracture population minus 1.0. A similar line of reasoning shows that the dimension of a line sample will be equal to the dimension of the parent population minus 2.0.

Note that Equation 76 is identical to Equation 62. In fact, Equation 75 could be re-written for a fractal sampling object of any dimension:

\[D_{traces} = D_{fractures} + D_{sampling object} - E_3 \]

So, for example, assume that the traces were on a rough fractal surface whose dimension is \(D = 2.5 \). Then by substitution in Equation 78, the dimension of the traces is:

\[D_{traces} = D_{fractures} + 2.5 - 3.0 \]
\[\text{or} \]
\[D_{traces} = D_{fractures} - 0.5 \]

In this case, \(D' = D - 0.5 \), rather than \(D - 1.0 \) as in the case with a perfectly planar surface. This value of \(D' \) would be substituted into Equations 63 through 68 to compute the appropriate fracture radius statistics from the observed trace lengths.

3.2.5 Task 1.1.5 Transmissivity/Connectivity Analysis

This section describes the development of a new conceptual approach for understanding transmissivity, connectivity, and channeling in fractured rock.
Reservoir engineering generally understands fractures in terms of the hydraulic properties permeability (md), an aperture (m), and a porosity (-). Discrete fracture network (DFN) modeling, on the other hand, combines permeability, and an effective hydraulic aperture as a measure of the transmissive properties of the fracture (millidarcy-meters). Fracture storage properties are generally represented in DFN modeling in terms of the term storativity, which combines the effects of aperture, porosity, and compressibility. Storativity, \(S(\cdot) \) is defined in terms of fracture aperture, \(e \), the total compressibility, \(C(1/Pa \text{ or } 1/\text{psi}) \), fluid density and gravitational acceleration, \(\rho g \) as:

\[
S = \rho geCn \tag{Equation 89}
\]

Transmissivity relates to the \(ke \) product by

\[
T = \rho g \frac{ke}{\mu} \tag{Equation 90}
\]

For parallel plate flow,

\[
k = \frac{e^2}{12} \tag{Equation 91}
\]

However, for most practical problems of reservoir engineering, it is better to allow a more general form of correlation between permeability and aperture,

\[
k = A e^B \tag{Equation 92}
\]

where \(A \) and \(B \) are calculated based on field measurements and hydraulic tests. The transmissivity in petroleum units (millidarcy-meters) uses the equation for transmissivity above with the aperture value obtained from the storage calculation.

Fracture intensity can generally be expressed best as the two-dimensional fracture area per unit volume of rock. This measure we call \(P_{32} \) and it has measures of \(m^2/m^3 \) (i.e., m\(^{-1}\)). \(P_{32} \) is very important number of reservoir evaluation. When multiplied by aperture, \(P_{32} \) gives the total fracture porosity, \(n_{\text{Total}} \) in a block of rock with a volume, \(V_{\text{Total}} \), or:

\[
n_{\text{Total}} = \frac{P_{32} \times e \times n}{V_{\text{Total}}} \tag{Equation 93}
\]

\(P_{32} \) information comes from several sources. One of the best sources is the frequency of conductive features along a well. These data come readily from PLT logs where the flow rates in the log go through sharp transitions every time the logging tool passes a significant conducting feature.
The frequency of conductors along a line sample, such as a well, relates to the intensity of fractures in the rock mass by a relationship to the fracture size. Fracture size is best estimated from rock exposures where flow can be observed. Lacking such information in a petroleum reservoir, fracture size may be estimated from censoring statistics in FMI logs (that is how often does one observe a fracture termination within the well bore wall). This approach has limited effectiveness, however, if one does not know which of the fractures one is observing in the FMI logs are conductive and which are not contributing to flow.

Flow dimensional analysis (Chakrabarty and Doe, 1999) has demonstrated that a full range of connectivities occur in fractured reservoirs – from 1-D channel flow to 2-D radial flow to fully connected 3-D flow (Figure 3-48). This dimensionality may change with distance from the well, and can frequently be seen in transient hydraulic responses. Fractures, for example, may intersect individual flow channels, providing a 1-D flow response. These 1-D channels may then intersect a large, well connected system of fractures resulting in an apparent 3-D network hydraulic response. Finally, this network may connect to a single, highly permeable layer or fault zone, providing a 2-D hydraulic response.

The success or failure of production wells can thus be a function of:

(a) Fracture Transmissivity – how much flow is directed to the well through the fractures intersecting the well

(b) Fracture Storativity – what is the storage capacity of the fracture network delivering oil to the well

(c) Fracture Porosity – what is the total volume of oil accessible for production within the fracture network

(d) Dimension of flow (1-D, 2-D, or 3-D) at connections to the well, beyond the well, and in the reservoir volume where the majority of oil is stored.

Conceptually, fracture transmissivity and storativity (porosity) can be understood as a combination of:

1. A fault plane or series of fault planes that are large, spatially extensive features, that have a medium level of permeability, but do not contain large storage volumes (Figure 3-49);
2. High permeability channels within these faults (Figure 3-50); and
3. Background fractures that contain most of the accessible storage within the model but have a low level of permeability (Figure 3-51).

In this concept, channels provide high permeability flows within the system, the fracture planes act as collection features, and the storage capacity is contained within the rock matrix and the porosity provided by background fractures.

Figure 3-52 through Figure 3-54 illustrate the differences in well performance depending on the interplay of well locations, channels, faults, and background fractures. In Figure 3-52, a single well is placed on a high permeability channel, and the fault plane transmissivity and storativity is minimized and the permeability of the channel is varied. This simulation does not include the fault plane, but does include the primary storage in the background fractures. In this case, the
permeability of the background fractures is of the same order as the total permeability of the channel, resulting in an apparent three dimensional flow response.

In Figure 3-53, the background fracture size was reduced so that the background fractures would provide primarily a storage rather than a flow effect, and the well was located on the fault plane, but off the channel. For the most part, the flow is two-dimensional with a slight opening up as the pressure field intersects the high permeability channel.

Figure 3-54 presents simulations in which the well connects only to the background fractures. These simulations show an initial closed boundary flow that evolves into two-dimensional flow as the pressure field interacts with the fault plane.

The above simulations demonstrate how fracture, channel, and fault elements combine to control the flow dimension seen in drill stem tests and production histories. This research has demonstrated the importance of understanding the pattern of transmissivity and storativity in each of the discrete feature porosities in order to understand the reservoir behavior and design appropriate IOR procedures.

3.2.6 Task 1.1.6 Fracture Correlations

As part of this project major statistical study was initiated for the correlations between fracture aperture, size, storativity, and transmissivity. The data for this study was obtained by reviewing over thirty sites in a wide variety of geologic settings. The data surveyed are summarized in Table 3-24.
Table 3-24: Correlation of Fracture Geometrical Hydraulic Properties

<table>
<thead>
<tr>
<th>Site/Geology</th>
<th>Scale of Fractures (m)</th>
<th>Transmissivity (m^2/s)</th>
<th>Storativity (-)</th>
<th>Thickness or Aperture (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persian Gulf/ Limestone</td>
<td>100 to 500</td>
<td>10^{-5} to 10^{-4}</td>
<td>10^{-5} to 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>S. Europe/ Dolomite</td>
<td>5 to 20</td>
<td>10^{-6} to 10^{-5}</td>
<td>10^{-4} to 10^{-3}</td>
<td>10^{-3} to 10^{-1}</td>
</tr>
<tr>
<td>Åspö, Sweden Task 5 Area/ Granite</td>
<td>100 to 2,000</td>
<td>10^{-5} to 10^{-3}</td>
<td>10^{-4} to 10^{-1}</td>
<td>10^{-1} to 10^{0}</td>
</tr>
<tr>
<td>Åspö, Sweden TRUE-1 Area/ Granite</td>
<td>1 to 20</td>
<td>10^{-8} to 10^{-6}</td>
<td>10^{-5} to 10^{-3}</td>
<td>10^{-4} to 10^{-3}</td>
</tr>
<tr>
<td>Åspö, Sweden TRUE Block Scale Area/Granite</td>
<td>50 to 300</td>
<td>10^{-8} to 10^{-4}</td>
<td>10^{-5} to 10^{-2}</td>
<td>10^{-4} to 10^{-3}</td>
</tr>
<tr>
<td>SE Asia/ Granite</td>
<td>100 to 500</td>
<td>10^{-5} to 10^{-3}</td>
<td>10^{-4} to 10^{-2}</td>
<td>10^{-2} to 10^{0}</td>
</tr>
<tr>
<td>Wyoming/ Dolomite</td>
<td>10 to 100</td>
<td>10^{-5} to 10^{-3}</td>
<td>10^{-4} to 10^{-2}</td>
<td>10^{-1} to 10^{2}</td>
</tr>
<tr>
<td>Wyoming/ Sandstone</td>
<td>5 to 100</td>
<td>10^{-3} to 10^{-2}</td>
<td>10^{-3} to 10^{-1}</td>
<td>10^{-3} to 10^{-1}</td>
</tr>
<tr>
<td>West Texas/ Dolomite</td>
<td>500 to 2,000</td>
<td>10^{-4} to 10^{-2}</td>
<td>10^{-4} to 10^{-1}</td>
<td>10^{-1} to 10^{0}</td>
</tr>
<tr>
<td>Finland/ Granite</td>
<td>5 to 500</td>
<td>10^{-8} to 10^{-5}</td>
<td>10^{-5} to 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>S. America/ Dolomite</td>
<td>1 to 50</td>
<td>10^{-3} to 10^{-4}</td>
<td>10^{-3} to 10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Sellafield, UK/ Tuff</td>
<td>10 to 200</td>
<td>10^{-8} to 10^{-6}</td>
<td>10^{-4} to 10^{-3}</td>
<td>10^{-2} to 10^{3}</td>
</tr>
<tr>
<td>Puerto Rico/ Meta-sediments</td>
<td>10 to 100</td>
<td>10^{-6} to 10^{-4}</td>
<td>10^{-6} to 10^{-4}</td>
<td>10^{-3} to 10^{0}</td>
</tr>
</tbody>
</table>

These values given in Table 3-24 were derived from hydraulic tests including hydraulic interference, tracer transport, and transient well tests. Due to the confidential nature of many of the data sources, only overall ranges are provides, and no citations are given. Values for transmissivity, storativity, and transport aperture were generally used to build DFN flow models, which were then validated against large scale field measurements. In general, transmissivity, storativity, and aperture distributions were reported as lognormal.

The correlation between fracture size and transmissivity based on data from the Åspö Hard Rock Laboratory (HRL) is illustrated in Figure 3-55. Although there is an overlap in transmissivity values between different ranges and classes of features, a trend of increasing transmissivity with scale is apparent. The highest transmissivity values occur with the largest features occur and the smallest transmissivities occur with the smallest fractures.
3.2.7 Task 1.2 Data Scaling Procedures

For conventional reservoir simulation, data scaling problems revolve around the problems related to simulator block scales. Blocks have scales of tens to hundreds of meters, unrelated to the scales at which data is measured in wells and geophysics. Scaling must therefore extrapolate grid cell properties from, for example, single well scales to interwell scales or from meter scales to hundred meter scales (Figure 3-55).

This necessity of scaling in continuum approaches is avoided in discrete features methods, since features of a wide range of scales can be modeled simultaneously. This approach is illustrated in Figure 3-57. At the scale of the wellbore, all fractures are modeled down to the scale of 0.5 meters. These are the fractures which would appear on fracture image logs, and would provide direct hydraulic connection for delivery of oil and other fluids to the well. At the scale of 100 meters around each well, the fractures from 0.5 to 100 meters are important, since they provide the primary connectivity and flow permeability. At reservoir scales, features smaller than approximately 10% to 20% of the distance can be treated as part of the background or matrix equivalent permeability/porosity, and only the larger fractures of over 50 to 100 meters need to be considered explicitly. The procedure for multi-scale modeling of discrete feature network models is described in Section 3.2.7.1.

Upscaling is also a consideration in converting between discrete feature network models and continuum approaches. In this form of upscaling, we are taking data from the scale of individual fractures, and taking it to the scale of continuum grid cells. This is described in Section 3.2.7.2.

Discrete feature network modeling frequently does require a particular form of data scaling developed in Section 3.2.7.3. This form of data scaling is necessary to interpolate between the limited ranges of scales addressed in particular data collection programs, and the full range of discrete feature scales necessary for discrete feature analysis.
FIGURE 3-48 Flow Dimension

1) Dimension 1

2) Dimension 2

3) Dimension 3
Figure 3-49 Channels in Fracture Plane
Figure 3-50 Channels in Faults and Fractures
Figure 3-51 Background Fracture Porosity and Connectivity
Figure 3-52 Productivity Test with Single Channel, Well on Channel

Figure 3-53 Production Test with Single Channel, Well on Fault
Figure 3-54 Production Test with Single Channel, Well in Background Fractures

Figure 3-55 Size Transmissivity Relationship at Äspö Sweden
Figure 3-56 Data Scaling for Continuum Approaches
Figure 3-57 Multiscale Modeling with Discrete Fracture Networks
Figure 3-58 Fractal Dimension Calculation

\[D = 2 \cdot \frac{\log \left(\frac{r_2}{r_1} \right)}{\log (2)} \]
Figure 3-60 Example Tracer Breakthrough Curves from North Oregon Basin
Figure 3-61 Cone Photos from Orchard 14, North Oregon Basin
Figure 3-62 Yates Tops Cross Section

Figure 3-63 South Oregon Basin Seismic Lineaments
Figure 3-64 South Basin Geocellular Model Example
3.2.7.1 Multiscale Modeling

Assuming a conductive fracture intensity P_{32} of 0.1 m2/m3, and a mean fracture area A_f of 10 m2, the average 10 km x 10 km x 1 km reservoir volume V, has on the order of 1 million conductive fractures.

$$N_f = P_{32} V / A_f = 10^6$$ fractures.

This number of fractures is well within the capabilities of DFN modeling software, which can currently handle on the order of 16 million fractures in production simulations. As a result, DFN models at the 10 km scale can directly incorporate fractures from the kilometer scale down to the meter scale throughout the reservoir model region. As a result, multiple scales of behavior can be modeled down to a 1 m scale features, even for models of 10 km scale. In contrast, continuum models at this scale would generally use cells of 50 to 200 m scale, requiring upscaling of well responses to obtain effective 50 to 200 m scale cell properties.

For larger scale models of 100 km x 100 km x 1 km, the number of fractures would increase correspondingly to 10^8, which does exceed current modeling capabilities and require some form of simplification. In addition 10^6 fractures is near the limit for single phase flow simulation, and significantly beyond the limit for multiphase flow simulation.

As a result, multiscale DFN modeling is frequently simplified by modeling only the fractures of concern at each scale. So, for the 100 km scale model, large scale flow would be influenced primarily by features of over 200 m. Within 100 m from each well, however, it is necessary to model fractures down to the meter or at least 10 m scale.

The strategy developed for multiscale DFN modeling is therefore as follows:

1. Establish the practical limit on the number of fractures to be modeled:
 - 2×10^7 for geometric simulations
 - 10^5 to 10^6 for single phase flow
 - 10^3 to 10^4 for multiphase flow
2. Determine the minimum fracture size (radius) necessary at each of the model scales
 - 1 to 10 m fracture radius near wells
 - 10 to 100 m fracture radius for the region between wells
 - 100 to 200 m fracture radius for the full reservoir volume
3. Determine the number of fractures which would be modeled in each of the model sub-regions, truncating the fracture populations by different minimum radius at each scale,
 $$N_{total} = N_{well} + N_{interwell} + N_{reservoir}$$
4. Adjust the model regions and cutoff sizes to be compatible with computational constraints
5. Implement the model
6. Carry out sensitivity studies to determine the influence of the fractures left out of the model for computational reasons, and make appropriate adjustments to fracture and rock matrix properties to account for these simplifications

Using this procedure, multiscale DFN modeling makes it possible to model the features of concern at each scale, without the need for upscaling approximations. Indeed, the level of detail in the DFN model can be as low as one meter, even for 100 km scale reservoir simulations. The level of error due to this multi-scale modeling procedure depends on the severity of the limitation of the number of fractures to be modeled, and the amount of the total permeability and porosity removed from the model. In general, this can be quantified by sensitivity simulations, and the
necessary permeability and porosity can be replaced to the model either by increasing effective matrix block properties, or by increasing the permeability and aperture of the fractures remaining in the model.

3.2.7.2 Data Scaling for Equivalent Continuum Modeling

There are two fundamental approaches for use of the DFN approach in data scaling for equivalent continuum models. In the first approach (Oda, 1994; Long (1983)) independent DFN models are developed for each grid cell, and these grid cell anisotropic permeabilities are then used directly in the EPM modeling. This approach is only accurate provided the gridding of the EPM model is of a scale significantly finer than the connectivity of the DFN model (Lapointe, 1995). Otherwise, the differences in connectivity between the DFN model and the corresponding EPM model will be severe. As a result, it is essential to carry out this type of data scaling at several levels of discretization to ensure that the resulting EPM model does not suffer from errors in connectivity.

The second approach recognizes the importance of connectivity as well as conductivity in DFN models. In this approach (Dershowitz et al., 1999), the connectivity of grid cells is calculated based on the DFN model, together with grid cell permeability tensors. This can be achieved either by providing explicit connections within the EPM model as in the “non-neighbor connections” feature of ECLIPSE (ECL, 1997), or by gridding the EPM model to accommodate the DFN features at scales important to the model (Svensson, 2000).

3.2.7.3 Data Scaling for Discrete Feature Network Modeling

Oil reservoir fracture data are collected at two primary scales: the 0.1 meter well scale, and the 100 to 1000 meter geophysical and geological lineament scale. Occasionally trace map data is obtained at the 1 to 100 m scales. Data on fractures at different scales comes from data sets that best detect fractures over much narrower size ranges. For example, a lineament data based on air photos may not reliably detect fractures on the scale of hundreds of meters, while an outcrop study may only capture fractures on the scale of meters.

The key question in creating the fractures for the numerical simulations over the entire scale range of interest is whether there is a single population of fractures that is being sampled at different scales, or whether there are in fact multiple populations. The manner in which the simulations are prepared differs depending on which option is selected. In addition, there is probably greater uncertainty surrounding the model if there are different fracture populations at different scales.

The process for evaluating this issue is to examine the number of fractures greater than or equal to a specific size based on all of the data from the different sources. Since each data set may pertain to a region with a different area, the number of fractures must be normalized for the amount of area.

The common way for carrying out this normalization is to divide the number of fractures by the area covered by the data set (for example, Casting et al., 1996). This type of area normalization is essentially Euclidean, since it assumes that if the data set area were doubled, the numbers of fractures would also double. However, it may not always be the case that the number of fractures per unit area is modeled accurately by a Euclidean scaling process. For example, if the number of fractures scales as a fractal process, then an assumption of Euclidean scaling will lead to incorrect
area normalization. Thus, it is important to first evaluate the spatial scaling properties of each
fracture set prior to the area normalization.

The spatial scaling analysis for fractally distributed discrete features can be carried out by
computing the mass dimension for the data set at each site that contained the smallest traces.
Other data sets that only contained larger traces have a greater mass defect, that is, the amount of
fractures not present in the data set because they are below resolution or reporting limits is
greater. Thus, the smallest possible error due to mass defects will be for the data set at the
smallest scale.

The Mass Dimension of the fracture traces is given by:

\[N(L) = CL^{D_m} \]

Equation 94

where \(L \) is the measurement scale;
\(C \) is a constant;
\(D_m \) is the fractal mass dimension; and
\(N(L) \) is the number of fracture traces at a measurement scale \(L \).

If the spatial intensity of fracturing scales in a Euclidean manner, then the mass dimension will be
equal to 2.0.

The parameters of this equation can be estimated by counting the number of fractures in a circle
of radius \(R \), for different values of \(R \) and different locations (centerpoints) of the circle. Figure
3-58 illustrates how the mass dimension was calculated for the four example locations. The
number of fracture traces contained within circles of different radii and centered at random
locations in the trace map were plotted as a function of radius. Since multiple centerpoints were
used, there are differences in the number of fracture traces for circles of the same radius value.
The parameters are calculated through nonlinear regression of this data cloud.

Once the parameters have been estimated in this fashion, Equation 94 is used to estimate the
number of fractures that would be expected in different size areas. The 1:20 000 scale map from
which the mass dimension was estimated constitutes the reference area – 400 km\(^2\). The number of
fractures for a larger area, for example, the 1:50 000 scale maps that cover an area of 2500
km\(^2\), is estimated by first computing the radius of a circle that would have the same amount of
area, and then putting this radius value into Equation 94. In this example, the radius would be
28.21 km. The increase in the number of fractures from the 1:20 000 scale map, covering 400
km\(^2\), to the 1:50 000 scale map that covers the larger area is thus given by:

\[N(28.21 \text{ km}) / N(11.28 \text{ km}) \]

Equation 95

The number of fractures greater than or equal to a given trace length in the 1:50 000 scale map
are divided by this ratio.

