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Abstract 

Traffic flow on a unidirectional roadway in the presence of traffic lights is modeled. 
Individual car responses to green, yellow, and red lights are postulated and these result 
in rules governing the acceleration and deceleration of individual cars. The essence of 
the model is that only specific cars are directly affected by the lights. The other 
cars behave according to simple follow-the-leader rules which limit their speed by the 
spacing between it and the car directly ahead. The model has a number of desirable 
properties; namely cars do not run red lights, cars do not smash into one another, 
and cars exhibit no velocity reversals. In a situation with multiple lights operating 
in-phase we get, after an initial startup period, a constant number of cars through 
each light during any green-yellow period. Moreover, this flux is less by one or two 
cars per period than the flux obtained in discretized versions of the idealized Lighthill, 
Whitham, