Influence of Base Pressure on FeMn Exchange Biased Spin-Valve Films

PDF Version Also Available for Download.

Description

Spin-valve films of structure NiFeCo/Co/Cu/NiFeCo(Co)/FeMn/Cu were deposited on Si substrates by DC planetary magnetron sputtering techniques. The influence of base pressure, P{sub b}, on spin-valve properties was studied by varying P{sub b} over two decades from 3 x 10{sup -8} to 7 x 10{sup -6} Torr. The GMR ratio show a slight increase with increasing P{sub b} until a large decrease occurs at P{sub b} > 3.3 x 10{sup -6} Torr. Exchange bias field and blocking temperature remain constant in the base pressure range between 3 x 10{sup -8} and 5 x 10{sup -7} Torr before a large reduction begins. ... continued below

Physical Description

703 Kilobytes pages

Creation Information

Mao, M.; Cerjan, C.; Law, B.; Grabner, F. & Vaidya, S. August 13, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Spin-valve films of structure NiFeCo/Co/Cu/NiFeCo(Co)/FeMn/Cu were deposited on Si substrates by DC planetary magnetron sputtering techniques. The influence of base pressure, P{sub b}, on spin-valve properties was studied by varying P{sub b} over two decades from 3 x 10{sup -8} to 7 x 10{sup -6} Torr. The GMR ratio show a slight increase with increasing P{sub b} until a large decrease occurs at P{sub b} > 3.3 x 10{sup -6} Torr. Exchange bias field and blocking temperature remain constant in the base pressure range between 3 x 10{sup -8} and 5 x 10{sup -7} Torr before a large reduction begins. An upper bound base pressure, {sup u}P{sub b} {approx} 5 x 10{sup -7} Torr, is noted from the data, above which significant performance modification begins. The degradation in exchange bias field and blocking temperature, in particular, in spin-valve films using a NiFeCo pinned layer, is the result of deterioration in the crystallographic texture and can be understood due to the contamination both at the ferromagnetic/antiferromagnetic interface and in the bulk of FeMn layer.

Physical Description

703 Kilobytes pages

Source

  • 44th Annual Conference on Magnetism and Magnetic Materials, San Jose, CA (US), 11/15/1999--11/18/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-134296
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 792014
  • Archival Resource Key: ark:/67531/metadc738349

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 13, 1999

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 3:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mao, M.; Cerjan, C.; Law, B.; Grabner, F. & Vaidya, S. Influence of Base Pressure on FeMn Exchange Biased Spin-Valve Films, article, August 13, 1999; California. (digital.library.unt.edu/ark:/67531/metadc738349/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.