If the correction is based on the smallest area of any of the data sets, then the impact of this
correction will be to increase the number of fractures than would otherwise be calculated from a
simple Euclidean scaling correction for data sets measured over a larger area. Since the greatest
impact is for the largest areas, which in these data sets, corresponds to the larger trace length sets,
the impact of this correction reduces the value of the trace length size exponent relative to a
simple Euclidean scaling. In terms of the properties of the fracture size distribution that results, a
fractal scaling correction predicts a higher percentage of large fractures relative to small fractures than would the Euclidean correction.

3.2.8 Task 1.3.0 Heterogeneous Reservoir Interdisciplinary Database

In this task, the project team developed a large data base of geological, geophysical, and reservoir engineering data for the heterogeneous reservoir project study sites. This data was provided by Marathon Oil company, and is posted on the project web site, http://heteroil.golder.com. These data posted to the web site is summarized in Table 3-25. Examples of data provided for the database by Marathon Oil is provided in Figure 3-59 through Figure 3-67.
Table 3-25 Heterogeneous Reservoir Interdisciplinary Database

<table>
<thead>
<tr>
<th></th>
<th>Yates Field, West Texas</th>
<th>Stoney Point, Michigan</th>
<th>North Oregon Basin, WY</th>
<th>South Oregon Basin, WY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological Background</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FMI Data</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Core Data</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcrop</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Seismic</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Geocellular Model</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Tracer Test Results</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Interference Tests</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Stoney Point **Trenton Structure**

![Stoney Point, Trenton Structure](image)

Figure 3-65: Stoney Point, Trenton Structure
Figure 3-66: Stoney Point, Geophysical Cross Sections
Figure 3-67: Stoney Point, Lost Circulation
3.3 Task 2: DFN Model Development

3.3.1 Task 2.1 DFN Model Approaches

The objective of this task is to document the DFN modeling approach by clearly describing each of the available DFN conceptual models, including pre-existing models and models developed specially for this project. There are three basic approaches to DFN modeling:

- **Statistical Modeling**, in which the spatial pattern is defined by stochastic processes.
- **Geocellular Modeling**, in which the variation of parameter values in a three-dimensional geocellular grid controls the fracture spatial pattern, and
- **Geomechanical Modeling**, in which fractures are generated based on geomechanical principles using fracture mechanics or approximate heuristics.

3.3.1.1 Statistical Models

The Baecher model (Baecher, Lanney and Einstein, 1978) was one of the first well-characterized discrete fracture models. In this model, the fracture centers are located uniformly in space, using a Poisson process and the fractures are generated as disks with a given radius and orientation. The enhanced Baecher model (Dershowitz et al, 1988) extended the Baecher model by providing a provision for fracture terminations and more general fracture shapes. The BART (Baecher Algorithm, Revised Terminations) model generalizes the Baecher model further by allowing termination modes which result in non-uniform fracture locations. The Enhanced Baecher and BART model utilize fracture shapes which are generated initially as polygons with three to sixteen sides. These polygons can be equilateral (aspect ratio of one) or elongate, with the aspect ratio (major to minor axis size and orientation).

In the Enhanced Baecher Model, termination is specified as termination probability \(P[T|i] \), the probability that a fracture will terminate at a pre-existing fracture, given that it intersects a fracture. In the Enhanced Baecher Model, all fractures are generated from center locations distributed uniformly in space. In the BART model, termination is assigned not by termination probability, but by termination percentage \(T\% \). In the BART model, \(1-T\% \) fractures are generated based upon uniformly located fracture centers. \(T\% \) fractures terminating at intersections are then generated from locations uniformly located on the surfaces of existing fractures. These locations are not the fracture centers, but rather the location at which the fracture termination occurs.

Periodic Models are useful for describing regularly spaced or periodic fracture patterns. Periodic fractures may occur with a constant fracture spacing or a spacing distribution, which follows some other simple, deterministic function with stochastic variations. In periodic models, the fracture location is generated serially, with every fracture generated directly from the previous fracture based on a specified direction and spacing. This approach has been found to be particularly useful in carbonate and sandstone reservoirs.

The “**Nearest Neighbor**” model is a simple, non-stationary model in which fracture intensity varies with distance from specified features.

\[
P_{32}(x_i, y_i, z_i) = f(d_{ij})
\]
where d_j is the distance of point from the selected features. The function $f(d_j)$ has been implemented using exponential and power functions (Dershowitz et al., 1998). The "Nearest Neighbor" model has been found to be useful in modeling fractures related to faults and folds and a number of sedimentary processes.

In the Fractal Model fractal patterns may be either "self-similar" (topologically identical at different scales) or "self-affine" (topologically similar but anisotropically distorted at different scale). Fractal fracture patterns can be generated in three ways:

- Utilize a recursive generation scheme which produces fracture patterns at one scale, then superposes them at different scales (with self-affine distortion if appropriate) to directly produce a fractal pattern;
- Generate fractures according to a process such as "Levy-Flight" which has been shown mathematically to produce fractal patterns; and
- Generate fractures using non-fractal processes, then test the resulting patterns to determine whether the resulting pattern is fractal.

The Levy-Lee fractal fracture model utilizes the second of the above approaches and is based upon "Levy Flight" (Mandelbrot, 1985). The Levy Flight process is a type of random walk, for which the length L of each step is given by the probability function of D, the fractal mass dimension of the point field of fracture centers and L_s, the distance from one fracture to the next for the previous step in the generation sequence. For $D=0$, the distribution of the step length is uniform, such that there is no clustering or heterogeneity. For large D, there is a very low probability of large steps and therefore fractures are formed close to each other in concentrated clusters.

The Levy-Lee fractal model requires derivation of a dimension D for the three-dimensional process of fracture centers from the two-dimensional pattern of fracture traces. Dershowitz et al. (1988) present a derivation to convert the fractal mass dimension of points on a plane to the dimension of points in three-dimensional space required for fracture generation. This derivation indicates that the three-dimensional fractal process should be generated using a fractal dimension one greater that the dimension calculated for the two-dimensional trace plane.

For this analysis, it might be tempting to utilize the fractal box counting dimension calculated for the Enhanced Baecher model. However, the box fractal statistic calculated as part of the Baecher analysis is only applicable to patterns which are "self-similar", which means that the patterns are topologically identical at different scales. Many fracture patterns are "self-affine" rather than "self-similar", since they are topologically similar, but undergo an anisotropic distortion with scale.

The 3D Box Fractal Model is a simple method used to generate a self-similar three-dimensional discrete fracture simulation. It is used only to create a simulation in which the fracture intensity scales in a self-similar, isotropic manner. The FracWorks implementation of this method requires the user to provide a value for the Box fractal dimension, which will be a real number between 0.0 and 3.0. The generation region is divided into an assemblage of grid cells. Each grid cell is assumed to be a cube with an edge length equal to $1/64$ of the generation region edge length. The algorithm conceptually implements the following procedure, although in practice, some properties of the recursive nature of the described process have been exploited to greatly speed up the algorithm.
In the initial stage, the generation region is idealized as a box of dimension 1.0 by 1.0 by 1.0. Next, each edge of the box is divided into two, so that there are now 8 sub-cubes comprising the original box. From the specified fractal box dimension \(D_b \), we can compute the number of boxes that contain one or more fractures.

As the size becomes smaller, the number of filled boxes increases. If every box contained one or more fractures at every box size, then \(D_b \) would be equal to 3.0. This is the largest possible value for the fractal dimension. For values less than 3.0, not all of the boxes will necessarily contain fractures at all levels of box discretization.

Because of the recursive nature of the algorithm, the location of these filled boxes is not random. As a result, the number of filled boxes at any level of aggregation conforms to a power law and is fractal. Fractures are generated only in those 6208 boxes designated as filled until the global fracture intensity \(P_{32} \) is reached.

The Geostatistical Variogram Method varies fracture intensity and other properties according to a geostatistical variogram (Journel and Huijbregts, 1978). The variogram is a function, which relates the similarity of values at different locations to the distance \(h \) between those locations. Geostatistical semivariograms are defined by function \(\gamma(h; a, C) \) where \(h \) is the lag distance, \(a \) is the range or correlation length, \(C \) is the sill, and \(\gamma(h) \) is the semivariance. Semivariograms may be either exponential, spherical, Gaussian, power-law (fractal), null, or deWijs. Geostatistical models generally require stationarity—that is, the expected value and variance (standard deviation) of the variable being modeled must be independent of its location, or at least any trend must be separated out and dealt with outside of the geostatistical algorithm.

Geostatistical models are implemented by calculating the variogram from available data. The spatial pattern can then be generated from the variogram definition using an algorithm such as Turning Bands (Journel, 1974).

The Fractal POCS algorithm (Projection On Convex Sets) is a general procedure for generation of stochastic fields according to constraints such as spatial correlation which can be represented mathematically as convex sets (Malinverno and Rossi, 1994). The constraints are enforced on the interpolation by projecting these convex sets in an interactive fashion. Five constraints are imposed in the generation of POCS stochastic fields of fracture centers or surface points: 1. Known data is honored. This is known as Set \(P \), for "Point". The constraint is that the final data set will have values \(F(x_i, y_i, z_i) \) at points \(i = 1 \) to \(N \). In this way, the final simulation matches observations on trace planes or in wells. 2. Self-affine spatial correlation is honored. This is known as Set \(S \), for "Spectrum". The way in which this constraint is applied involves mathematical operations on the amplitude of Fourier spectrum of the data. 3. The mean value of the data is preserved. This is known as Set \(M \), for "Mean." 4. The values of the data set are bounded. This is known as Set \(B \), for "Bounded." For example, it is not meaningful to have negative fracture intensity or transmissivity. 5. The energy of the data is preserved. This is known as Set \(E \), for "Energy". Energy in this context is defined as the sum of the value-squared at all points.

In order to create a POCS stochastic field of fracture intensities, it is necessary for the user only to specify constraints (1) and (2). The algorithm automatically computes the mean value of the data used in constraint (1) and also the energy of the data used for constraint (1). The algorithm then conditions the spectrum for constraint (2) based upon a parameter, termed, derived from a spectral density plot of the known data points and from an anisotropy function describing the relative strengths of spatial correlation in three orthogonal directions. The factor is linearly related to the fractal dimension, \(D \). The fractal dimension of a self-affine process relates to according to
a relation defined in terms of fractal dimension D_s, Euclidean dimension E, sometimes represented by the variable n, which is the exponent of the corresponding one-dimensional power spectral density.

The parameter has been the source of much confusion in the literature (for example, see Goff, 1990 and Huang and Turcotte, 1990). A one-dimensional self-affine process has a power spectrum proportional to f^{-b}, where f is the frequency. An n-dimensional process has a power spectrum proportional to f^{1-b-n} (Huang and Turcotte, 1990). The fractal dimension, for 1-, 2- and 3-dimensional processes are given in Table 3-26.

<table>
<thead>
<tr>
<th>n</th>
<th>D_s</th>
<th>b Range</th>
<th>D_s Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(5-b)/2$</td>
<td>[1-3]</td>
<td>[1-2]</td>
</tr>
<tr>
<td>2</td>
<td>$(8-b)/2$</td>
<td>[2-4]</td>
<td>[2-3]</td>
</tr>
<tr>
<td>3</td>
<td>$11-b)/2$</td>
<td>[3-5]</td>
<td>[3-4]</td>
</tr>
</tbody>
</table>

The POCS algorithm requires the user to provide values for anisotropy parameters A_x, A_y, and A_z. Only the relative magnitudes are important, although the values must be positive. Negative or zero values make no physical sense and produce a warning message. The program also produces warning messages if the value of D specified is not within the range $[3.0 - 4.0]$. Although the factor and not the fractal dimension, is used internally to control the spatial correlation structure, the program computes this from the user-specified value of D.

The impact of anisotropy for any simulation depends upon the fractal dimension and the constraint data. For low fractal dimensions, the simulation becomes more obviously layered at lower anisotropy ratios. Also, if the constraint data has inherent larger-scale anisotropy, then the layering will become more readily apparent at both higher value of fractal dimension and lower anisotropy ratios.

3.3.1.2 Geocellular Models

Stochastic process, geostatistical, and fracture models attempt to apply a single, unifying set of simple parameters to describe the three dimensional pattern of discrete features within a statistically homogeneous region. In contrast, Geocellular models are based on the assumption that the underlying spatial pattern parameters change in space, such that different sets of parameters are required at every point in space. This is particularly attractive when there is a geological or stratigraphic model to provide the basis for DFN modeling.

In statistical approaches models such as the Baecher model, the probability of fracture centers is equal at each point in space. However, there are not fractures at every point in space - rather the intensity varies continuously from locations containing many fractures to locations with none. Expressing this as a geocellular model, each cell might be assigned a set of parameters expressing:
the number of fractures,
the percentage of the fractures within the cell which continue to neighboring cells,
the orientation distribution of the fractures,
the distributions and correlations of geometric, hydraulic, and mechanical properties,
the percentage of the fracture terminations which are terminations at intersections.

In this way, the exact same model generated using the Baecher or Bart approach could be generated using a detailed geocellular approach. However, the amount of data necessary to achieve the same model through a geocellular approach is significantly greater than that needed in the Baecher model. In addition, while the actual fracture model varies continuously in space, the geocellular model varies by steps given by the grid refinement of the geocellular model. With coarse grids, the results might not be as good as could have been achieved using the standard Baecher model.

3.3.1.2.1 Fracture Generation

Fracture generation from geocellular models has two stages. In the first stage, the model must chose which cell to generate the fracture from, and the second stage is to chose the parameters of fracture generation based on the values found in the cell.

The cell selected for fracture generation is generally based on a "potential field" describing the relative likelihood of fracture generation from each cell. This potential can be expressed statistically based on the relative intensity in each cell, or it can be based on the location of previously generated fractures, as in the nearest neighbor and Levy-Lee models. The fracture generation "potential field" represents the probability that a fracture will be generated in a given cell, relative to the likelihood of other cells.

Once the cell is selected, the fracture geometric, hydraulic, and mechanical properties need to be assigned. For each parameter, which is not assigned in the cell, the parameters can be obtained from the defaults for the fracture set. For example, the fracture size might be assigned from the set size distribution. For parameter values assigned on a cell-by-cell basis, the fracture parameters can be set from values or distribution parameters for the cell. For example, the fracture orientation might be obtained from distribution parameters stored in the cell.

3.3.1.2.2 Geocellular Grid Preparation

The most common approach for preparation of a geocellular grid is to start with an existing three-dimensional geocellular model such as StrataModel, GeoFrame, EarthVision, ARC/INFO, or EVS. In these models, every point in space is assigned to a cell. The cells in turn have spatial volume coordinates, and one or more properties. Each of these cell properties can then be linked to the fracture generation parameters of intensity, orientation, size, etc, and the fracture hydraulic or mechanical properties.

3.3.1.2.3 Potential Fields

Potential fields for fracture generation are used to determine the percentage of fractures, which are generated in each cell. Potential fields are defined for each set separately, and can be based on:
- rock type, where different rock types have different fracture intensities,
- geophysically derived fracture porosity, where greater porosity presumably implies greater fracture intensity,
- structural curvature, bed thickness, and other geometric properties of the stratigraphic model,
- geometry and intensity of fractures from previously generated sets, and
- calculated stress field.

Rock type is used to define fracture potential based on geological evidence, which indicates greater fracture intensity in particular rock types. Where only a few rock types with relatively large regions are involved, it is frequently preferable to define a generation region corresponding to each rock type, avoiding the use of more complex geocellular approaches.

Fracture Porosity information is commonly available from geophysical density measurements. Geophysical measurements provide total porosity. Fracture porosity is then calculated by subtracting the average rock porosity from the total porosity. Fracture porosity results from a combination of fracture size, intensity, and thickness. This needs to be taken into consideration when defining relative fracture potential based on porosity measurements.

Structural and Stratigraphic Geometry provide geologically based methods for defining fracture intensity. For example, certain sets have highest intensity close to faults, while other sets have highest intensity near the maximum curvature of folds. Similarly, some fractures have the highest intensity in thin beds, while others may have the highest intensity in beds dipping at a certain angle. For each of these cases, the fracture potential for each cell can be calculated by examining the structural and stratigraphic geometry in the vicinity of the cell.

Previous Fracture Sets clearly affect the geometry and occurrence of fractures in subsequent sets. Statistical approaches such as the "Nearest Neighbor" approach provide methods to generate fractures correlated to previously generated fractures. However, with the geocellular approach, rules can be used to generate fractures with any desired intensity relationship to previously generated fractures - with higher or lower densities near or far from particular sets, or particular sized or oriented fractures.

Stress Fields together with material properties control fracture occurrence and geometry. However, the actual stress field existing at the time of fracturing is rarely known, such that assumed stress fields based on numerical modeling or paleo-stress interpretations and interpolations must be used instead. When appropriate paleo-stress field information is encoded to the geocellular grids, this information can be used directly to generate fracture relative intensities using rules to relate the stress field to occurrence of fractures from particular sets.

3.3.1.2.4 Orientation Fields

Orientation fields describe the orientation (tangent), elongation, and curvature of fractures as they are generated. Orientation is generated in cells rather than larger "generation regions" when the orientation of particular sets varies in space. This is typically important where the orientation is defined relative to for example fold or fault surfaces or stratigraphic boundaries.

Specification of orientation fields is generally done by defining two vector directions, generally a pole and a transverse direction. The orientation for features generated in that cell can then be
defined relative to those vector directions. For example, the mean fracture pole might be defined as 45 degrees from the mean pole specified in the geocellular data.

The vector direction contained in the geocellular model is typically based on:

- structural curvature,
- bed thickness,
- position within structural features such as faults,
- orientation of fractures from previously generated sets, and
- calculated stress field.

Structural Curvature controls fracture orientation in two ways. First, fractures within structural members are frequently oriented relative to those features, rather than in absolute coordinates. Second, the fracture orientation can depend on the location within the structural feature. For example, tension fractures located near the top of synclinal folds, and conjugate shears located within fault zones.

Bed Thickness affects the occurrence of many fracture sets and therefore the orientation of fractures within the set. For example, in thin beds, fracturing may be restricted to orientations defined by the bed orientation, while through going fractures and fractures in thicker beds are oriented. Thick fractures may have fractures oriented.

Structural Position within stratigraphic layers also can influence fracture orientation, since different orientations can be preferred at different locations within a structural member. For example, the center of a particular stratum might contain fractures oriented according to a global mean pole, while fractures closer to the edge of the structure are increasingly controlled by the structural curvature...

Previous Fractures can influence fracture orientations in the same way as structural curvature and structural position. Fractures close to previously generated fractures may tend to have similar orientation, or conjugate orientations, or some other relationship.

Calculated Stress Field at different stages in time are particularly attractive for defining fracture orientations, since fractures are formed with respect to principal stress orientations: at \(\pm (45-\phi/2) \) with respect to shear fractures, perpendicular to the minor principal stress for tensile fractures, and parallel to the major principal stress for compressive fractures (if such a thing exists). The key in this case is the availability of stress tensors describing the state of stress when the fractures were formed.

3.3.1.2.5 Size Fields

Fracture size for stochastic fractures is defined by a distribution of mean fracture equivalent radius. The size distribution can vary in space for much the same reasons that intensity and orientation vary. In particular, bedding thickness and stress fields can have significant influences on the local fracture size distribution parameters. Where this is the case, this can be dealt with by defining size distribution parameters on a cell by cell basis with a geocellular-based model.
3.3.1.3 Geomechanical Models

Geomechanically based DFN models are derived by simulating the physics of fracture propagation, fault movement, and other processes of structural geology. The geomechanical approach is attractive for a number of important reasons:

- the fracture patterns in geomechanically based models are constrained to be physically possible
- qualitative information on geological and stress history can be used to develop quantitative realizations for the fracture pattern
- quantitative information on rock mechanical properties can be used to support fracture realizations
- hypotheses concerning reservoir stress-strain history can be tested by comparing the measured fracture patterns against theoretical patterns based on principles of fracture generation and propagation
- spatial heterogeneity and non-stationarity in fracture geometry and properties can be defined in terms of the stress-strain history at different locations in the rock.

There are two basic approaches for geomechanical modeling: forward modeling, and reverse modeling. In forward modeling, initial mechanical conditions are assumed, and stress boundary conditions are applied. Fracture propagation is then simulated one fracture at a time, and each fracture is generated in a mechanical environment including the influence of pre-existing fractures. This approach has been developed over the last 20 years by Ingrafia (2000) and others. In the reverse modeling approach, a series of displacements, erosions, and strains is applied to reverse the process from the current deformed state to an original undeformed state. This process is referred to as “palaeospastic reconstruction” (Midland Valley, 2000). Fractures can then be generated according to rules related to the stress-strain history for each location within the rock.

3.3.1.3.1 Geomechanical Forward Models

Geomechanical forward models simulate the process of fracture generation in continuous and discontinuous materials, using the principles of fracture propagation. The geomechanical forward modeling approach began with the idealized analytical solutions of Griffith (1921). The Griffith crack represents the propagation of a single idealized elliptical fracture in a simple tensional stress regime.

