Salt Valve and Instrumentation Test Using the Nagle Long Shafted Pump: Final Report

PDF Version Also Available for Download.

Description

The Salt Valve and Instrumentation Test was done to provide data on equipment performance in high temperature environments similar to that expected in the next large scale application of that technology. The experiment tested three different valves: (1) a valve with the standard valve body and standard high temperature self-packing material; (2) a valve with the standard valve body and stainless steel O-rings; and (3) a magnetic valve that uses a high temperature coil and no packing material. The first valve, which was used at Solar Two, performed sufficiently throughout the test with only a small leak from the split-body, ... continued below

Physical Description

49 pages

Creation Information

WELCH, KATHLEEN T. June 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Salt Valve and Instrumentation Test was done to provide data on equipment performance in high temperature environments similar to that expected in the next large scale application of that technology. The experiment tested three different valves: (1) a valve with the standard valve body and standard high temperature self-packing material; (2) a valve with the standard valve body and stainless steel O-rings; and (3) a magnetic valve that uses a high temperature coil and no packing material. The first valve, which was used at Solar Two, performed sufficiently throughout the test with only a small leak from the split-body, not the packing material, on the 6th day of testing on the long-term test. The second valve, with the stainless steel O-rings, developed a small leak on the last run of the third test at the bonnet (packing material), at which point it was noted to watch if it got worse and the test continued. By the 6th day of the long-term test, the leak was significant (up to 3 cups per day) and the test was terminated. The magnetic valve failed when exposed to a relatively low temperature of 500 F. According to the manufacturer, it was expected to survive up to temperatures of 600 F. Two different pressure transducers were tested and compared, Taylor and Dynisco. The Taylor pressure transducer was used and proven successful at Solar Two. However, they are no longer made. Therefore the experiment tested a new pressure transducer from Dynisco and compared the results to that of the Taylor. The Dynisco pressure transducer performed inaccurately from the beginning. The pressure transducer was affected by an increase in temperature when the pressure remained the same. Dynisco agreed to recalibrate the pressure transducer and/or send us a new one if the piece was faulty. However, in the process of removing the piece from the system, due to the high temperatures used, the piece had gulled with the stainless-steel piping and broke. Flared fittings versus Swagelock fittings were tested in the experiment as well. Both fittings showed no signs of any leakage when exposed to the high temperatures and corrosive environment. The existing test set-up for the Nagle Long Shafted Pump was used in this experiment and additional test hours were obtained on the pump bearings. However, only 132 hours (5 1/2 days) of the 5000 hours (208 days) were performed due to a salt leak, which required removal of insulation. The experiment had to be terminated prior to removal of the insulation.

Physical Description

49 pages

Source

  • Other Information: PBD: 1 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2003-2071
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/820897 | External Link
  • Office of Scientific & Technical Information Report Number: 820897
  • Archival Resource Key: ark:/67531/metadc738316

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 12, 2016, 2:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

WELCH, KATHLEEN T. Salt Valve and Instrumentation Test Using the Nagle Long Shafted Pump: Final Report, report, June 1, 2003; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc738316/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.