Kinetics of phase growth in Nb3Sn formation for heat treatment optimization

PDF Version Also Available for Download.

Description

The kinetics of growth and superconducting properties of Nb{sub 3}Sn are investigated as a function of the heat treatment (HT) duration and temperature for Internal Tin and Powder-in-Tube strands at 650, 700 and 750 C. For all times and temperatures, the Nb{sub 3}Sn layer thickness is measured, the critical current at 4.2 K is tested as a function of magnetic field, and the upper critical field is evaluated. Results of the layer critical current density are also shown as a function of HT duration and temperature.

Physical Description

600 Kilobytes pages

Creation Information

Barzi, Emanuela & Mattafirri, Sara October 25, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The kinetics of growth and superconducting properties of Nb{sub 3}Sn are investigated as a function of the heat treatment (HT) duration and temperature for Internal Tin and Powder-in-Tube strands at 650, 700 and 750 C. For all times and temperatures, the Nb{sub 3}Sn layer thickness is measured, the critical current at 4.2 K is tested as a function of magnetic field, and the upper critical field is evaluated. Results of the layer critical current density are also shown as a function of HT duration and temperature.

Physical Description

600 Kilobytes pages

Source

  • Applied Superconductivity Conference, Houston, TX (US), 08/04/2002--08/09/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-02/176-E
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 803426
  • Archival Resource Key: ark:/67531/metadc738313

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 25, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 18, 2016, 3:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 14

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Barzi, Emanuela & Mattafirri, Sara. Kinetics of phase growth in Nb3Sn formation for heat treatment optimization, article, October 25, 2002; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc738313/: accessed December 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.