If all fractures were Griffith cracks, the development of three dimensional DFN models would only require an understanding of the stress history boundary conditions which formed those cracks. However, actual rock fracture formation is:

a) a combination of tension, shear, compression modes

b) occurs within rock materials which combine elastic, brittle, granular, and plastic behaviors

c) occurs in heterogeneous materials with distinct boundaries between zones, and

d) occurs within a complex stress field resulting from the interaction of multiple pre-existing fractures
e) is frequently subject to displacement or strain as well as stress boundary conditions

The combination of a) through e) above with the frequently complex stress history of fracture formation over geologic time makes forward modeling of fracture formation quite challenging. Until recently, forwarding modeling for generation of fracture patterns was not tractable. Over the past five years, fracture mechanics simulation has advanced to the point where it is possible to generate fracture patterns reflecting many combinations of a) through d) above.

Of particular interest is the work of Carter, Wawrzynek, and Ingraffea (2000) and the Rock Fracture Group at Cornell University. In their research, the boundary element method (BEM) code FRANC3D has been developed for arbitrary, non-planar, three dimensional fracture nucleation and propagation. FRANC3D is able to model propagation, interaction, and/or coalescence of multiple fractures, fracture propagation across material interfaces and intersecting fractures, and fracture bifurcation. FRANC3D can model fracture propagation for multiple, non-planar, arbitrary shaped fractures. For a given initial fracture geometry, FRANC3D calculates the 3D stress field to determine the stress intensity factors, and then extends the fractures along those “crack fronts.” Because of this approach, FRANC3D can simulate realistic 3D fracture shapes, including en-echelon, curving, and stepping fractures. FRANC3D calculates “crack fronts” using elastic plane strain assumptions. FRANC3D is solved primarily using finite element methods, although boundary element formulations are also possible.

While FRANC3D is only able to handle a limited number of fractures at this time, it is possible to foresee the extension of these capabilities over the coming decade to generation of networks of thousands of fractures. At present, FRANC3D can be used to generate networks of tens of fractures. Even within this limitation, however, FRANC3D is useful to derive distributions for fracture size, fracture orientation, and fracture spatial distribution. In addition, FRANC3D simulations can provide the basis for extrapolation of fracture patterns using geocellular approaches by defining the correlations between cell locations and fracture geometric and mechanical properties.

FROCK is program similar to FRANC3D, developed by Chan and Einstein (1991). FROCK uses a displacement discontinuity method (DDM) in which the boundaries of the continuum are discretized into small elements. The advantages of the DDM are that it only requires discretization at the boundaries of the continuum. FROCK calculates stresses around the “crack tip” and uses tensile and shear criteria to determine where fracture propagation should occur. The shape of the fracture propagation region is approximated as a cylinder with the center at the tip of the flaw, and with dimensions defined by the radius, ro, which depends on the material and on the loading mode. Tensile fractures are propagated in the direction perpendicular to the maximum tensile tangential stress, and when this stress reaches a critical value which is material dependent. Shear fractures are propagated in a direction in which the absolute value of the shear stress attains a maximum. It will propagate when the maximum shear stress reaches a critical value which is also material dependent. FROCK uses three parameters to describe fracture propagation:

- the critical tensile strength,
- the critical shear strength, and
- the radius of the assumed cylindrical fracture propagation region (assumed to be a function of the loading mode (uniaxial, biaxial compression, tension) as well as with the material.
FROCK has been verified against a variety of analytical solutions (Chan and Einstein, 1991). However, it is limited to two dimensions, and can therefore be used only to derive qualitative information about fracture spatial pattern, intensity, and orientation in 3D.

Beyond computational constraints, the approach used by FRANC3D and FROCK is limited by the underlying assumption of small strain, elastic continuum mechanics. As a result, FRANC3D and FROCK can not be used to model fractures generated with respect to faults with throws of hundreds of meters or processes such as block rotation and kinematics.

The kinematic or particle mechanics approach (Potyondy, Cundall and Lee, 1996) avoids the small strain elastic assumption limitations inherent in continuum mechanics approaches such as those used by FRANC3D and FROCK. In the particle mechanics approach, the rock mass is represented as a set of particles with varying degrees of connection or bonding. Fractures and fracture propagation are represented as breakage of these bonds. Displacement and rotation within a particle mechanics model is limited only by kinematics. The particle mechanics approach has been implemented in the PFC3D (Potyondy, Cundall and Lee, 1996) and has also been implemented by Mühlhaus, Sakaguchi and Wei (1997) at CSIRO in Australia. Using the particle mechanics approach it is theoretically possible to generate fracture patterns with unlimited numbers of interacting fractures, obtaining spatial distributions of size, intensity, and orientation directly from the stress history and material properties. The primary limitation of particle mechanics codes is that they require the use of empirical parameters to describe the particles and bonds which are modeled – there is no direct relationship to measured rock properties. However, if a particle mechanics model can be calibrated to observed fracture patterns and assumed stress histories, that model could potentially be used to extrapolate the full three dimensional spatial distribution of fracturing. Particle mechanics codes can in theory model large displacements, rotations, and distortions.

Beyond purely mechanistic geomechanical models such as those described above are the empirical rule-based geomechanical fracture generators such as those of Swaby and Rawnsley, (1996) and Cacas (1999). In this approach, fractures are generated according to empirical rules which relate the fracture patterns to geocellularly or spatially defined “potential fields”, and then generate the fractures relative to those “potential fields”. For example, the Swaby and Rawnsley model uses the following empirical rules for fracture propagation:

- the probability that a fracture will grow into a particular cell is defined by an empirical “propagation potential” and “impedance potential” defined on a geocellular basis
- the direction and distance that the fracture will propagate given that it propagates in a given cell is given for that cell based on cell attributes
- fracture propagation is prevented in defined zones surrounding previously defined fractures based on stress relief assumptions
- cell attributes are updated based on the fractures existing at the end of a given time step

An example empirical geomechanical forward model from the Swaby and Rawnsley model is provided in Figure 3-77. Empirical geomechanical models have the potential to be extremely powerful fracture generators, capable of generating mechanically realistic patterns of hundreds of thousands of fractures for varying scales. The potential of the empirical geomechanical forward modeling approach is limited only by the ability to define reasonable empirical fracture propagation rules and implement them in a computationally efficient manner.
3.3.1.3.2 Geomechanical Reverse Models

Geomechanical Reverse Models, also referred to as “Palinspastic Reconstruction” Models reverse structural displacements, deformation, and rotations to return a known structural geology to an assumed original condition. Major development of the palinspastic approach is described in Suppe (1983, 1985, 1989), Suppe et al. (1990), and Mitra (1986, 1989, 1990).

The technology of palinspastic reconstruction is approximately twenty years old, and has matured to the point at which it is a commercially available technology. The two leading software packages for palinspastic reconstruction are 3Dmove by Midland Valley (Figure 3-78) and Geosec3D by Paradigm (Figure 3-79).

Since palinspastic reconstructions work from known structural geology, at a level of detail which includes measured or at least inferred displacements. Where the structural geology is known in detail, there is no need to implement stochastic or extrapolated structural models – the fracturing can be modeled as deterministic! The primary use of these models is therefore to define the undetected structures which would be necessary to make the known structural deformations kinematically possible. As such, geomechanical modeling is a method for interpolation from known structures to the smaller or less readily detected features. It is also a method for verification of interpreted structural features and displacements, determining whether there is a series of structural events which could have produced the structural features as interpreted.
Figure 3-68 Fracture Growth Model (after Swaby and Rawnsly, 1996)

Figure 3-69 3Dmove Palinspastic Reconstruction (Midland Valley, 2001)
with specific applications to project study sites.

In Task 3, the project team developed procedures to improve reservoir productivity and recovery.

3.4 Task 3: Reservoir Improvement Strategies

The steps are illustrated in Figure 3-83 through Figure 3-85. Refer to the progress reports listed in Table 2-1. Preliminary DFN models for the project study were developed for all tasks. For more information on the preliminary model versions, please refer to the notes. More information is included in the project study package. These tasks, preliminary DFN models were built for each of the project study sites. These tasks, preliminary DFN models were built for each of the project study sites.

3.3.2 Tasks 2.2, 2.3, and 2.4 Site DFN Model Development, Implementation, and Validation

Orientation distributions (Figure 3-81).

In order to determine compatible with possible 3D fracture populations in terms of location, size, and orientation, a series of realistic 3D fracture models have been developed. Each of the fracture models produced a series of synthetic fracture sets, each with distinct deformation characteristics. The fracture models were then used to generate discrete fracture networks, which were implemented in the reservoir models developed. The fracture models were then used to generate discrete fracture networks, which were implemented in the reservoir models developed.

![Figure 3-70 Crosssectional Reconstructions](image-url)
Figure 3-71 Strain Fields for Fracture Generation

Figure 3-72 Geomechanical Modeling of 3D Fracture Populations
Figure 3-73 Preliminary Yates DFN Model
Figure 3-74 Preliminary Stoney Point DFN Model
Figure 3-75 Preliminary North Oregon Basin DFN Model

Figure 3-76 Preliminary South Oregon Basin DFN Model
Particular emphasis was placed on the use of the following DFN tools:

- **Pathways Analysis**: Graph theory analysis of the connectivity structure of the discrete conductive and storage features to identify connected well intervals, and to target injection and withdrawal rates for steam, water, oil, and gel as appropriate
- **Compartmentalization Analysis**: Analysis of connected network geometry and tributary drainage volumes
- **Block Size Analysis**: Derivation of dual porosity parameters based on discrete feature geometry
- **Flow Modeling**: Single phase flow modeling for derivation of flow rates and pressure responses
- **Transport Modeling**: Quantification of flow pathways by particle tracking methods.

Reservoir improvement strategies were developed for each of the sites in three stages: preliminary strategy development, DFN model development, and strategic plan. These are described below for each of the study sites.

3.4.1 Task 3.1. Strategic Plan: Yates Field Reservoir Improvement

The focus of efforts to improve production in the Yates field is on improving oil mobility to the producing intervals. Since oil is delivered to the wells primarily through the fracture network, the DFN approach has considerable potential to provide this support.

The strategic plan for the Yates field is as follows:

1. Oil mobility to the producing intervals needs to be improved. The DFN Modeling approach will support this through improving the understanding of pathways for injected surfactants, and how these pathways relate to the pathways for surfactant imbibition to the rock matrix, and pathways for oil delivery to production intervals
2. Improve the placement of producing intervals (strategic completion) to maximize the volume of oil accessed by the wells and minimize connectivity to sources for water.

3.4.1.1 Surfactant Flood DFN Analysis

Surfactant flood is important because it facilitates increased delivery of oil from the rock matrix through the fracture network to the production wells: DFN analysis an be used to address the following aspects of surfactant flood design:

- circulating optimum concentration of surfactant in water into the fractures,
- transfer of the surfactant from the fractures into both the less-directly-connected fractures and formation matrix pores,
- the chemical EOR mobilization of oil from the matrix into the fractures, and
- the capture of oil from the fracture network.
Procedures were developed to extend the investigation of flow from the wellbores to the matrix pore volume by way of water-filled fractures in the thick water-invaded fracture network and oil flow from this zone to accumulate in the oil column of the fracture network for capture of the mobilized oil. Two styles of chemical application are addressed;

1. the surfactant has been applied to treat production wells where the chemical is intended to circulate into the water invaded fractures and stimulate water imbibition into the matrix, and

2. injection of surfactant into openhole completions deep in the formation where the surfactant is intended to replace formation water along fracture flow paths to nearby producers.

Optimum application of these treatments depends on appropriate injected surfactant concentration and total volume to adequately treat the formation matrix exposed along the connected fracture network. This requirement encourages quantitative assessment of the variation in fracture network connectivity as formation character and deformational strains vary across the field. The tool for this assessment is DFN modeling. A DFN realization of a 125-foot thick water invaded interval of a fracture network is provided as Figure 3-77a. The largest inter-connected cluster of fractures is provided as Figure 3-77b. Note that many of the remaining fractures form only small clusters with small associated matrix volume.

![Figure 3-77 DFN Model Illustrating Surfactant Imbibition](image)

Past production and injection completion performance can serve as an indicator of probable associated fracture cluster area to guide selection of wells for the various style treatments. The treatment types are conceptually illustrated in Figure 3-78. The production well treatment would treat fracture communicated matrix surfaces extending away from the well in varying directions. As the well is returned to production following a brief shut in period, any oil liberated by the stimulated Imbibition of water would be available along fractures that are well-connected to the
producer. This contrasts with the sustained injection style application in which the surfactant propagates into the fracture network away from the application point and selectively advances toward fracture-connected producers. The most locally intense treatment is at the point of application. Near an offsetting producer, chemical dosage may be minimal and only along a single fracture pathway leading to it. Oil mobilized by the process will be difficult to capture and account to the process. Figure 3-79 and Figure 3-80 provide graphs of tested or metered response to the two styles of treatments.
Figure 3-78 Surfactant Injection Strategies
Figure 3-79 Well 2913 was treated with surfactant late in 1997 and responded with stimulated liquid productivity and reduced water-oil ratio (WOR) after recovery of treatment fluid. The stimulated fluid productivity has been maintained while the WOR has resumed an upward trend.
3.4.1.1.1 Analytical Development

In order to optimize surfactant design, a mathematical model and its analytical solution are presented in this paper. The model relates the fracture area treated by surfactant with the injection rate, volume and concentration and fluid and permeable medium properties. The effects of fluid convection and dispersion on treated fracture area are also discussed.

During initial injection, the surfactant solution is first mixed with fluid in the fracture system. The mixing depends on the injection rate, fracture pore volume and permeability. The mixed solution then advances through the fracture system and diffuses into matrix. This process depends on the chemical properties of surfactant solution, formation water and formation rock. The fluid in the fracture system will also percolate into matrix and transport surfactant molecules. The fluid transport from fracture to matrix is controlled by the pressure gradient distribution in the reservoir and matrix permeability. For simplicity, the fracture system is conceptualized as a vertical plane (Figure 3-81). The surfactant is injected at one end of the fracture. The fluid convection into matrix from the fracture is assumed to be steady-state flow with constant flux over the fracture.
surface. To model the surface area treated by surfactant, the surfactant transfer into matrix is investigated.

Let the surfactant with concentration C_o be in contact with fracture surface at time zero. It is assumed that the surfactant concentration in the matrix is initially zero and remains zero at an infinite distance from the fracture surface. The mathematical model for material balance and boundary conditions of the convection and diffusion processes can be described as (Lake, 1989),
\[K_i \phi \frac{\partial^2 C}{\partial x^2} - u \frac{\partial C}{\partial x} = \phi \frac{\partial C}{\partial t} \]
Equation 96

\[C(0, t) = C_o \]
Equation 97

\[C(x, 0) = 0 \]
Equation 98

\[\lim_{x \to \infty} [C(x, t)] = 0 \]
Equation 99

Where \(C \) is surfactant concentration. It is a function of location and time. \(u \) is fluid convection velocity from fracture to matrix. \(\phi \) is matrix porosity. \(K_i \) is longitudinal dispersivity coefficient. For one-dimensional flow, \(K_i \) is given by Lake (1989),

\[\frac{K_i}{D} = C_1 + C_2 \left(\frac{D_{p}}{D} \right)^{\beta} \]
Equation 100

Where \(D \) is the effective binary molecular diffusion coefficient between the miscible displacing and displaced fluids. \(C_1, C_2 \) and \(\beta \) are properties of the permeable medium and the flow regime. For very slow flows, the second term in Equation 5 is negligible.

The partial differential of surfactant concentration with respect to distance, \(x \), after taking Laplace transform on Equations 1 through 4 with respect to time is given by Eq. 6,

\[\left. \frac{\partial C(x, s)}{\partial x} \right|_{x=0} = \frac{C_o}{s} \left(\frac{u - \sqrt{u^2 + 4K_i\phi^2 s}}{2K_i\phi} \right) \]
Equation 101

This equation will be used in the following section to obtain fracture area treated by a surfactant slug.

The surfactant transfer rate by both convection and diffusion can be calculated as,

\[q_d = uC_o \delta_x(t) - K_i\phi \left. \frac{\partial C(x, t)}{\partial x} \right|_{x=0} \]
Equation 102

Due to surfactant transfer into matrix and dispersion at the front of the surfactant solution, the surfactant concentration in the fracture is not constant. Figure 3-83 shows a typical surfactant concentration profile in a fracture.
For simplicity, the surfactant concentration behind the front of surfactant slug is considered to be constant (Figure 3-83). Using a similar method proposed by Marx (1959) and Carter (1957) in their reservoir heating project and fluid loss optimization of hydraulic fracturing, the surfactant material balance in the fracture system can be described as:

\[
\text{Surfactant Injected} = \text{Surfactant diffusion and convection into matrix} + \text{surfactant slug advance in fracture}
\]

We can then derive Eq. 8:

\[
Q_{inj}C_{inj} = 2n \int \left[uC_o \delta_0(t - \lambda) - \phi K \frac{\partial C(x, t - \lambda)}{\partial x} \right]_0^\infty d\lambda + n \phi_f w_f C_o \frac{dA}{dt}
\]

\text{Equation 103}

where \(Q_{inj}\) and \(C_{inj}\) are injection rate and injection concentration. \(A\) is single side fracture surface area treated by surfactant and is a function of time and other parameters such as injection rate fracture and matrix permeability, and etc. \(\phi_f\) and \(w_f\) are fracture porosity and width. \(n\) is the number of fractures connected to the wellbore. \(\lambda\) is the time when the fracture surface is exposed to surfactant. Solving this mathematical system results in Eq. 9:

\[
A(t) = \frac{(M + K)L}{4MK^2} \left[\text{erfc} \left(M + K \sqrt{Jt} \right) - 1 \right]
\]

\[
- \frac{L \sqrt{J}}{K} \text{erfc} \left(\frac{L \sqrt{J}}{K \sqrt{\pi}} \right) + \frac{L \sqrt{J}}{K \sqrt{\pi}} e^{-Jt}
\]

\[+ \frac{(M^2 + K^2)J}{4MK^2 \sqrt{J}} \text{erf} \left(\sqrt{Jt} \right)
\]

\text{Equation 104}

where

\[
J = \frac{u^2}{4K_f \phi_f^2}
\]

\text{Equation 105}

\[
M = \frac{\phi_f \sqrt{K_f}}{\phi_f w_f}
\]

\text{Equation 106}

\[
K = \sqrt{M^2 + J - \frac{u}{\phi_f w_f}}
\]

\text{Equation 107}

\[
L = \frac{Q_{inj}C_{inj}}{2nC_o \phi_f w_f}
\]

\text{Equation 108}
For a special case when the fluid convection from fracture to matrix is ignored, Equation 6 becomes

\[A(t) = \frac{L}{2M^2} \left[e^{(2M^2)t} \text{erfc} \left(2M \sqrt{t} \right) + \frac{4M}{\sqrt{\pi}} \sqrt{t} - 1 \right] \]

Equation 109

For another special case when the molecular diffusion into matrix is neglected, Equation 6 becomes,

\[A(t) = \frac{L \phi \rho_f}{2u} \left(1 - e^{-\frac{2u}{\phi \rho_f \sqrt{t}}} \right) \]

Equation 110

3.4.1.1.2 DFN Model Validation

To verify the analytical model, a conceptual surfactant flooding simulation model is setup using a commercial simulator. The model is 600 ft x 116.06 ft x 100 ft with a grid dimensions of 117 x 117 x 1 (Figure 3-83). The fracture is located along the central line parallel to the model edge of the longer side (Figure 3-82). The fracture permeability is 5 darcy and the porosity is 0.99. The fracture is 600 ft long and 0.06 ft wide. The matrix permeability is 100 md and porosity is 0.15. Two wells are located at each end of the fracture. One well is a producer and the other is an injector. To ensure constant flux of fluid convection into the matrix from the fracture, a constant flux aquifer is attached along the two longer edges of the model. The aquifer efflux is 5.6146E-5 W/day, which is the same as the flux of fluid convection from fracture to matrix. The diffusion coefficient is 1.8E-5 ft²/day for the simulation model. The injection rate is 20 STB/day and the production rate is 18.8 STB/day. The simulation has an initial 100-day period to establish steady-state flow. The surfactant solution is then injected with a concentration of 2 lb/BBL.

The fracture surface area swept by surfactant solution with a concentration greater than 1.0 lb/BBL is output for different time steps. The results are plotted in Figure 3-84 along with those calculated from the analytical model. A dispersion coefficient of 12 times that of the molecular diffusion coefficient is used in the analytical calculation. The adjustment needed here accounts numerical dispersion and macro dispersion due to convection. This ensures that dispersion caused by fluid flow and mixing is dominant in this case (Lake, 1989). The overall results show a good agreement. The deviation around 40 to 50 days is caused by surfactant breakthrough. Therefore, the fracture area treated in the simulation model is limited to 60,000 ft².

Figure 3-85 shows an analytical calculation demonstrating the effects of convection rate on the treated fracture area. We can see that at early time, the effect is negligible. As treatment time increases, the treated fracture area decreases with the increase of convection rate. After 50 day's of treatment with 20 STB/day and 2 lb/BBL of dilute surfactant injection, the difference of the treated fracture area is as large as 3,000 square feet with convection rate varying from 1.0E-5 to 1.5E-4 ft/day.

Figure 3-86 shows the effects of molecular diffusion coefficient on the treated fracture area. The pattern is similar to the effects of fluid convection into matrix on the treated fracture area. At early time the effect is negligible. As treatment time increases, the treated fracture area decreases with the increase of molecular diffusion.
Figure 3-82 Surfactant Concentration Profile in Fracture
Figure 3-83 Schematic View of Reservoir Model
Figure 3-84 Comparison of Results from Simulation and Analytical Model

Figure 3-85 Effects of Convection Rate on Fracture Area Treated
3.4.1.2 Strategic Completion DFN Analysis

The DFN Model described above in Section 3.4.1 was used to evaluate strategic completion for the 8 wells. At the end, this produced about 80 DFN models for the 8 deepening candidate wells 1304, 1307, 14A1, 1495, 1663, 1773, 2513, and 2722. The purpose of the analysis is to determine which DFN model parameters can be used as indicators for prioritizing strategic completion candidates. The indices considered were:

- Conductive fracture frequency P_{10} (1/m), which indicates the frequency with which conductive fractures intersect the different wells considered. In theory, higher P_{10} could correlate with better production. However, past studies have universally demonstrated poor correlation to transmissivity, and is not expected to be a good predictor of production.

- Compartment statistics of volume and projected area, which measure the distribution of connected fracture porosity within the reservoir volume adjacent to the well.

- Matrix block statistics, which measure the distribution and shape of the reservoir matrix which feeds oil to the wells through the fracture network.

Figure 3-87 and Table 3-27 summarize the conductive fracture frequency statistics for each of the eight wells evaluated. Based on these simulations, the mean conductive feature intersection intensity for the most heavily fractured well (W1307) is almost twice as great as that for the least heavily fractured well (W1773). However, this inter-well variability is still within one standard.
deviation for the variability between realizations for a single well. As a result, it is unlikely that conductive intensity will be a good predictor for production.

![10 Simulations per Well](image)

Figure 3-87 Intersection Statistics for Deepening Candidate Wells
Table 3-27 Summary of Intersection Simulations, Yates Deepening Candidates

<table>
<thead>
<tr>
<th>Well</th>
<th>Mean</th>
<th>Median</th>
<th>StDev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1304</td>
<td>2.3</td>
<td>2.5</td>
<td>1.5</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>W1307</td>
<td>3.7</td>
<td>3</td>
<td>1.4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>W1495</td>
<td>2.4</td>
<td>3</td>
<td>1.4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>W14A1</td>
<td>3.2</td>
<td>3</td>
<td>2.3</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>W1663</td>
<td>2.6</td>
<td>3</td>
<td>1.5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>W1773</td>
<td>1.9</td>
<td>2</td>
<td>1.1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>W2513</td>
<td>2.9</td>
<td>2.5</td>
<td>1.4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>W2722</td>
<td>2.5</td>
<td>3</td>
<td>1.2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Intersection intensity P_{10} from Simulations (Conductive fracture intersections per 100 m)

Compartment statistics were analyzed using the methods of LaPointe et al. (1998). For all of the wells analyzed almost the entire reservoir volume in the well vicinity is part of a single large compartment. As a result, the differences between the connectivity of the different well locations is defined by the differences between the compartments which are not part of this single large compartment. Compartment volume statistics were therefore calculated for those compartments of volume less than 50 million m3, and compartment area statistics were calculated for those compartments of projected area less than 200,000 m2.

Table 3-28 and Table 3-29 and Figure 3-88 and Figure 3-89 summarize the results of ten realizations of compartment analysis for well deepening candidate W1304. The projected area and volume vary significantly between realizations. However, the distributions are consistently skewed, with the vast majority of compartments much smaller than the mean, and only a very few compartments of volumes of the same order as the largest compartments. As illustrated in Figure 3-88 and Figure 3-89, the distributions for compartment volume and projected area are both well matched by lognormal distributions. This indicates that in any case there are a significant number of smaller compartments, which should drain relatively quickly, with a few larger compartments, which will provide long-term production.
Table 3-28 Compartment Projected Area Statistics, Well W1304

<table>
<thead>
<tr>
<th>Realization</th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
<th>Mean</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.6</td>
<td>120065</td>
<td>323.0</td>
<td>3732.9</td>
<td>14436.9</td>
</tr>
<tr>
<td>1</td>
<td>5.9</td>
<td>44668.7</td>
<td>554.0</td>
<td>2655.7</td>
<td>6092.3</td>
</tr>
<tr>
<td>2</td>
<td>9.8</td>
<td>187956.6</td>
<td>360.8</td>
<td>6140.8</td>
<td>21802.6</td>
</tr>
<tr>
<td>3</td>
<td>4.6</td>
<td>219962.5</td>
<td>362.8</td>
<td>5783.3</td>
<td>24169.4</td>
</tr>
<tr>
<td>4</td>
<td>9.3</td>
<td>169452.0</td>
<td>459.8</td>
<td>4246.7</td>
<td>17800.4</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
<td>19204.0</td>
<td>734.3</td>
<td>2066.4</td>
<td>3957.3</td>
</tr>
<tr>
<td>6</td>
<td>5.6</td>
<td>115737.5</td>
<td>533.0</td>
<td>3927.5</td>
<td>11843.8</td>
</tr>
<tr>
<td>7</td>
<td>5.9</td>
<td>113578.4</td>
<td>346.3</td>
<td>2754.0</td>
<td>11740.2</td>
</tr>
<tr>
<td>8</td>
<td>3.6</td>
<td>21459.8</td>
<td>296.9</td>
<td>1679.1</td>
<td>3511.8</td>
</tr>
<tr>
<td>9</td>
<td>8.8</td>
<td>214933.1</td>
<td>460.8</td>
<td>6503.6</td>
<td>23095.5</td>
</tr>
<tr>
<td>Mean</td>
<td>5.8</td>
<td>122701.9</td>
<td>443.2</td>
<td>3949.0</td>
<td>13845.0</td>
</tr>
<tr>
<td>StdDev</td>
<td>2.7</td>
<td>75718.6</td>
<td>135.1</td>
<td>1720.1</td>
<td>7778.6</td>
</tr>
</tbody>
</table>

Table 3-29 Compartment Projected Area Statistics, Well W1304

<table>
<thead>
<tr>
<th>Realization</th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
<th>Mean</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.3</td>
<td>3130.6</td>
<td>78.3</td>
<td>220.3</td>
<td>443.4</td>
</tr>
<tr>
<td>1</td>
<td>3.9</td>
<td>1255.8</td>
<td>115.5</td>
<td>209.2</td>
<td>255.7</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
<td>3650.6</td>
<td>87.6</td>
<td>308.2</td>
<td>583.7</td>
</tr>
<tr>
<td>3</td>
<td>3.3</td>
<td>4431.9</td>
<td>97.6</td>
<td>263.3</td>
<td>535.8</td>
</tr>
<tr>
<td>4</td>
<td>5.3</td>
<td>3976.8</td>
<td>106.6</td>
<td>239.2</td>
<td>465.0</td>
</tr>
<tr>
<td>5</td>
<td>3.7</td>
<td>2102.4</td>
<td>121.8</td>
<td>210.0</td>
<td>305.7</td>
</tr>
<tr>
<td>6</td>
<td>3.9</td>
<td>3343.6</td>
<td>111.9</td>
<td>260.4</td>
<td>434.6</td>
</tr>
<tr>
<td>7</td>
<td>3.2</td>
<td>3045.0</td>
<td>76.9</td>
<td>187.8</td>
<td>364.5</td>
</tr>
<tr>
<td>8</td>
<td>2.7</td>
<td>1443.7</td>
<td>90.6</td>
<td>163.8</td>
<td>236.4</td>
</tr>
<tr>
<td>9</td>
<td>3.6</td>
<td>1527.3</td>
<td>94.1</td>
<td>201.9</td>
<td>301.5</td>
</tr>
<tr>
<td>Mean</td>
<td>3.9</td>
<td>2790.8</td>
<td>98.1</td>
<td>226.4</td>
<td>392.6</td>
</tr>
<tr>
<td>StdDev</td>
<td>0.7</td>
<td>1133.6</td>
<td>15.5</td>
<td>42.1</td>
<td>118.5</td>
</tr>
</tbody>
</table>
Figure 3-88 Compartment Volume Distribution, W1304

Figure 3-89 Compartment Projected Area Distribution, W1304
Table 3-30 and Table 3-31 and Figure 3-90 and Figure 3-91 present the compartment volume and projected area statistics for all ten realizations of the eight deepening candidate wells considered. Significant differences in compartment statistics are evident between the wells. In terms of compartment volume (Figure 3-90), well 2722 has the smallest median internal compartment volume, while wells 1663 and 1773 have the largest. This could imply that 2722 has the least amount of reservoir volume tied up in sub compartments, which could drain poorly, reducing production and recovery. Wells 1663 and 1773 have the largest median compartment volume, implying the least amount of reservoir volume isolated in sub-compartments. The difference between the worst case and the best case is on the order of a factor of 3. Results of comparable when expressed in terms of projected area (Figure 3-91).

Table 3-30 Compartment Volume Statistics, Yates Deepening Candidate Wells

<table>
<thead>
<tr>
<th>WELL</th>
<th>Compartmen t Volume m3 (Cutoff 50 million m3)</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>StDev</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>1304</td>
<td>1,274</td>
<td>219,963</td>
<td>37,621</td>
<td>52,983</td>
<td>17,648</td>
<td></td>
</tr>
<tr>
<td>1307</td>
<td>1,747</td>
<td>760,502</td>
<td>70,740</td>
<td>140,494</td>
<td>16,928</td>
<td></td>
</tr>
<tr>
<td>14A1</td>
<td>584</td>
<td>284,088</td>
<td>41,103</td>
<td>60,138</td>
<td>13,247</td>
<td></td>
</tr>
<tr>
<td>1495</td>
<td>1,496</td>
<td>349,058</td>
<td>37,507</td>
<td>64,049</td>
<td>16,511</td>
<td></td>
</tr>
<tr>
<td>1663</td>
<td>1,638</td>
<td>110,669</td>
<td>34,188</td>
<td>33,054</td>
<td>19,809</td>
<td></td>
</tr>
<tr>
<td>1773</td>
<td>1,214</td>
<td>376,169</td>
<td>37,125</td>
<td>57,620</td>
<td>18,871</td>
<td></td>
</tr>
<tr>
<td>2513</td>
<td>2,257</td>
<td>19,033,830</td>
<td>472,060</td>
<td>2,775,766</td>
<td>14,297</td>
<td></td>
</tr>
<tr>
<td>2722</td>
<td>1,242</td>
<td>1,028,226</td>
<td>42,131</td>
<td>144,423</td>
<td>13,141</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-31 Compartment Projected Area Statistics, Yates Deepening Candidate Wells

<table>
<thead>
<tr>
<th>WELL</th>
<th>Compartmen t Projected Area m2 (Cutoff 200,000 m2)</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>StDev</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>1304</td>
<td>443.9</td>
<td>100.5</td>
<td>1197.1</td>
<td>1116.3</td>
<td>879.7</td>
<td></td>
</tr>
<tr>
<td>1307</td>
<td>10400.5</td>
<td>120.1</td>
<td>1629.5</td>
<td>2035.6</td>
<td>938.8</td>
<td></td>
</tr>
<tr>
<td>14A1</td>
<td>7079.5</td>
<td>68.9</td>
<td>1424.6</td>
<td>1634.4</td>
<td>825.7</td>
<td></td>
</tr>
<tr>
<td>1495</td>
<td>4701.3</td>
<td>187.3</td>
<td>1238.9</td>
<td>1083.9</td>
<td>832.6</td>
<td></td>
</tr>
<tr>
<td>1663</td>
<td>3475.0</td>
<td>189.7</td>
<td>1286.5</td>
<td>839.2</td>
<td>995.9</td>
<td></td>
</tr>
<tr>
<td>1773</td>
<td>9586.3</td>
<td>119.1</td>
<td>1329.7</td>
<td>1404.7</td>
<td>953.8</td>
<td></td>
</tr>
<tr>
<td>2513</td>
<td>93618.8</td>
<td>158.1</td>
<td>3462.8</td>
<td>13649.3</td>
<td>826.6</td>
<td></td>
</tr>
<tr>
<td>2722</td>
<td>9329.2</td>
<td>157.1</td>
<td>1082.1</td>
<td>1385.7</td>
<td>716.6</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3-90 Compartment Volume, Yates Deepening Candidates

Figure 3-91 Compartment Projected Area Distribution, Yates Deepening Candidates
Fracture geometry also influences matrix block geometries, which can have a profound influence on fractured reservoir production. The Yates DFN model was used to calculate:

- matrix block volume;
- “sigma factor”, the ratio of the matrix block height to the horizontal cross-sectional area; and
- matrix block aspect ratio.

Matrix block statistics are summarized in Table 3-32 through Table 3-37.

Table 3-32 Matrix Block Volume Statistics

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>StDev</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>1304</td>
<td>0.000</td>
<td>477,638</td>
<td>19,778</td>
<td>42,856</td>
</tr>
<tr>
<td>1307</td>
<td>0.366</td>
<td>889,569</td>
<td>25,175</td>
<td>65,258</td>
</tr>
<tr>
<td>14A1</td>
<td>0.033</td>
<td>419,962</td>
<td>20,636</td>
<td>41,943</td>
</tr>
<tr>
<td>1495</td>
<td>0.047</td>
<td>961,745</td>
<td>23,966</td>
<td>58,473</td>
</tr>
<tr>
<td>1663</td>
<td>0.082</td>
<td>1,378,270</td>
<td>22,274</td>
<td>60,639</td>
</tr>
<tr>
<td>1773</td>
<td>0.009</td>
<td>691,748</td>
<td>22,278</td>
<td>51,717</td>
</tr>
<tr>
<td>2513</td>
<td>0.133</td>
<td>13,380,090</td>
<td>301,526</td>
<td>1,076,394</td>
</tr>
<tr>
<td>2722</td>
<td>0.492</td>
<td>1,580,614</td>
<td>21,680</td>
<td>57,086</td>
</tr>
</tbody>
</table>

Table 3-33 Matrix Block Sigma Factor Statistics

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>StDev</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>1304</td>
<td>0.00223</td>
<td>192,353</td>
<td>8,459</td>
<td>34,730</td>
</tr>
<tr>
<td>1307</td>
<td>0.00142</td>
<td>250,663</td>
<td>6,022</td>
<td>22,007</td>
</tr>
<tr>
<td>14A1</td>
<td>0.00238</td>
<td>66,085</td>
<td>9,278</td>
<td>32,844</td>
</tr>
<tr>
<td>1495</td>
<td>0.00143</td>
<td>316,251</td>
<td>7,512</td>
<td>32,020</td>
</tr>
<tr>
<td>1663</td>
<td>0.00133</td>
<td>137,237</td>
<td>7,468</td>
<td>36,710</td>
</tr>
<tr>
<td>1773</td>
<td>0.00187</td>
<td>2,422,107</td>
<td>100,861</td>
<td>554,222</td>
</tr>
<tr>
<td>2513</td>
<td>0.00141</td>
<td>18,110</td>
<td>7,261</td>
<td>30,642</td>
</tr>
<tr>
<td>2722</td>
<td>0.00127</td>
<td>340,082</td>
<td>260</td>
<td>8,680</td>
</tr>
</tbody>
</table>
Table 3-34 Matrix Block Z/X Ratio Statistics

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>St.Dev</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1304</td>
<td>0.0000</td>
<td>6059.7</td>
<td>13.94</td>
<td>182.45</td>
<td>1.20</td>
</tr>
<tr>
<td>W1307</td>
<td>0.0005</td>
<td>22256.0</td>
<td>20.76</td>
<td>466.75</td>
<td>1.44</td>
</tr>
<tr>
<td>W14A1</td>
<td>0.0003</td>
<td>2337.4</td>
<td>12.08</td>
<td>85.50</td>
<td>1.49</td>
</tr>
<tr>
<td>W1495</td>
<td>0.0004</td>
<td>18022.1</td>
<td>19.03</td>
<td>384.54</td>
<td>1.51</td>
</tr>
<tr>
<td>W1663</td>
<td>0.0007</td>
<td>3907.2</td>
<td>13.41</td>
<td>121.74</td>
<td>1.43</td>
</tr>
<tr>
<td>W1773</td>
<td>0.0003</td>
<td>4074.3</td>
<td>13.25</td>
<td>113.31</td>
<td>1.47</td>
</tr>
<tr>
<td>W2513</td>
<td>0.0003</td>
<td>3493.6</td>
<td>9.85</td>
<td>122.48</td>
<td>0.66</td>
</tr>
<tr>
<td>W2722</td>
<td>0.0001</td>
<td>8751.2</td>
<td>15.57</td>
<td>197.69</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Table 3-35 Matrix Block Aspect Ratio Z/Y Statistics

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>St.Dev</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1304</td>
<td>0.0019</td>
<td>881.8</td>
<td>6.35</td>
<td>30.07</td>
<td>1.373</td>
</tr>
<tr>
<td>W1307</td>
<td>0.0001</td>
<td>9746.8</td>
<td>12.69</td>
<td>199.78</td>
<td>1.631</td>
</tr>
<tr>
<td>W14A1</td>
<td>0.0002</td>
<td>592.0</td>
<td>8.40</td>
<td>33.36</td>
<td>1.576</td>
</tr>
<tr>
<td>W1495</td>
<td>0.0004</td>
<td>5066.2</td>
<td>11.18</td>
<td>115.98</td>
<td>1.486</td>
</tr>
<tr>
<td>W1663</td>
<td>0.0008</td>
<td>1253.6</td>
<td>10.20</td>
<td>54.83</td>
<td>1.728</td>
</tr>
<tr>
<td>W1773</td>
<td>0.0000</td>
<td>5940.8</td>
<td>13.91</td>
<td>152.80</td>
<td>1.497</td>
</tr>
<tr>
<td>W2513</td>
<td>0.0007</td>
<td>2743.6</td>
<td>9.95</td>
<td>88.73</td>
<td>1.234</td>
</tr>
<tr>
<td>W2722</td>
<td>0.0001</td>
<td>1351.4</td>
<td>8.29</td>
<td>39.02</td>
<td>1.475</td>
</tr>
</tbody>
</table>

Table 3-36 Matrix Block Aspect Ratio X/Y Statistics

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>St.Dev</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1304</td>
<td>0.0001</td>
<td>631.4</td>
<td>6.15</td>
<td>26.91</td>
<td>1.187</td>
</tr>
<tr>
<td>W1307</td>
<td>0.0001</td>
<td>4177.5</td>
<td>10.10</td>
<td>126.31</td>
<td>1.096</td>
</tr>
<tr>
<td>W14A1</td>
<td>0.0010</td>
<td>1771.2</td>
<td>6.80</td>
<td>55.95</td>
<td>1.016</td>
</tr>
<tr>
<td>W1495</td>
<td>0.0004</td>
<td>1490.9</td>
<td>8.13</td>
<td>59.13</td>
<td>0.982</td>
</tr>
<tr>
<td>W1663</td>
<td>0.0005</td>
<td>2381.5</td>
<td>9.47</td>
<td>81.43</td>
<td>1.169</td>
</tr>
<tr>
<td>W1773</td>
<td>0.0002</td>
<td>6633.6</td>
<td>11.92</td>
<td>159.33</td>
<td>1.052</td>
</tr>
<tr>
<td>W2513</td>
<td>0.0001</td>
<td>73448.0</td>
<td>113.07</td>
<td>1601.47</td>
<td>1.887</td>
</tr>
<tr>
<td>W2722</td>
<td>0.0001</td>
<td>1330.7</td>
<td>6.02</td>
<td>40.61</td>
<td>0.985</td>
</tr>
</tbody>
</table>
Table 3-37 Ratio of Block Height to Horizontal Area

<table>
<thead>
<tr>
<th>Well</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>St.Dev</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1304</td>
<td>8.71E-05</td>
<td>1089.14</td>
<td>1.94</td>
<td>24.98</td>
<td>0.080</td>
</tr>
<tr>
<td>W1307</td>
<td>1.52E-05</td>
<td>1317.36</td>
<td>2.19</td>
<td>29.23</td>
<td>0.100</td>
</tr>
<tr>
<td>W14A1</td>
<td>5.70E-06</td>
<td>694.57</td>
<td>3.02</td>
<td>28.66</td>
<td>0.099</td>
</tr>
<tr>
<td>W1495</td>
<td>2.13E-05</td>
<td>3921.90</td>
<td>4.42</td>
<td>90.09</td>
<td>0.091</td>
</tr>
<tr>
<td>W1663</td>
<td>2.68E-05</td>
<td>990.07</td>
<td>2.77</td>
<td>28.22</td>
<td>0.101</td>
</tr>
<tr>
<td>W1773</td>
<td>2.48E-05</td>
<td>722.27</td>
<td>2.10</td>
<td>20.04</td>
<td>0.096</td>
</tr>
<tr>
<td>W2513</td>
<td>5.56E-06</td>
<td>453.21</td>
<td>1.37</td>
<td>0.034</td>
<td>14.78</td>
</tr>
<tr>
<td>W2722</td>
<td>3.02E-06</td>
<td>486.51</td>
<td>1.81</td>
<td>0.098</td>
<td>13.55</td>
</tr>
</tbody>
</table>

As shown in Figure 3-92 and Figure 3-93, the rock block volume distributions are similar for wells 1304, 1307, 14A1, 1495, 1663, and 2513. Well 1773 has significantly larger mean and standard deviation of rock block volume, while well 2722 shows significantly smaller mean block volumes. The larger block size of well 1773 might indicate lower initial production, while the smaller block volume of well 2722 might indicate better sustained production. As indicated by the median block size of under 1 m³, the vast majority of blocks for all wells are extremely small for all well regions.

Figure 3-92 Block Volume Statistics
Figure 3-93: Block Volume Distribution
Figure 3-94 Block Sigma Factor Statistics
The rock block sigma factor statistics (Table 3-33, Figure 3-94, and Figure 3-95) are very similar for all wells except for 2513. For most of the wells, the sigma factor follows a roughly normal distribution with a mean of approximately 8,000. In contrast, well 2513 has a mean sigma factor of 100,000 which implies that well 2513 may have lower initial production, and probably should not be high priority for strategic completion.

Median rock block aspect ratios are shown in Figure 3-96. These values were calculated by comparing the X, Y, and Z dimensions for 2500 blocks calculated in the vicinity of each of the eight wells. The ratio of height to either X or Y horizontal extent varies from 1.2 to 1.6. In general, the ratio is higher for Z/Y than for Z/X, implying that the Y dimension is the smallest. For most of the wells, this is confirmed by the ratios for X/Y which are slightly larger than 1.0. The exception is well 2513, in which the X dimension is about twice the Y dimension. At the same time, the Z/X ratio for this well is much smaller than for any other wells, implying that X is much larger than Z. Together, these ratios suggest that the block shape around 2513 is different from the shape for the other wells. The blocks around 2513 have a much greater extent in the X direction.

The distribution of aspect ratio for well W1304 is illustrated in Figure 3-97. Well 1304 is typical of the block shapes in most of the other well regions. In Figure 3-88, the aspect ratios Z/X, Z/Y, and X/Y all appear to follow a lognormal distribution, with a large range. This implies that although the median aspect ratio may be near one, the actual block shapes are more like match...
sticks, with one dimension much larger than the other dimensions. This is confirmed by examining the minimum and maximum aspect ratios in Table 3-34, Table 3-35, and Table 3-36.

The ratio of block height to horizontal area is given in Table 3-37, and Figure 3-98 and Figure 3-99. If we assume that the base of the matrix block can be represented as a square, then values of this ratio close to 0.1 implies a block that is equant in all directions (a sugar cube). Value lower than 0.1 imply a horizontal extent greater than the vertical height. The median statistics suggest this approximately equant shape.

The median block shape for all of the wells except 2513 are fairly consistent and roughly equant, while the vast majority of blocks have Z dimensions either much larger or much smaller than their horizontal dimension. The mean values, which are more impacted by outliers, vary from 2.0 to 4.5. These suggest matrix blocks that are 10 or 20 times as high as wide, and resemble matchsticks. The median block for well 2513 is shorter by a factor of three relative to its height when compared to the other blocks. Interestingly, well 1495 has a considerably larger variability of block shape than the other wells, with a standard deviation and maximum aspect ratio three times larger than that for the other wells. This is seen in the mean aspect ratio (Figure 3-98).

![Matrix Block Median Aspect Ratios](image)

Figure 3-96 Median Block Aspect Ratio
Figure 3-97 Distribution of Block Aspect Ratio

Figure 3-98 Median Ratio of Height to Horizontal Area
3.4.2 Task 3.2 Strategic Plan, Stoney Point Reservoir Improvement

3.4.2.1 Strategic Placement and Water Control

Production problems at Stoney Point are mostly related to lack of understanding of the gas-water-oil contacts within compartments, and particularly the tendency for water breakthrough from overlying strata resulting in high water cuts within the reservoir production wells. The strategy developed for the Stoney Point field was therefore to use the DFN models to determine the sources and connectivity for oil and water phases, and the variation in connectivity within the reservoirs with depth, so that connectivity to overlying aquifers can be minimized.
3.4.2.2 DFN Analysis for IOR Strategic Plan

During this project work was initiated on implementation of Discrete Fracture Network modeling to support IOR strategies for Stoney Point. As part of this effort, compartment volumes and tributary volumes were calculated for the models. This was done using the program FraCluster, which was developed under previous DOE funding (Dershowitz et al., 1998).

A compartment is a region connected by a network of fractures. Relevant information that can be calculated about a compartment are its volume, surface area, and area projected on to a horizontal plane. Tributary volume analysis is a geometric calculation of the volume accessed by a well or set of wells in a fractured reservoir (Figure 3-100). Two different methods provide a maximum and minimum estimate of the volume.

- Hull volume is the volume contained in a convex hull surrounding a fracture network connected to the well. This is a maximum volume because it can include large blocks of matrix between fractures.
- Fracture thickness volume is the volume of a one-meter slab around each fracture connected to the well.

The results of the compartment size and area analysis for the Stoney Point field are shown in Figure 3-101 through Figure 3-103. As shown graphically in Figure 3-101a, at high fracture intensities the fractured reservoir defined by a convex hull includes all three portions of the structural model, from the northern fault through the step-over to the southern fault. This is likely to be too well connected compared to the real reservoir characteristics of Stoney Point. The medium (Figure 3-101b) and lower (Figure 3-101c) intensity models more closely represent the reservoir structure as indicated by reservoir development and well tests. The number of compartments and their projected areas and volumes are graphed in Figure 3-102 and Figure 3-103 and listed in Table 3-38. This analysis shows that at the lowest fracture intensity (0.001) five small compartments form, while at an intensity one order of magnitude higher, one very large compartment forms.

The well configuration shown in Figure 3-104 was assumed for the tributary volume calculations. Vertical wells are 200-m long and spaced 200 m apart (equivalent to about a 10 acre well spacing). Horizontal wells are 50 long and have the same spacing. The graph in Figure 3-105 and Table 3-39 show the insensitivity of the modeled reservoir to well orientation; in only one case did the SE horizontal well intersect fewer compartments than the vertical well. Much more important than well orientation is fracture intensity. Figure 3-106 also clearly demonstrates the importance of fracture intensity for well success. In the top frame 9 out of 12 wells successfully connect into a fracture network. In the bottom frame only four out of 12 simulated wells were successful.
Figure 3-100 Tributary Drainage Volume Algorithms

a) Slab Algorithm

b) Convex Hull Algorithm
Table 3-38 Compartment Area and Volume Analysis, Stoney Point

<table>
<thead>
<tr>
<th>Compartments</th>
<th>Average</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>P32 0.01</td>
<td>9.12e+5</td>
<td>0</td>
<td>9.12e+5</td>
<td>9.12e+5</td>
</tr>
<tr>
<td>P32 0.005</td>
<td>4.68e+5</td>
<td>3.35e+5</td>
<td>1.3e+5</td>
<td>8.1e+5</td>
</tr>
<tr>
<td>P32 0.0025</td>
<td>1.95e+5</td>
<td>2.21e+5</td>
<td>5.6e+4</td>
<td>5.8e+5</td>
</tr>
<tr>
<td>P32 0.001</td>
<td>8.76e+5</td>
<td>3.19e+4</td>
<td>4.1e+4</td>
<td>1.4e+5</td>
</tr>
</tbody>
</table>

Compartments Volumes (m³)

<table>
<thead>
<tr>
<th>Compartments</th>
<th>Average</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>P32 0.01</td>
<td>1.39e+8</td>
<td>0</td>
<td>1.39e+8</td>
<td>1.39e+8</td>
</tr>
<tr>
<td>P32 0.005</td>
<td>6.81e+7</td>
<td>5.18e+7</td>
<td>1.67e+7</td>
<td>1.2e+8</td>
</tr>
<tr>
<td>P32 0.0025</td>
<td>2.95e+7</td>
<td>3.62e+7</td>
<td>6.9e+7</td>
<td>9.3e+7</td>
</tr>
<tr>
<td>P32 0.001</td>
<td>1.07e+7</td>
<td>4.33e+6</td>
<td>3.8e+6</td>
<td>1.7e+7</td>
</tr>
</tbody>
</table>

Table 3-39 Tributary Volume Analysis, Stoney Point

<table>
<thead>
<tr>
<th>Tributary Volumes (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P32 0.01</td>
</tr>
<tr>
<td># Compts.</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Volumes (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P32 0.005</td>
</tr>
<tr>
<td># Compts.</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Volumes (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P32 0.0025</td>
</tr>
<tr>
<td># Compts.</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Volumes (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P32 0.001</td>
</tr>
<tr>
<td># Compts.</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Figure 3-101 Compartments in Stoney Point DFN
Figure 3-102 Projected Areas of Compartments
Figure 3.103: Volumes of Compartments in Stony Point Model
Figure 3-104 Well Configuration for Tributary Volume Analysis of Stoney Point Model
Figure 3-105 Tributary Volumes of Stoney Point Model
Figure 3-106 Well Pattern and Tributary Volumes Intersected in Stoney Point Model
3.4.3 Task 3.3 Strategic Plan: South Oregon Basin Reservoir Improvement

3.4.3.1 DFN Strategy for IOR

The IOR issue at South Oregon Basin relates to bypassed oil in the uppermost Phosphoria. Oil saturation in the upper Phosphoria is 80\% whereas in the lower part of the formation saturation is as low as 30-40\%. The perceived connectivity problem in the upper Phosphoria (B. Curran, pers. comm.) is that the pores are unconnected except by fractures. The engineering solution to this problem is more strategic well placements.

In the first progress report (Dershowitz, 1999) Golder identified that the primary tasks for South Oregon Basin would be “carrying out compartment and tributary volume calculations including a range of oriented well locations.” Table 3-40 lists these engineering questions and the respective DFN solutions as well as other possible questions and solutions that we anticipate will be addressed in the future.

Table 3-40 IOR Engineering Issues, South Oregon Basin

<table>
<thead>
<tr>
<th>Engineering operation or question</th>
<th>DFN tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well orientation and placement to maximum horizontal connection</td>
<td>Compartment and tributary volume calculations in FracCluster</td>
</tr>
<tr>
<td>Surface area to volume for gel (WALRUS) treatment</td>
<td>Flow dimensional analysis</td>
</tr>
<tr>
<td>What is the flow dimension of the fracture network in the Phosphoria?</td>
<td>Flow solution and particle tracking in MAFIC</td>
</tr>
<tr>
<td>Can tracer tests which show NNE permeability trends be used for model calibration?</td>
<td></td>
</tr>
</tbody>
</table>

3.4.3.2 DFN Analysis for Strategic Plan

Strategic plan DFN modeling for the South Oregon Basin concentrated on the development of approaches for simulation of gel treatments. Discrete fracture network models can be used to directly model this entire process. First, the DFN model is derived and implemented based on site characterization data. The procedures for this are described in Dershowitz (1995). For the South Oregon basin, this model needs to combine

- deterministic features, including seismically detected structures and stratigraphic contacts,
- conditioned fractures, such as features identified in flow and FMI logs, and
- stochastic features, based purely on statistical information.

The region being modeled for assessment of gel treatment is illustrated in Figure 3-107. This figure includes an overlay of seismic features and structural contours.

The total volume of gel which can be taken by the grout injection at Connaghan 13 will be estimated by network analysis of the fractures intersecting the well. (Figure 3-108). In this
analysis, a graph theory search is used to search back into the fracture network from the well. The gel injection propagates into the fracture network according the heuristic rules which consider the fracture aperture, pressure, and phase composition of the fractures. The gel injection into the well proceeds until the gel reaches a prescribed limit. This provides an estimate for the gel injection volume to be expected.

The effect of gel treatment on the reservoir hydraulics is analyzed using a combination of flow modeling and pathways analysis. The permeability of each of the elements containing gel is set to zero as illustrated in Figure 3-109. This re-directs the pathways for water breakthrough to the production wells. The effect of gel treatment on production can be assessed by calculating the water saturated pathways to the production wells before and after the gel treatment.

Figure 3-107 South Oregon Basin Gel Treatment Analysis Region
Connectivity analyses were carried out using the DFN model developed above. These models focused on the "percolation threshold", which defines the transition in connectivity with increases in fracture intensity. Results of this compartmentalization analysis are shown in Figure 3-110 and summarized in Table 3-41. At low fracture intensities ($P_{32} < 0.2 \text{ m}^{-1}$), the fractures do not connect into any significant compartments. At high fracture intensities ($P_{32} > 0.4 \text{ m}^{-1}$), the fractures connect the entire volume around the well. The transition from unconnected fractures to fully connected fractures is called the percolation threshold. For the South Oregon Basin Phosphoria model, this occurs near 0.3 m2/m3.
Table 3-41 Compartment Area and Volume Analysis, South Oregon Basin

<table>
<thead>
<tr>
<th>P_{32}</th>
<th># Compts</th>
<th>Average</th>
<th>Std. Dev</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>5</td>
<td>482</td>
<td>343</td>
<td>180</td>
<td>1000</td>
</tr>
<tr>
<td>0.3</td>
<td>16</td>
<td>471</td>
<td>403</td>
<td>120</td>
<td>1500</td>
</tr>
<tr>
<td>0.4</td>
<td>10</td>
<td>686</td>
<td>1170</td>
<td>110</td>
<td>3848</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>1984</td>
<td>2636</td>
<td>120</td>
<td>3848</td>
</tr>
<tr>
<td>0.8</td>
<td>2</td>
<td>1984</td>
<td>2636</td>
<td>120</td>
<td>3848</td>
</tr>
</tbody>
</table>

In order to assess the importance of well orientation on fracture volumes intersected, three wells were simulated: a SE-trending horizontal well, a NE-trending horizontal well, and a vertical well. The results of the tributary volume analysis are shown graphically in Figure 3-111 and Figure 3-112, and are summarized in Figure 3-113 and Table 3-42. At low fracture intensity ($P_{32}=0.2$ m$^{-1}$) there are five compartments formed in the region surrounding the wells; however, none are intersected by the three perpendicular wells. In one instance in Figure 3-110, the well intersects the convex hull of a fracture network, but no fracture in that network intersects the well. If this geometry were the case in a real well, induced fracturing would prove very successful by making the connection to the fracture cluster. At a slightly higher fracture intensity ($P_{32}=0.3$ m$^{-1}$), large, vertical NE-SW trending compartments are formed. Because of their orientation, the SE-NW horizontal well, intersects the greatest fracture volume (Figure 3-113). The lower half of Figure 3-59 shows the difference between the hull volume and slab volume methods of calculating tributary drainage. The hull volume could be used to calculate the total oil accessible to a well. The flow from the matrix blocks into the fractures would depend upon the matrix permeability (due either to connected pores or microfracturing). The fracture slab volume is roughly 10% of the hull volume (Figure 3-113). This volume would correspond to the volume of injected fluids necessary for tracer tests and gel treatments. Table 3-43 summarizes the preliminary conclusions, which can be drawn from the cluster analysis of the Phosphoria formation at South Oregon Basin.
Table 3-42 Tributary Volume Analysis, South Oregon Basin

<table>
<thead>
<tr>
<th>Vertical well Tributary Volumes</th>
<th>Hull volumes</th>
<th>Volumes from fracture thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{32}</td>
<td># compts.</td>
<td>mean</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>50100</td>
</tr>
<tr>
<td>0.4</td>
<td>2</td>
<td>134000</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>397000</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>420000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H1 well Tributary Volumes</th>
<th>Hull volumes</th>
<th>Volumes from fracture thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{32}</td>
<td># compts.</td>
<td>mean</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>3</td>
<td>30000</td>
</tr>
<tr>
<td>0.4</td>
<td>2</td>
<td>134000</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>397000</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>420000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H2 well Tributary Volumes</th>
<th>Hull volumes</th>
<th>Volumes from fracture thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{32}</td>
<td># compts.</td>
<td>mean</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>50100</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>267000</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>397000</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>420000</td>
</tr>
</tbody>
</table>

Table 3-43 Implications of Tributary Volume Analysis, South Oregon Basin

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Uncertainties or assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the Phosphoria break into compartments at the well scale?</td>
<td>Yes, if conductive fracture intensity is less than 25% of the geologic intensity ($P_{32} < 0.4 \text{ m}^{-1}$)</td>
<td>Fracture size</td>
</tr>
<tr>
<td>Minimum volume of surfactant to inject?</td>
<td>~1,000,000 gallons 264^* m^3</td>
<td>$P_{32}=0.3 \text{ m}^{-1}$ and assuming 1 m penetration around each fracture</td>
</tr>
</tbody>
</table>
Figure 3-110 South Oregon Basin Compartmentalization Analysis
Figure 3-111 Tributary Volumes in South Oregon Basin Model for $P_{32} = 0.2$ Model
Figure 3-112 Tributary Volumes in South Oregon Basin Model for \(P_{32} = 0.3 \) Model
Figure 3-113 South Oregon Basin Tributary Volume Analysis
3.4.4 Task 3.4 Strategic Plan : North Oregon Basin Reservoir Improvement

Water injection is being used extensively in the North Oregon Basin Tensleep study site. The DFN model of the North Oregon basin will be used to evaluate the possible pathways for water migration from the Sidney #20 "C" zone horizontal well into the reservoir and affecting offsets (Figure 3-114). Results from this DFN modeling will be compared to field measurements to determine whether the DFN model is successful in assessing the well-connected high-conductivity fracture clusters.

The strategic plan for the North Oregon Basin will also include analysis of hydraulic compartment connectivity to specific wells to evaluate gel-squeezes of injectors vs. producers and the utility of horizontal wells in the Tensleep formation.

3.4.4.1 Gel Treatment DFN Analysis

The IOR issues at the North Oregon Basin relate to bypassed oil in the “ABC” sandstones of the upper Tensleep. Dolomite intrabeds, water-filled fractures, deformation bands, and dune cross-bedding all create horizontal compartments in the upper Tensleep reservoir (Table 3-44). Breaches of the horizontal compartments occur where fracturing in the dolomite intrabed between the C and D sandstone allows communications across the dolomites. These vertical connections allow coning from the lower Tensleep, which has a much higher, water-cut than the upper Tensleep. Engineering solutions to these problems are (Dershowitz et al. 1999);

- Targeting of water injection for waterfloods,
- Horizontal drilling to connect low recovery portions of the reservoir, and
• Gel placement to reduce water cycling.

Table 3-44 IOR Engineering Issues at North Basin

<table>
<thead>
<tr>
<th>IOR Problem</th>
<th>DFN Strategic Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractures in dolomites connect upper and lower Tensleep</td>
<td>Calculate pore volume and connectivity of lower and upper Tensleep for gel treatment design</td>
</tr>
<tr>
<td>Baffles due to crossbedding and deformation bands create compartments in ABC Tensleep sands</td>
<td>Determine optimal drilling directions to connect compartments</td>
</tr>
<tr>
<td>Water-filled fractures create compartments</td>
<td></td>
</tr>
</tbody>
</table>

Like the South Oregon Basin DFN model of the Phosphoria formation the preliminary DFN model of the Tensleep formation at North Oregon basin was used to evaluate compartment size and locations distributions, and to calculate tributary volumes for specific well patterns. These results can be used to estimate the at-well connectivity of the reservoir and the volumes of water or gel injection necessary to achieve IOR objectives.

The results of the compartment area and volume analyses are illustrated in Figure 3-115 and summarized in Figure 3-116 and Table 3-45. Like the South Oregon Basin Phosphoria model, the percolation limit of the North Oregon Basin Tensleep model occurs near 0.3 m3/m3. Unlike the Phosphoria model, compartments in the Tensleep are horizontal due to the dolomite layering, rather than vertical.

Figure 3-117 and Figure 3-118 illustrate tributary drainage volumes for different well configurations. Figure 3-117 shows tributary volumes for a NE trending horizontal well, and Figure 3-118 shows tributary drainage volumes for a system of vertical and horizontal wells. Figure 3-119 and Table 3-46 summarize the results of this analysis. The shape and size of these wells can be used to assist in the design of strategic completions and well locations.

Table 3-45 Compartment Area and Volume Analysis, North Oregon Basin

<table>
<thead>
<tr>
<th>Projected Compartment Areas (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P$_{32}$</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Projected Compartment Volumes (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P$_{32}$</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 3-46 Tributary Volume Analysis, North Oregon Basin

<table>
<thead>
<tr>
<th>SE. Horizontal well</th>
<th>Hull Volumes</th>
<th>Volumes from fracture thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>P$_{32}$ number of</td>
<td>mean</td>
<td>stdev</td>
</tr>
</tbody>
</table>

198
<table>
<thead>
<tr>
<th>compartments</th>
<th>NE Horizontal well Tributary Volumes</th>
<th>hull volumes</th>
<th>volumes from fracture thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0</td>
<td>9100 4550 4400 15000</td>
<td>2010 1170 920 3700</td>
</tr>
<tr>
<td>0.4</td>
<td>3</td>
<td>154000 0 154000 154000</td>
<td>48400 0 48400 48400</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>156000 0 156000 156000</td>
<td>60200 0 60200 60200</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>156000 0 156000 156000</td>
<td>60200 0 60200 60200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P_{32} number of compartments</th>
<th>mean</th>
<th>stdev</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>stdev</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>3</td>
<td>6150 4180 530 11000</td>
<td>1270 743 220 1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>154000 0 154000 154000</td>
<td>48400 0 48400 48400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>156000 0 156000 156000</td>
<td>60200 0 60200 60200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical well Tributary Volumes</th>
<th>hull volumes</th>
<th>volumes from fracture thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>0 15300 15300 15300</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>0 154000 154000 154000</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>0 156000 156000 156000</td>
</tr>
</tbody>
</table>
Figure 3-115 Compartments in North Oregon Basin Model with $P_{32}=0.2$
Figure 3-116 North Oregon Basin Compartmentalization Analysis
Figure 3-117 North Oregon Basin Model with $P_{32} = 0.2$
Figure 3-118 Side View of Tributary Volumes of Vertical and Horizontal Wells in North Oregon Basin Model with $P_{32} = 0.2$
Figure 3-119 North Oregon Basin Trunkline Volume Analysis

Graph: (a) Average Compartment volume intersected by Wells (m^3) vs. Average Compartment volume (m^3). (b) Volumes of intersected Compartments vs. Fracture Density (m^3). (c) Number of Compartments vs. Fracture Density (m^3).
Table 3-47 summarizes the preliminary conclusions, which can be drawn from the cluster analysis of the North Oregon Basin.

Table 3-47 Implications of Tributary Volume Analysis, North Oregon Basin

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Uncertainties or assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the Tensleep break into fracture compartments at the well scale?</td>
<td>Yes, if conductive fracture intensity is less than 75% of the geologic intensity (P_{32}<0.6 m^{-1})</td>
<td>Fracture size</td>
</tr>
<tr>
<td>What is the best well orientation to minimize gel volume?</td>
<td>NE Horizontal</td>
<td></td>
</tr>
<tr>
<td>What is the minimum volume of surfactant to inject?</td>
<td>~340,000 gallons 264 gallons/m³</td>
<td>P_{32}=0.4 m^{-1} and assuming 1 m penetration around each fracture</td>
</tr>
</tbody>
</table>

3.5 Task 4: Application Tasks

3.5.1 Task 4.1 Reservoir IOR Demonstration, Yates Field

3.5.1.1 Introduction to Strategic Completion Analysis

An extensive study was carried out to support the use of strategic completion for IOR in the Yates field. The goal of this study is to help identify possible areas where new completions might yield the best production. A part of the strategy to delineate promising areas involves estimation of what areas appear to have fracture characteristics favorable to production. Five wells in the Tract 17 area (1304, 1307, 1495, 2513 and 2722) have production information that can be compared to fracture network characteristics. This makes it possible to look for a relation between fracturing and favorable production characteristics.

However, even if a useful predictive relation is found, there needs to be a method of evaluating whether this relation is likely to hold elsewhere in the field. A necessary, though not sufficient, condition for the relations to persist throughout the area of interest is that the controls on matrix block parameters are similar. For example, it may be that in the five test wells, low values of block height to block width ratios are generally due to increased spacing of subvertical fractures, and not due to a decrease in subhorizontal fracture spacings. However, in some areas of the field, it might be found that low values of block height to block width are strongly correlated with decreased subhorizontal fracture spacings. In this case, it would be riskier to assume that the production characteristics related to low block height to block width ratios in the five test wells would also correspond to the low values of the ratio in this other area.

A way to evaluate whether the matrix block characteristics that appear to be associated with desirable production characteristics in the five test wells are generally seen in the surrounding areas is to explore the statistical correlation structure of the matrix block parameters for the five-well test set and for the full well test set. For example, a high negative correlation between block height to width ratio to vertical fracture spacing in the test set would be compared with the full
well set results. If a similarly high negative correlation were found, then the assumption would be that the reasons for low ratio were the same, and the production characteristics associated with this ratio could be inferred with some confidence. If, on the other hand, the correlation in the full test set was not significant with vertical fracture spacing, but positively correlated with the spacing of one or more subvertical fracture sets, then this would indicate that inference of the production characteristics associated with block height to block width ratio is more uncertain.

3.5.1.2 Strategic Completion Modeling

The strategic completion modeling carried out using the Yates Field Tract 17 DFN Model, developed during the first half of 2000, was adapted to support IOR activities. The parameters for this model are summarized in Table 3-48.

To obtain a statistical understanding of the connectivity pattern of the field, 100 realizations were run. Each of these model realizations was processed to obtain the spatial distribution of matrix block shape parameters. It is hoped that the correlation between these matrix block shape parameters and the well test results will provide a basis for strategic completion design.

The matrix block shape parameters are listed in Table 3-49.

The values for each parameter are calculated from fracture spacing histograms calculated in three orthogonal directions for the region measuring 100 m by 100 m in horizontal extent centered on each well. The spacing histograms are computed by projecting lines through the DFN model, and recording the intersection points to each successive fracture. The intersection points are used to determine the spacing values.

The lines are located with uniform probability throughout the DFN model region. One hundred lines were generated for each direction for each model. This typically produced spacing histograms for each direction consisting of hundreds of spacing values. To compute the various matrix block shape parameters shown in Table 3-49, uniformly random draws were made from each relevant spacing distribution. For a particular DFN model, this procedure made it possible to calculate, through random sampling, a distribution of values for each matrix block shape parameter. As a result, it was possible to calculate various statistical parameters from the results. These consisted of the minimum and maximum values, and the mean, median and standard deviation for each individual DFN model realization.
Table 3-48 Conditioned DFN Model for TAGS Support Simulations (Extended Tract 17 Model)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Features</td>
<td>Large scale deterministic faults are not considered. Fractures representing features located during well logging are modeled by conditional simulation with correlation to curvature and shale content.</td>
</tr>
<tr>
<td>Orientation Distributions</td>
<td>The stochastic fracture orientation is correlated to curvature as described in Table 3-1 of Dershowitz et al., 1998</td>
</tr>
<tr>
<td>Size Distribution</td>
<td>Power Law distribution $D=1.81$, minimum radius is 1 ft, truncated between 1 m and 100 m. (Dershowitz et al., 1998)</td>
</tr>
<tr>
<td>Intensity (Stochastic Fractures)</td>
<td>Intensity of stochastic fractures I_{32} is 0.105 to 0.21 m2/m3, depending on shale content and porosity. This corresponds to a vertical well fracture intensity of $1/30$ to $1/60$ m.</td>
</tr>
<tr>
<td>Transmissivity</td>
<td>Lognormal distribution, mean = 4.44×10^{-4} m2/s, standard deviation = 1.923×10^{-3} m2/s</td>
</tr>
<tr>
<td>Aperture</td>
<td>Correlated to fracture transmissivity using the cubic law, such that $a = 0.011T^{0.33}$</td>
</tr>
<tr>
<td>Model Dimensions and Boundary Conditions</td>
<td>Model is approximately 500 m by 500 m by 500 m, centered around each well.</td>
</tr>
</tbody>
</table>

Table 3-49: Variable name acronyms and calculation definitions for matrix block shape factors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>How Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_x</td>
<td>The dimension of the matrix block in the east-west direction, measured in meters</td>
</tr>
<tr>
<td>S_y</td>
<td>The dimension of the matrix block in the north-south direction, measured in meters</td>
</tr>
<tr>
<td>S_z</td>
<td>The vertical height of the matrix block, measured in meters</td>
</tr>
<tr>
<td>X/Y</td>
<td>The ratio of the two horizontal dimensions, calculated as S_x/S_y</td>
</tr>
<tr>
<td>Z/X</td>
<td>The ratio of the vertical dimension to the east-west dimension, calculated as S_z/S_x</td>
</tr>
<tr>
<td>Z/Y</td>
<td>The ratio of the vertical dimension to the north-south dimension, calculated as S_z/S_y</td>
</tr>
<tr>
<td>Z/A</td>
<td>The ratio of the vertical matrix block height to the horizontal cross-sectional area, measured in meters</td>
</tr>
<tr>
<td>Z/H</td>
<td>The ratio of the vertical matrix block height to the average horizontal dimension, measured in meters. The average horizontal dimension is computed as the average of S_x and S_y.</td>
</tr>
<tr>
<td>Sigma</td>
<td>The sigma factor, defined as $\sigma = 4 \left(\frac{1}{S_x^2} + \frac{1}{S_y^2} + \frac{1}{S_z^2} \right)^{-1/2}$</td>
</tr>
</tbody>
</table>

Since there were multiple realizations of the underlying DFN model, there were multiple values of median, mean, etc for each shape parameter for each well location. The statistics such as mean or median pertain to the properties of the many matrix blocks in the near-well region for a single DFN model realization.

3.5.1.3 Well Productivity Correlation

The most important aspect of this study is in establishing a correlation between the 18 matrix block shape measures (mean and median of the 9 factors) identified in Table 3-49 and well
productivity. Table 3-50 summarizes the correlations among the 18 matrix block shape factors for the five wells (1304, 1307, 1495, 2513, and 2722). Generally, mean and median sigma factors are negatively correlated with fracture spacing, as would be expected, since sigma factor is inversely proportional to the square of the fracture spacing. The median sigma factor is negatively correlated to all fracture spacings, whereas the mean sigma factor is far more strongly correlated to X (east-west) spacings than to spacings in the other directions. Mean sigma factor may be somewhat unique among all of the 18 shape parameters, in that it is the most sensitive to outliers. Thus, correlations to the mean sigma factor may not be as meaningful as the correlations to the median sigma factor.

The sigma factor is also positively correlated to the two ratios that describe matrix block height to matrix block width or cross-sectional area (z2h and z2a, respectively). This suggests that high values of sigma factor correspond to matrix blocks that are much taller than they are wide. The most significant correlation between median sigma factor and any matrix block shape parameter is with the height to the east-west dimension (z2x). Its coefficient (0.892) is significant at $\alpha = 0.05$. It is also positively correlated with other measures (for example, z2y) of block height to horizontal dimension.

The next analyses looks at whether the correlation structure seen among the 18 parameters in the five test well DFN models persists in the much larger area. Table 3-51 shows the correlation coefficients among the 18 matrix block shape measures for the surrounding wells. The shape measures z2a and z2h correlate well with both decreased north-south and east-west fracture spacing, and with blocks that are taller than they are wide, as did the test well set data. There are significant positive correlations with fracture spacing in the vertical direction for z2a and z2h for the total data set, and also to ratios such as z2x and z2y. This suggests that the factors that lead to tall blocks are in general related to decreased fracture spacings in the horizontal directions, and slightly increased fracture spacing in the vertical direction. The strong, statistically significant correlations between median z2x and z2y ratios with median z2h and z2a ratios suggest that it is a decrease in the vertical fracture intensity that produces tall blocks, rather than an increase in fracture spacing in the vertical direction. This is the same pattern that is shown for the five well test set correlation matrix (Table 3-50).

Thus, comparison of the correlation coefficients suggests that the relations between production characteristics and the matrix block shape parameters found in the five test wells is likely to be useful in other areas of the model.

Table 3-52 and Table 3-53 present the correlations and the correlation significance between well productivity and matrix block shape measures for the five wells 1304, 1307, 1495, 2513, and 2722. Correlations are sorted by the magnitude of correlation, from most positive to most negative. Although many matrix block shape parameters show what appear to be strong negative or positive correlations, the low number of samples (5) makes all but the correlation with mean sigma factor insignificant at the $\alpha = 0.05$ level. Two additional parameters, although not significant at the 0.05 level, may still be important and provide insight into what factors control the sigma factor; these are the mean block height to cross-sectional area (z2a mean) and the median ratio between the vertical set spacings (z2y median).

Productivity appears to correlate to a general decrease in fracture spacings, especially when the resulting matrix blocks are relatively taller than they are wide. Favorable areas for strategic completion may be where fracture spacings in one or both of the horizontal directions is relatively low, and high ratios of z2h or z2a occur (along with larger values of sigma factor). Attractive
areas may also be identified by the confluence of lower fracture spacings and values of z_2a, z_2h
or sigma factor that reflect blocks that are taller than they are wide.
Table 3-50: Correlation coefficients for the fracture models surrounding the five wells: 1304, 1307, 1495, 2513 and 2722

	X Spacing Mean	X Spacing Median	Y Spacing Mean	Y Spacing Median	Z Spacing Mean	Z Spacing Median	Z to H Mean	Z to H Median	Z to A Mean	Z to A Median	X to Y Mean	X to Y Median	Z to X Mean	Z to X Median	Z to Y Mean	Z to Y Median	Sigma Factor Mean	Sigma Factor Median		
X Spacing Mean	1.000																			
X Spacing Median	0.896	1.000																		
Y Spacing Mean	0.991	0.869	1.000																	
Y Spacing Median	0.825	0.746	0.750	1.000																
Z Spacing Mean	0.946	0.736	0.924	0.884	1.000															
Z Spacing Median	0.376	-0.011	0.466	0.050	0.456	1.000														
Z to H Mean	-0.924	-0.913	-0.935	-0.680	-0.777	-0.329	1.000													
Z to H Median	-0.890	-0.852	-0.893	-0.765	-0.800	-0.328	0.969	1.000												
Z to A Mean	-0.735	-0.934	-0.734	-0.457	-0.491	0.096	0.820	0.687	1.000											
Z to A Median	-0.906	-0.809	-0.930	-0.657	-0.802	-0.503	0.975	0.972	0.682	1.000										
X to Y Mean	-0.583	-0.336	-0.539	-0.650	-0.759	-0.275	0.228	0.124	0.238	1.000										
X to Y Median	-0.310	0.085	-0.308	-0.455	-0.551	-0.662	0.164	0.336	-0.399	0.347	0.450	1.000								
Z to X Mean	-0.883	-0.770	-0.920	-0.585	-0.773	-0.569	0.960	0.943	0.665	0.995	0.213	0.340	1.000							
Z to X Median	-0.897	-0.883	-0.896	-0.737	-0.775	-0.292	0.984	0.996	0.746	0.972	0.194	0.253	0.945	1.000						
Z to Y Mean	-0.946	-0.954	-0.911	-0.829	-0.863	-0.087	0.848	0.790	0.833	0.763	0.603	0.065	0.723	0.808	1.000					
Z to Y Median	-0.916	-0.918	-0.907	-0.774	-0.795	-0.237	0.983	0.990	0.778	0.956	0.243	0.219	0.924	0.996	0.853	1.000				
Sigma Factor Mean	-0.224	-0.579	-0.218	0.008	0.053	0.493	0.337	0.150	0.809	0.138	-0.155	-0.857	0.130	0.235	0.448	0.280	1.000			
Sigma Factor Median	-0.773	-0.478	-0.831	-0.465	-0.780	-0.863	0.750	0.750	0.335	0.863	0.386	0.614	0.892	0.726	0.534	0.692	-0.220	1.000		

H0: The two parameters are not correlated.

Entries in RED indicate negative correlations that are significant at the 95% level
Entries in BLUE indicate positive correlations that are significant at the 95% level
All other entries are NOT significant at the 95% level
Table 3-51: Correlation coefficients for the fracture models surrounding all wells.

<table>
<thead>
<tr>
<th></th>
<th>X Spacing Mean</th>
<th>X Spacing Median</th>
<th>Y Spacing Mean</th>
<th>Y Spacing Median</th>
<th>Y Spacing Mean</th>
<th>Y Spacing Median</th>
<th>Z Spacing Mean</th>
<th>Z Spacing Median</th>
<th>Z to H Mean</th>
<th>Z to H Median</th>
<th>Z to A Mean</th>
<th>Z to A Median</th>
<th>X to Y Mean</th>
<th>X to Y Median</th>
<th>Z to X Mean</th>
<th>Z to X Median</th>
<th>Z to Y Mean</th>
<th>Z to Y Median</th>
<th>Sigma Factor Mean</th>
<th>Sigma Factor Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Spacing Mean</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>X Spacing Median</td>
<td>0.915</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Y Spacing Mean</td>
<td>0.894</td>
<td>0.816</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Y Spacing Median</td>
<td>0.844</td>
<td>0.794</td>
<td>0.936</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Z Spacing Mean</td>
<td>0.066</td>
<td>0.056</td>
<td>0.070</td>
<td>0.081</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Z Spacing Median</td>
<td>0.086</td>
<td>0.085</td>
<td>0.092</td>
<td>0.100</td>
<td>0.844</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Z to H Mean</td>
<td>-0.691</td>
<td>-0.649</td>
<td>-0.725</td>
<td>-0.675</td>
<td>0.122</td>
<td>0.092</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Z to H Median</td>
<td>-0.784</td>
<td>-0.708</td>
<td>-0.807</td>
<td>-0.716</td>
<td>0.252</td>
<td>0.233</td>
<td>0.855</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Z to A Mean</td>
<td>-0.003</td>
<td>-0.007</td>
<td>-0.021</td>
<td>-0.035</td>
<td>0.014</td>
<td>0.004</td>
<td>0.306</td>
<td>0.026</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Z to A Median</td>
<td>-0.757</td>
<td>-0.696</td>
<td>-0.792</td>
<td>-0.716</td>
<td>0.041</td>
<td>0.032</td>
<td>0.878</td>
<td>0.941</td>
<td>0.034</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>X to Y Mean</td>
<td>0.031</td>
<td>0.019</td>
<td>0.045</td>
<td>0.063</td>
<td>-0.049</td>
<td>-0.031</td>
<td>-0.039</td>
<td>-0.056</td>
<td>0.164</td>
<td>-0.049</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X to Y Median</td>
<td>0.206</td>
<td>0.256</td>
<td>-0.173</td>
<td>-0.244</td>
<td>-0.037</td>
<td>-0.026</td>
<td>0.046</td>
<td>-0.014</td>
<td>0.097</td>
<td>0.005</td>
<td>-0.041</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z to X Mean</td>
<td>-0.126</td>
<td>-0.118</td>
<td>-0.080</td>
<td>-0.060</td>
<td>0.096</td>
<td>0.127</td>
<td>0.148</td>
<td>0.142</td>
<td>0.057</td>
<td>0.123</td>
<td>-0.010</td>
<td>-0.127</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z to X Median</td>
<td>-0.783</td>
<td>-0.742</td>
<td>-0.694</td>
<td>-0.611</td>
<td>0.214</td>
<td>0.191</td>
<td>0.797</td>
<td>0.913</td>
<td>0.001</td>
<td>0.892</td>
<td>-0.050</td>
<td>-0.286</td>
<td>0.150</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z to Y Mean</td>
<td>0.024</td>
<td>0.012</td>
<td>0.042</td>
<td>0.065</td>
<td>-0.044</td>
<td>-0.027</td>
<td>-0.034</td>
<td>-0.005</td>
<td>0.242</td>
<td>-0.046</td>
<td>0.926</td>
<td>-0.049</td>
<td>-0.018</td>
<td>-0.046</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z to Y Median</td>
<td>-0.669</td>
<td>-0.599</td>
<td>-0.802</td>
<td>-0.734</td>
<td>0.269</td>
<td>0.197</td>
<td>0.838</td>
<td>0.925</td>
<td>0.061</td>
<td>0.904</td>
<td>-0.058</td>
<td>0.262</td>
<td>0.107</td>
<td>0.745</td>
<td>-0.055</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma Factor Mean</td>
<td>-0.041</td>
<td>-0.045</td>
<td>-0.020</td>
<td>-0.028</td>
<td>0.073</td>
<td>0.098</td>
<td>0.039</td>
<td>0.015</td>
<td>0.001</td>
<td>-0.002</td>
<td>-0.028</td>
<td>0.557</td>
<td>0.018</td>
<td>0.001</td>
<td>0.020</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma Factor Median</td>
<td>-0.542</td>
<td>-0.521</td>
<td>-0.567</td>
<td>-0.541</td>
<td>-0.419</td>
<td>-0.377</td>
<td>0.651</td>
<td>0.547</td>
<td>0.037</td>
<td>0.735</td>
<td>-0.003</td>
<td>0.109</td>
<td>0.563</td>
<td>0.069</td>
<td>0.552</td>
<td>-0.019</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H₀: The two parameters are not correlated.

Entries in RED indicate negative correlations that are significant at the 95% level.
Entries in BLUE indicate positive correlations that are significant at the 95% level.
All other entries are NOT significant at the 95% level.
Table 3-52 Correlation coefficients with barrels of fluid per day for the five wells 1304, 1307, 1495, 2513 and 2722

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Correlation Coefficient with BFPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma Mean</td>
<td>0.891</td>
</tr>
<tr>
<td>z2a Mean</td>
<td>0.707</td>
</tr>
<tr>
<td>z2y Mean</td>
<td>0.558</td>
</tr>
<tr>
<td>Sz Median</td>
<td>0.531</td>
</tr>
<tr>
<td>x2y Mean</td>
<td>0.246</td>
</tr>
<tr>
<td>z2h Mean</td>
<td>0.219</td>
</tr>
<tr>
<td>z2y Median</td>
<td>0.189</td>
</tr>
<tr>
<td>z2x Median</td>
<td>0.115</td>
</tr>
<tr>
<td>z2h Median</td>
<td>0.046</td>
</tr>
<tr>
<td>z2a Median</td>
<td>0.015</td>
</tr>
<tr>
<td>z2x Mean</td>
<td>-0.011</td>
</tr>
<tr>
<td>Sz Mean</td>
<td>-0.116</td>
</tr>
<tr>
<td>Sy Median</td>
<td>-0.180</td>
</tr>
<tr>
<td>Sy Mean</td>
<td>-0.244</td>
</tr>
<tr>
<td>Sigma Median</td>
<td>-0.269</td>
</tr>
<tr>
<td>Sx Mean</td>
<td>-0.284</td>
</tr>
<tr>
<td>Sx Median</td>
<td>-0.561</td>
</tr>
<tr>
<td>x2y Median</td>
<td>-0.722</td>
</tr>
</tbody>
</table>

H0: The two parameters are not correlated.
Entries in RED indicate negative correlations that are significant at the 95% level
Entries in BLUE indicate positive correlations that are significant at the 95% level
All other entries are NOT significant at the 95% level
Table 3-53: Probability (p-values) for the regression coefficients between independent matrix block shape parameters and BFPD for five wells: 1304, 1307, 1495, 2513 and 2722

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>p Intercept</th>
<th>p Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma Mean</td>
<td>0.066</td>
<td>0.042</td>
</tr>
<tr>
<td>x2y Median</td>
<td>0.155</td>
<td>0.169</td>
</tr>
<tr>
<td>z2a Mean</td>
<td>0.655</td>
<td>0.181</td>
</tr>
<tr>
<td>Sx Median</td>
<td>0.200</td>
<td>0.325</td>
</tr>
<tr>
<td>z2y Mean</td>
<td>0.850</td>
<td>0.328</td>
</tr>
<tr>
<td>Sz Median</td>
<td>0.430</td>
<td>0.357</td>
</tr>
<tr>
<td>Sx Mean</td>
<td>0.490</td>
<td>0.640</td>
</tr>
<tr>
<td>Sigma Median</td>
<td>0.313</td>
<td>0.661</td>
</tr>
<tr>
<td>x2y Mean</td>
<td>0.881</td>
<td>0.690</td>
</tr>
<tr>
<td>Sy Mean</td>
<td>0.572</td>
<td>0.692</td>
</tr>
<tr>
<td>z2h Mean</td>
<td>0.922</td>
<td>0.723</td>
</tr>
<tr>
<td>z2y Median</td>
<td>0.950</td>
<td>0.761</td>
</tr>
<tr>
<td>Sy Median</td>
<td>0.550</td>
<td>0.772</td>
</tr>
<tr>
<td>Sz Mean</td>
<td>0.786</td>
<td>0.853</td>
</tr>
<tr>
<td>z2x Median</td>
<td>0.779</td>
<td>0.854</td>
</tr>
<tr>
<td>z2h Median</td>
<td>0.768</td>
<td>0.942</td>
</tr>
<tr>
<td>z2a Median</td>
<td>0.454</td>
<td>0.981</td>
</tr>
<tr>
<td>z2x Mean</td>
<td>0.476</td>
<td>0.986</td>
</tr>
</tbody>
</table>

H₀ for intercept: Intercept = 0.0
H₀ for slope: Slope = 0.0

Entries in BLUE indicate positive correlations that are significant at the 95% level
All other entries are NOT significant at the 95% level
3.5.1.4 Strategic Completion Recommendations

Contour maps were calculated from the well-based block shape statistics in order to provide a spatial distribution of block statistics for use in strategic completion design. For example, to produce a contour map showing the median sigma factor, the median sigma factor was first computed at each well location in each of the DFN realizations. The median values at each well location were then contoured.

The calculations were carried out at well locations, rather than on a regular grid, because results for these shape parameters were needed for specific wells, in order to evaluate them for possible workovers. Since the well density is quite high and even throughout the region, the interpolation required for contouring is mathematically robust, as can be seen by the dense well control on any of the maps.

Median values for the various shape parameters have been chosen for mapping since they are probably the most "stable" values. Many of the parameters, such as the sigma factor, can have extreme values if any of the spacing values are small and they are randomly selected to compute the parameter. As a result, the mean value is highly skewed by this one random draw of a small spacing. The median, on the other hand, is not nearly as sensitive to data outliers as is the mean. For this reason, the maps shown are based on median, rather than mean block values for each DFN realization.

Figure 3-120 through Figure 3-128 show contoured values of the selected matrix block shape parameters. Regions where the parameter is visually low or high are indicated, as well as the approximate boundaries of Tract 17 for reference.

Only the mean values for the matrix block shape factors are shown, with the exception of sigma factor, since (1) the correlations are stronger between the mean spacings and the z2a, z2h and sigma factor parameters, and (2) they are not as strongly impacted by outliers as are other parameters such as sigma factor.

Figure 3-120 and Figure 3-121 show that there is a region of higher east-west and north-south fracture spacings encompassing much of Tract 17 and extending to the southern and eastern portions of Tract 17. The regions outlined for both these maps are largely coincident. A region of high vertical fracture spacing occurs in the central portion of the mapped area, and overlaps but does not entirely coincide with the other two spacing maps.

The maps showing the ratio of block height to either east-west or north-south spacing (Figure 3-123 and Figure 3-124, respectively) show that while the former parameter is homogeneously distributed throughout the area, the ratio of block height to north-south dimension is not. Areas where blocks are not tall relative to block height roughly coincide to the regions where fracture spacings were greater than the regional average, namely, in Tract 17 and to the southeast of Tract 17.

As might be expected, the maps showing block height to block cross-sectional area (z2a) Figure 3-126 and block height to average horizontal dimension (z2h). Figure 3-127 shows lower values coincident with the regions of higher than average horizontal spacings. Consideration of the variation of fracture spacing in the horizontal direction vs. the variation in the vertical direction, it is clear that this difference in block height to block width is primarily due to difference in the fracture spacings in the horizontal directions, rather than in the vertical direction. Figure 3-128,
which shows median sigma factor, further substantiates this. The regions with low sigma factor spatially coincide with regions of greater fracture spacings in the horizontal directions.

Figure 3-120: Mean East/West Fracture Spacing
Figure 3-121: Mean North-South Fracture Spacing
Figure 3-122: Mean Vertical Fracture Spacing
Figure 3-123: Mean Vertical to East/West Fracture Spacing
Figure 3-124: Mean Vertical to North/South Fracture Spacing
Figure 3-125: Mean East/West Spacing to North/South Fracture Spacing
Figure 3-126: Mean Vertical Block Height to Cross-Sectional Area
Figure 3-127: Mean Vertical to Averaged Horizontal Fracture Spacing
Taken together, these maps suggest that the areas with the least favorable production characteristics should be in the region including portions of Tract 17 and in the area to the southeast of Tract 17. This region appears to have less intense vertical fracturing, which gives rise to horizontally more extensive matrix blocks, and less fracture surface area for a given volume of reservoir. The recommendation for strategic completion based on these contour maps has been provided to Marathon Oil (MOC).

3.5.1.5 Evaluation

Marathon Oil’s in kind contribution to this project was provided through recompletions to support evaluation of the DFN approach to IOR. A total of 16 wells were recompleted as part of this project, although only five were required for the in-kind contribution. Wells YU 1304, YU 1307, YU 1495, YU 2513, and YU 2722 provided the basis for the development of the IOR strategy. Based on the evaluation of these wells, the project team suggested that recompletion be carried out in area where the DFN model produced high sigma values (e.g., 3.0).

The eight strategic completion/deepening wells installed and evaluated for the DFN IOR analysis were YU 2112, YU 2325, YU 2335, YU 2722, YU 3532, YU 1771, YU 1776, and YU 2226. All
of these wells exhibited sigma values of over 3.0 based on the DFN model. Of the eight, the first five had been previously shut-in, due to unfavorable production behavior, and the remaining three were currently-producing wells, targeted for improved productivity.

The results of this evaluation were as follows. After the well work was completed, three of the first five demonstrated increased total fluid production, indicating improved reservoir connection. The post- to pre-recompletion ratios of daily total fluid production were 3.2, 9.2, and 2057. The remaining two wells exhibited small decreases in total fluid productivity, with ratios of 0.4 and 0.8. Of the three active wells, two showed increased fluid production ratios, with values of 1.5 and 3.0. The last well had a ratio of 0.7. The overall result, in terms of increased fluid production, then, was positive in five of eight wells, with an average total fluid ratio of 414.8.

As expected, the DFN approach did not provide 100% accuracy in its predictions. This is in part because the DFN approach only predicts fracture locations in a probabilistic sense – it is not currently possible to project fracture locations deterministically. Furthermore, in environments such as Yates Field, where the fractures are near vertical, sigma and fracture density values have more meaning in the lateral sense than the vertical. Therefore the DFN analysis predicted the likelihood of encountering fractures in a vertical well deepening for a given location, rather than the exact locations where these fractures will occur.

Each of these strategic completions was targeted for the base of the oil column. However, the no DFN IOR analysis was carried out to predict the effect of the strategic completions on water cut. Of the five wells where water and oil were produced both pre- and post-workover, the water-to-oil ratio increased in four cases. In fact, the net gain in daily oil production for the eight wells totaled only twenty seven barrels. As a result, the well recompletions may be considered moderately successful in a technical sense, but not economic. This clearly demonstrates the need for a more comprehensive integration of DFN analysis of water production, such as those developed for the North Oregon Basin with the strategic completion analysis developed for Yates.

In addition to well recompletions, a surfactant injection test continued to be monitored in the western portion of the study area. A large volume of surfactant-laden water was injected into the bottom aquifer, in well YU 2935, and a number of surrounding wells was then monitored for production response. Well YU 1106, which lies along a distinct trend of high sigma aligned with well YU 2935, exhibited the most marked response to the treatment (Figure 3-129). This indicates both lateral connectivity through the fracture system, as well as probable effective treatment of the matrix, due to small block size, i.e. high surface area of fracture/matrix interfaces.

The result of this surfactant test was an incremental recovery of about 30.6 thousand barrels of oil (Figure 3-130). This represents both a technical success and a promising economic outlook. Additional tests are planned for both the laboratory and the field, in which further quantification of various process parameters will be attempted.

The third area of testing for the DFN approach relates to positioning of lateral drain holes in the reservoir. Prior to mid-2001 the vertically-segregated fluid contacts have not been stable enough to confidently drill new laterals in the field. A five well package has been proposed, however, and should be completed in the fourth quarter of 2001. The goal is to connect the well bores with fractured zones, in order to more efficiently produce oil at a targeted elevation, with reduced co-production of gas or water. Two of the wells, YU 2220 and YU 2515, are located within the study area. The results of these wells will provide a further indication of the efficacy of the DFN approach for IOR.
Figure 3-129 Efficacy of Surfactant Treatment on YU 1106
3.5.2 Task 4.2 Reservoir IOR Demonstration, Stoney Point

The geologic and development background of the Stoney Point reservoir is reviewed in Dershowitz, 1999 and Dershowitz and Cladouhos, 1999. The Stoney Point Field produces from a linear trend of dolomitized carbonates in the Trenton and Black River Group of Southern Michigan. Although Stoney Point has over 20 million barrels of oil in place, the oil column is thin. The Stoney Point field suffers from severe water breakthrough problems, which may limit ultimate recovery. However, the geometry of the gas cap updip demonstrates that reservoir compartmentalization is effective at least for gas communication. The IOR analysis carried out here considers the possible effectiveness of gel treatment to improve reservoir compartmentalization and maintain oil production from individual hydraulic compartments, even when neighboring compartments have been invaded by water.

3.5.2.1 Discrete Fracture Network Model

The discrete fracture network model for Stoney Point for this analysis was implemented at a 2000 meter scale (Figure 3-131). Discrete Feature Network (DFN) models are derived through a combination of spatial and stochastic distributions for spatial structure, orientation, size, intensity, and mechanical/hydraulic properties of important structural features (Dershowitz and Cladouhos, 1999).
The compartments or sub-reservoirs at Stoney Point are controlled by a set of *en echelon* shear faults above a basement strike-slip fault. Hurley and Budros (1990) interpreted synclinal sags on seismic data to delineate the faults along which carbonate dissolution and dolomitization has taken place. This map was used to develop an initial conceptual DFN model of a fault pair. Reservoir compartments along each fault are hypothesized to be formed by fracturing along Riedel shears in ~200 m (~750') wide zones. Riedel shears form at an angle of ~15° to the shear plane (Twiss and Moores, 1992). The areas between faults tips are also hypothesized to be zone of intense fracturing. In the fault step-over region, fractures would be related to tension rather than shear and thus have an EW orientation.

Three fracture sets are hypothesized for the Stoney Point site based on the geological conjecture described in the previous section:

- Riedel Shears along the faults,
- Tension fractures in fault step-overs, and
- Background fractures.

The mean pole of the Riedel shears along the strike-slip faults is assumed to have a trend of 30° and a plunge of 0°. The dispersion coefficient (κ) was set to 20 to produce a range of orientations from 10 to 50°.

The mean pole of the tension fractures in the step-over region is assumed to have a trend of 0° and a plunge of 0°. The dispersion coefficient (κ) was set to 30 to produce a range of orientations from -15 to 15°.

Background fractures were assumed to be defined by a uniform orientation distribution (Fisher κ=0). Locations for background fractures are distributed with uniform intensity in space by a Poisson process.

The fracture size distribution assumed was based on the scale of model being considered. Since the model being considered is on the scale of 2000 meters, the fractures which control flow should be larger than approximately 10% of the model scale. The fracture size distribution was therefore defined assuming a truncated exponential fracture size with a mean radius of 66 feet (20 m). All fractures with radii less than the mean (66 feet) were excluded in the preliminary modeling. The same distributional assumption was used for all three sets.

Intensity in DFN modeling is expressed in terms of volumetric intensity P_{32}, the total feature area (m^2) per volume (m^3). The four fracture intensity cases varied from intensities of 0.001 m^2/m^3 to 0.3 m^2/m^3 per set. The highest fracture intensity model had a volumetric fracture intensity (P_{32}) of 0.01 m^2/m^3 in the Riedel shear set and an intensity of 0.3 m^2/m^3 in the tension fracture set. These values translate to 1228 and 1030 fractures in each set, respectively. The lowest fracture intensity model had a volumetric fracture intensity (P_{32}) of 0.001 m^2/m^3 in the Riedel shear set and an intensity of 0.03 m^2/m^3 in the tension fracture set. A 90% reduction in intensity results in a 90% reduction in fracture numbers; therefore, the lowest intensity set has 124 and 106 fractures in each set, respectively. All models have the same intensity of background fractures away from the faults: an intensity of 0.005 m^2/m^3 for a total of about 650 background fractures.
Four preliminary DFN models of the Trenton formation at the Stoney Point Field were constructed using the parameters shown in Table 3-54. Three-dimensional views of this conceptual model are shown in Figure 3-132 and Figure 3-133. The gel treatment strategy studied was as follows:

1. Hydraulic connection between the overlying aquifer and the oil reservoir was assessed using pathway analysis. This result represents the current situation, and reflects the failure of compartmentalization to prevent water breakthrough.

2. Gel injection is simulated for wells near the compartment boundaries. For each gel injection, the quantity of gel injected is calculated based on the porosity of the fracture network connected directly and indirectly to the gel injection interval.

3. Following gel injection simulation, the effectiveness of compartmentalization is re-addressed to determine how well compartmentalization has been established to isolate the aquifer from the producing wells.

Figure 3-134 and Figure 3-135 illustrate the pressure distribution in the Stoney Point DFN Model before gel injection. The discrete fractures provide a route for the water from the overlying aquifer to breakthrough to the production wells. Following gel treatment particular water flow paths have been blocked, preventing increased water cut. This is illustrated in Figure 3-136 and Figure 3-137.

Figure 3-131: Stoney Point DFN Model, 2000 meter Extent, Fractures Only
Figure 3-132: Simulation Volume (800x400x189m) Stoney Point DFN Model (Fractures and Matrix Features)

Figure 3-133: Full Fracture Set for Stoney Point, Fractures, and Matrix
Table 3-54: Stoney Point DFN Model Parameters, Trenton Formation

<table>
<thead>
<tr>
<th>Fault Model DFN</th>
<th>Parameter</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation Region</td>
<td>Adjacent to deterministic faults only</td>
<td>Figure 3-132</td>
</tr>
<tr>
<td>Conceptual Model</td>
<td>Nearest Neighbor, Exponent=10^7</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>Fracture Orientation</td>
<td>Fisher Distribution Mean Pole (Trend, Plunge) = (30,0) Dispersion k = 20</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>Fracture Size</td>
<td>Exponential Mean = 20 m, Min. = 20 m</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>Fracture Intensity</td>
<td>P_{32} = 0.01 m^{-1} (N=1228) P_{32} = 0.005 m^{-1} (N=615) P_{32} = 0.0025 m^{-1} (N=316) P_{32} = 0.001 m^{-1} (N=125)</td>
<td>Sensitivity Assumption</td>
</tr>
<tr>
<td>Fracture Aperture</td>
<td>1x10^{-6} m</td>
<td>Sensitivity Assumption</td>
</tr>
<tr>
<td>Fracture Transmissivity</td>
<td>1x10^{-8} m^3/s, LogNormal Distribution Standard Dev. = 5x10^{-7} m^2/s</td>
<td>Sensitivity Assumption</td>
</tr>
<tr>
<td>Fault Tip Model DFN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation Region</td>
<td>700 m x 250 m x 165 m 0.4 mile x 0.15 mile x 550 feet</td>
<td>Figure 3-132</td>
</tr>
<tr>
<td>Conceptual Model</td>
<td>Enhanced Baecher</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>Fracture Orientation</td>
<td>Fisher Distribution Mean Pole (Trend, Plunge) = (0,0) Dispersion k = 30</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>Fracture Size</td>
<td>Exponential Mean = 20 m, Min. = 20 m</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>Fracture Intensity</td>
<td>P_{32} = 0.3 m^{-1} (N=1030) P_{32} = 0.15 m^{-1} (N=542) P_{32} = 0.075 m^{-1} (N=246) P_{32} = 0.03 m^{-1} (N=106)</td>
<td>Assumption</td>
</tr>
<tr>
<td>Fracture Aperture</td>
<td>1x10^{-6} m</td>
<td>Assumption</td>
</tr>
<tr>
<td>Fracture Transmissivity</td>
<td>1x10^{-8} m^3/s, LogNormal Distribution Standard Dev. = 5x10^{-7} m^2/s</td>
<td>Assumption</td>
</tr>
<tr>
<td>Background Fractures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation Region</td>
<td>2000 m x 2000 m x 165 m ~1.2 mile x ~1.2 mile x 500 feet</td>
<td>Figure 3-131 and thickness of Trenton Formation</td>
</tr>
<tr>
<td>Conceptual Model</td>
<td>Enhanced Baecher</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>Fracture Orientation</td>
<td>Fisher Distribution Mean Pole (Trend, Plunge) = (0,0) Dispersion k = 0 (Uniform)</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>Fracture Size</td>
<td>Exponential Mean = 20 m, Min. = 20 m</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>Fracture Intensity</td>
<td>P_{32} = 0.005 m^{-2} (N=649)</td>
<td>Assumption</td>
</tr>
<tr>
<td>Fracture Aperture</td>
<td>1x10^{-8} m</td>
<td>Assumption</td>
</tr>
<tr>
<td>Fracture Transmissivity</td>
<td>1x10^{-8} m^3/s, LogNormal Distribution Standard Dev. = 5x10^{-7} m^2/s</td>
<td>Assumption</td>
</tr>
</tbody>
</table>
Figure 3-134: Flow solution after 0.1 hours, pre-gel treatment. Note pressure has connected directly from injector to producer.
Figure 3-135: Stoney Point Flow Solution Pre-Gel treatment: Close up showing pressure bypassing matrix through fractures
Figure 3-136 Stoney Point: Pressure after 0.1 with gel treatment reducing the fracture permeability by a factor of 10.
3.5.2.2 Evaluation

Due to the change of ownership of the Stoney Point field during the project, it was not possible to evaluate the value of the DFN analyses carried out in support of IOR. It is our understanding that unless water production problems are addressed using procedures such as those developed in this project, the oil in place at Stoney Point will not be produced, and only the gas reserves will be exploited in the future.

3.5.3 Task 4.3 Reservoir IOR Demonstration, South Oregon Basin

This section describes analysis of gel treatment for IOR at the South Oregon Basin study site. The effect of gel treatment on the reservoir hydraulics is analyzed using the single phase, dual porosity flow simulator MAFIC (Miller et al., 2000). This analysis involved updating of the DFN model for the study site, and evaluation of the effect of gel injection on sweep efficiency.

3.5.3.1 South Oregon Basin DFN Model

The DFN model for the South Oregon Basin study site was developed using the procedures by Dershowitz et al. (2000). Table 3-55 presents a summary of the lineament analysis carried out.
Figure 3-138 shows the orientation for sets as defined from the lineament analysis. This figure indicates four fracture sets, consistent with the lineament observations of Table 3-55. The four fracture sets identified from seismic data are: (1) and East to West trending set; (2) a North to South set; (3) a North-East to South West trending set; and (4) an East-South-East trending set. The four fracture sets identified from the seismic data are placed as small ellipses on Figure 3-138. It appears that the FMI is centered around the opposing axis of the NE-SW fracture set. Observations of the primary fracture sets at outcrops at the Amphitheater and Wind River Canyon sites are consistent with the NE-SW trend. The EW seismic set is consistent in orientation with secondary fracture set observed at the Amphitheater outcrop. The ESE set is consistent with the orientation observed as the secondary set at the Wind River Canyon. The NS set from the seismic data has no concurring observations in outcrop data.

The orientations given in Table 3-55 represent the mean poles for each set. The FMI wellbore data provides a mean pole for all data, without breaking the data into sets, which is not particularly useful. However, the FMI data does give relevant indications of fracture length and intensity based on the number of fractures intersecting per meter, and the number of fractures intersecting all four pads of the FMI tool. The four pad intensity analysis was presented in Dershowitz et al. (2000).

Figure 3-139 shows the seismic lineaments. Fracturing does not appear to be distributed uniformly throughout the region with a strong North-South trending cluster of fractures on the west side of the seismic volume; and the highest fracture intensity of all sets occurring around the center of the seismic volume. Figure 3-140 through Figure 3-143 illustrate the seismic lineaments sorted by set. The ESE set shows two strong linear trends with a random distribution of fractures around them. The NE fracture set in Figure 3-142 has the highest intensity. All four fracture sets appear to have similar distributions of fracture size. The NS, EW and ESE fracture sets appearing to cluster along localized linear trends.

The lineaments shown in Figure 3-139 are at seismic detection scales of over 100 m. A fractal analysis was carried out to support extrapolation of these fracture sets for use with smaller scale discrete features. Figure 3-144 through Figure 3-148 illustrate fitting of distributions to the lineament trace-length. Fitted gamma distributions for trace length imply a possible fractal size distribution. When a fractal size is fitted, the distribution exponent can be maintained, and the minimum size censoring limit can be decreased to extend the distribution to smaller fractures. The fit of the power law (Pareto) distribution was successful only for the ESE set. The NS set was best fit to a lognormal distribution, which does not support fractal extrapolation. The NE and EW sets were best fits to a gamma distribution, which also does not support fractal scan-line.
Table 3-55: South Oregon Basin Lineament Analysis

<table>
<thead>
<tr>
<th>ID</th>
<th>Fracture Set</th>
<th>Orientation Pole (Trend, Plunge)</th>
<th>Intensity (P32)</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>East-West</td>
<td>2.8,0 (Seismic)</td>
<td>78 lineaments (22 int) Secondary 7</td>
<td>Gamma (3.1, 519)</td>
</tr>
<tr>
<td>2</td>
<td>North-South</td>
<td>260.9,0. (Seismic) or (170.9,0)</td>
<td>120 lineaments (3 int) Secondary 9</td>
<td>Log norm (6.987,0.77)</td>
</tr>
<tr>
<td>3</td>
<td>NE-SW</td>
<td>316.2,0 (Seismic)</td>
<td>292 lineament (28 int) Primary 6,8</td>
<td>Gamma (2.17,1108)</td>
</tr>
<tr>
<td>4</td>
<td>ESE</td>
<td>40,0 (Seismic)</td>
<td>94 lineament (10 int) Secondary 9</td>
<td>Power law (1100,2.2)</td>
</tr>
<tr>
<td>5</td>
<td>FMI</td>
<td>135,9.4 (FMI log)</td>
<td>(1.6) (guess?) (0.4) percolates</td>
<td></td>
</tr>
<tr>
<td>6,7</td>
<td>Amphitheater;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,9</td>
<td>Wind River Can</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 foot cliffs in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WR Canyon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Vertical cut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Samuel #58</td>
<td>SD(50,6.5 SE) (95,83.5)</td>
<td>27 fractures/70m (1.45/m)</td>
<td>100% 4-pad</td>
</tr>
<tr>
<td>12</td>
<td>Baston A #29</td>
<td>SD(342.5 NE) (72.5, 85)</td>
<td>19 fractures/67 m (1.04/m)</td>
<td>68% 4-pad 3 m</td>
</tr>
<tr>
<td>13</td>
<td>Pauline #9 (Hz)</td>
<td>SD(180,15 E) (90,75)</td>
<td>149 fractures/164 m (1.67/m)</td>
<td>97% 4-pad 20 m</td>
</tr>
<tr>
<td>14</td>
<td>Govt 3b #16</td>
<td>SD(28,8 NW) (298,82)</td>
<td>14 fractures/150 m (1.15/m)</td>
<td>50% 4-pad (1 m?)</td>
</tr>
</tbody>
</table>
Figure 3-138: Fracture Set Orientations for South Oregon Basin

Figure 3-139: All Seismic Lineaments for South Oregon Basin
Figure 3-140 EW Seismic Lineament Set
Figure 3-141: NS Lineament Set
Figure 3-142: NE Lineament Set
Figure 3-143 ESE Seismic Lineament Set
Figure 3-144: Trace Length Distribution, All Lineaments
Figure 3-145: Trace Length Distribution, EW Lineaments
Figure 3-146: Trace Length Distribution, ESE Lineament
Figure 3-147: Trace Length Distribution, NE Lineaments
Figure 3-148 Trace Length Distribution, NS Lineaments
The fracture size distribution was calculated from the lineament distribution using the forward modeling approach of Dershowitz et al. (2000). Fractures were simulated in the 3D volume using assumed intensity and size distributions for the ESE set defined above. These fractures were then intersected by a simulated trace plane to obtain a simulated trace length distribution. The fracture radius distribution and intensity assumptions were then adjusted to obtain a match to the trace length distribution fitted to the measurements. The fitting of simulated trace length distributions is illustrated in Figure 3-149 through Figure 3-160.

Figure 3-149 through Figure 3-153 illustrate the change in the lineament trace length distribution as the fracture radius distribution r_{min} is increased from 10 feet to 2000 feet. Figure 3-154 through Figure 3-157 shows the effect of varying the power law distribution exponent from 1.5 to 3.5. Figure 3-158 through Figure 3-160 illustrates simulations in which the fracture radius distribution was not changed, while the intensity P_{32} was varied from 0.001 to 0.1 m2/m3.

Table 3-56 summarizes intensity and size analyses for the four sets. Based on trace mapping, the intensity of each set is expressed as P_{21}, the total length of tracer per unit area. The total intensity P_{32} for the four sets is consistent with that evaluated previously (Dershowitz, 2000) based on FMI data. This total intensity P_{32} was allocated to the four sets in proportion to the P_{21} for that set. This approach ignores the effect or orientation bias.

<table>
<thead>
<tr>
<th>Fracture SET</th>
<th># in wells</th>
<th># in Seismic</th>
<th>Mean lineament length (ft)</th>
<th>Relative P_{21} (m/m2)</th>
<th>Estimated P_{32} (m2/m3)</th>
<th>Power law, min</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-W</td>
<td>22</td>
<td>78</td>
<td>2022</td>
<td>0.19</td>
<td>0.04</td>
<td>570</td>
<td>1.7</td>
</tr>
<tr>
<td>N-S</td>
<td>3</td>
<td>120</td>
<td>1974</td>
<td>0.29</td>
<td>0.06</td>
<td>750</td>
<td>2.6</td>
</tr>
<tr>
<td>N-E</td>
<td>28</td>
<td>292</td>
<td>2798</td>
<td>1.00</td>
<td>0.22</td>
<td>700</td>
<td>1.7</td>
</tr>
<tr>
<td>E-SE</td>
<td>10</td>
<td>94</td>
<td>2771</td>
<td>0.32</td>
<td>0.07</td>
<td>1300</td>
<td>2.5</td>
</tr>
</tbody>
</table>

The gel treatment analysis depends upon explicit representation of both permeability and porosity for both the discrete features which will be effected by the gel, and the rock matrix from which oil is to be swept. The MAFIC discrete fracture–matrix interaction code is generally used for cases in which discrete features are the only flowing porosity, and the matrix serves only as a storage porosity. The South Oregon Basin model therefore includes both the discrete fracture network porosity derived above, plus a matrix flow and storage porosity. The matrix porosity is represented in the model using bedding plane elements.

The properties for bedding planes were derived in Dershowitz and Cladouhos (1999). These features represent a critical element of the model as the matrix provides the majority of the storage in reservoirs in the South Oregon Basin. Bedding features are implemented as rectangular elements dipping around an average orientation, and distributed randomly throughout the field.

Table 3-57 presents a summary of the DFN model implemented including fracture and bedding plane (matrix) elements. Figure 3-161, Figure 3-162, and Figure 3-163 show three dimensional representations of the fracture model. The model is implemented in a 400 m x 400 m x 10 m model domain. Length distributions within the model were approximated using lognormal assumptions. All fractures had a thickness of 0.025mm. The fracture system appears well connected with fractures from all of the four fracture sets.
Table 3-57: South Oregon Basin DFN Model

<table>
<thead>
<tr>
<th>Set</th>
<th>Orientation Distribution Pole (Trend, Plunge)</th>
<th>Fisher Dispersion κ</th>
<th>Length Lognormal Distribution (Mean, Std. Dev)</th>
<th>Intensity P_{32} (m2/m3)</th>
<th>Permeability (Darcy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East-West</td>
<td>$\langle 2.8, 0 \rangle$ $\kappa=30$</td>
<td></td>
<td>$3, 1.15$</td>
<td>0.02</td>
<td>20 Darcy</td>
</tr>
<tr>
<td>East-South East</td>
<td>$\langle 40,0 \rangle$ $\kappa=30$</td>
<td></td>
<td>$20, 10$</td>
<td>0.035</td>
<td>20 Darcy</td>
</tr>
<tr>
<td>North-South</td>
<td>$\langle 260.9,0 \rangle$ $\kappa=30$</td>
<td></td>
<td>$3, 1.5$</td>
<td>0.03</td>
<td>20 Darcy</td>
</tr>
<tr>
<td>NE-SW</td>
<td>$\langle 316.2,0 \rangle$ $\kappa=30$</td>
<td></td>
<td>$20, 10$</td>
<td>0.11</td>
<td>20 Darcy</td>
</tr>
<tr>
<td>Bedding (Matrix)</td>
<td>$\langle 110,25 \rangle$ $\kappa=10$</td>
<td></td>
<td>$20, 10$</td>
<td>0.1</td>
<td>20 Darcy</td>
</tr>
</tbody>
</table>

Figure 3-149: Simulation of ESE Lineaments 10 ft. Scale
Figure 3-150: Simulation of ESE Lineaments, 100 ft. scale
Figure 3-151: Simulation of ESE Lineament, 500 ft. Scale
Figure 3-152 Simulation of ESE Lineaments, 1300 ft. Scale
Figure 3-153: Simulation of ESE Lineaments, 2000 Ft. Scale
Figure 3-154 Simulation of ESE Lineaments, Exponent 1.5
Figure 3-155 Simulation of ESE Lineaments, Exponent 2.5
Figure 3-156: Simulation of ESE Lineaments, Exponent 3
Figure 3-157: Simulation of ESE Lineaments, Exponent 3.5
Figure 3-158: Simulation of ESE Lineaments, Intensity $P_{32} = 0.001 \, m^2/m^3$
CCDF Graph: Simulation $P_{32} = 1.0 \times 10^{-2}$

Figure 3-159: Simulation of ESE Lineaments, Intensity $P_{32} = 0.01 \text{ m}^2/\text{m}^3$
Figure 3-160: Simulation of ESE Lineaments, Intensity $P_{32} = 0.01 \text{ m}^2/\text{m}^3$

Figure 3-161: Fractures for South Oregon Basin Simulation
Figure 3-162: Matrix Discrete Features for South Oregon Basin Simulation

Figure 3-163: Fractures and Matrix Close up for South Oregon Basin Simulation
3.5.3.2 South Oregon Basin Gel Simulations

While fractures provide an efficient delivery system to deliver oil to the production well from the matrix storage, they can also provide a short circuit route between injectors and producers. This can limit the effectiveness of water injection, and at worse lead to increased water cut. Gel treatment aims to improve reservoir pressure maintenance and oil sweep efficiency by blocking the fractures in the vicinity of injectors.

The strategy for simulating this is to simulate the water injection/oil production pair using the single phase MAFIC flow simulator at 1250 BPD. First, we simulate the effect of balanced injection and production including the effects of the fracture network. Figure 3-164 through Figure 3-166 illustrate the pre-gel injection case. As the water injection increases, a pressure break-through occurs allowing water to travel directly from the injection well to the producer. The sweep efficiency is consequently low, and the pressure maintenance ineffective.

Figure 3-167 through Figure 3-169 present results for simulations in which the fractures connected to the injection well have been blocked by gel injection. Figure 3-167 presents the base case in which the fracture transmissivity is reduced one order of magnitude by gel to 2.0 Darcy. Figure 3-168 presents a reduction of transmissivity to 0.2 Darcy. Figure 3-169 presents the post effective gel treatment case, with the fracture transmissivity reduced to .02 Darcy. The fractures no longer provide short circuit pathways, such that the water injection is able to produce an increase the pressure in a consistent and evenly dispersed area. This provides an efficient sweep, driving oil out of the matrix and towards the producing well.

3.5.3.3 Evaluation

Marathon Oil Company (MOC) has carried out gel treatments targeting discrete fractures in the South Oregon Basin, consistent with the recommendations based on DFN modeling. These gel treatments have facilitated water injection which maintained formation pressures at 400 psig. Oil production at the wells effected by water injection totals approximately 10 BPD per well. Water extraction is currently about 1000 BWPD.

Reduction in water breakthrough due to gel injection is difficult to judge and nearly impossible to accurately measure. In 75-85% of the gel injections, Marathon does not report an immediate decrease in water production at the offset producers following an injection well gel treatment. It is assumed that gel is less than 100% effective in blocking off the fracture network, in part due the short circuiting effect seen in DFN simulations. Theoretically, we would expect a significant decrease in water production if fracture networks were well plugged with gel. However, Marathon does not report experiencing this in most cases. Rather, in the project study site gel injections have resulted in an increase in oil production or a shallowing of the oil decline rate. This indicates that these gel treatments have been at least partially successful. The observed increase in oil production may be due to improved sweep efficiency or to a change in the vertical profile of injection accessing a different area of the reservoir.
Figure 3-164 South Oregon Basin simulation pre gel. Time = 0.001 Hours

Figure 3-165: South Oregon Basin simulation pre gel. Time = 0.01 Hours
Figure 3-166: South Oregon Basin simulation pre gel. Time = 1 Hour

Figure 3-167: South Oregon Basin simulation after gel treatment reduces fracture permeability 1 order of magnitude
Figure 3-168: South Oregon Basin simulation after gel treatment reduces fracture permeability 2 orders of magnitude
Figure 3-169: South Oregon Basin simulation after gel treatment reduces fracture permeability 3 orders of magnitude
3.5.4 Task 4.4 Reservoir IOR Demonstration, North Oregon Basin

Water injection is being used extensively in the North Oregon Basin, Wyoming Tensleep formation to improve oil recovery. Gel treatments have been used to reduce the water-cut by selectively restricting flow through the fractures without substantially reducing the matrix permeability. The discrete fracture network (DFN) model of the reservoir described in Dershowitz and Cladouhos (1999) was used to simulate the use of gel to improve the sweep efficiency of water injection. The analysis focus area is shown in Figure 3-170.

In the fractured, heterogeneous Tensleep formation, discrete fractures and eolian sandstones provide discrete pathways both for oil production and for water migration. The DFN approach addresses the geometry and occurrence of these pathways directly by explicitly modeling fractures, dolomite barriers, and conductive eolian bedding planes. In addition, the DFN approach is used to address the geometry of hydraulic compartments formed by networks of discrete features.

Simulation of the problem of water-breakthroughs requires an understanding of:

- The geometry of the fractures that allows the water breakthroughs;
- The effect of the gel treatment on the relative permeability of the fractures and matrix;
- The transfer of fluids through both the fractures and matrix; and
- Any multi-phase effects of water passing through the oil.

The DFN analysis of gel control was carried out by implementing the DFN model to contain both the major conductive fractures, and the aeolian sandstones and dolomite layers which provide both significant conductivity and connectivity, and matrix storage. The DFN model is illustrated in Figure 3-171. Both the fractures and matrix are represented as discrete features. The matrix is modeled in this fashion because of the discrete nature of the sand beds, and also to facilitate modeling using the MAFIC code. The thickness of each bed in the model is provided in Table 3-58.

The simulation was carried out with both water injection and oil production at a rate of 1250 BPD. Figure 3-172 presents simulation results for the water injection without gel treatment. As a result of preferential flow through the fracture network, the injected water invades only a narrow band of the surrounding reservoir before finding a high permeability path to the production well. In this case the injection fails to introduce a significant pressure gradient across the matrix and will result only in an increase in the water cut at the producing well.

Gel treatment was simulated by reducing the permeability of the fractures connected to the injection well to 0.2 Darcy. The pressure distribution following gel treatment is illustrated in Figure 3-173. The water injection then provides for efficient pressure maintenance and oil sweep. Due to the gel treatment the pressure gradient is now more evenly applied across the reservoir and should more effectively move oil out of the matrix towards the producing well.

The North Oregon Tensleep model is now being adapted for use at particular injection producer pairs to study gel treatment design alternatives.
3.5.4.1 Evaluation – North Oregon Basin

In the North Oregon Basin, Marathon Oil Company (MOC) has not yet carried out gel treatments based on DFN analyses. As a result, it is not yet possible to quantify the value of these activities.

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Thickness (m)</th>
<th>Layer Center (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolomite</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Sandstone A</td>
<td>7</td>
<td>10.5</td>
</tr>
<tr>
<td>Dolomite</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Sandstone B</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>Dolomite</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Sandstone C</td>
<td>3</td>
<td>-2.5</td>
</tr>
<tr>
<td>Dolomite</td>
<td>2</td>
<td>-5</td>
</tr>
<tr>
<td>Sandstone DE</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Figure 3-171: North Oregon Basin DFN model
Figure 3-172: North Oregon Basin DFN model before gel treatment
Figure 3-173: North Oregon Basin DFN model after gel treatment
3.6 Task 5: Technology Transfer

3.6.1 Task 5.1. Project Web Site

Throughout the project, project data, simulations, and publications were made available through the project web site, http://HeterOil.golder.com. These included posting of site data provided by Marathon Oil Company (MOC), project presentations, and progress reports.

3.6.2 Task 5.2.1 Reports

The reports produced during this project are listed above in Section 3.1.

3.6.3 Task 5.2.3 Presentations and Publications

The presentations made during the project are listed above in Section 3.1.
4. CONCLUSIONS

Fractured and heterogeneous reservoirs present unique challenges for “Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement.” The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.

In the discrete feature network (DFN) approach, conductive and flow barrier structures are modeled explicitly, facilitating a more realistic analysis of flow of fluids. The DFN approach models these features at all scales simultaneously, from the individual fractures intersecting a well to the major faults which define the reservoir. There discrete features are extrapolated from geological and geophysical measurements using a combination of geological and geostatistical methods.

During this project, Golder Associates’ team improved the data analysis and geological modeling capabilities of the DFN approach, and developed practical applications of that approach for IOR in heterogeneous reservoirs.

Major accomplishments of this research project are summarized in Table 1. These include development of approaches for gel treatment, strategic completion, and water control in heterogeneous reservoirs. The discrete fracture network technologies developed within this project are directly applicable to a large percentage of the secondary and tertiary oil recovery projects currently underway in the United States, and can be of significant value to the design of future oil recovery projects.

This project achieved significant technological advances in the development of the discrete fracture network modeling approach for heterogeneous oil reservoirs. Advances include:

- the first large scale, fracture network multiphase DFN flow simulations (Oregon Basin)
- direct DFN simulation of gel injection to realistic fracture networks (Oregon Basin, Stoney Point)
- three dimensional, heterogeneous, geo-cellular based DFN modeling for strategic completion (Yates)
- development of an advanced neural network algorithm for fracture set identification
- fractal, analytical, and numerical solutions for calculation of fracture size distributions from geological and geophysical trace data,
- discrete fracture network approach for conditioning of fractured reservoir connectivity based on tracer tests.
- new approaches to evaluating fracture shapes and correlations between fracture properties
- extension of the DFN approach from fractured and single porosity reservoirs to multiple porosity reservoirs with complex, heterogeneous geologies

As a result of this project, the DFN approach can now be applied to improve recovery in a wide range of situations including water and steam floods, strategic completions, and gel treatments.
5. REFERENCES

Bridges, M. C., 1975. Presentation of Fracture Data for Rock Mechanics. 2nd Australia-New Zealand Conf. on Geomechanics, Brisbane, 144-148.

Malinverno, A. and D.J. Rossi, 1993. Applications of Projection onto Convex Sets to Stochastic Inversion. SPE 25659, Middle East Oil Show, Bahrain, April.

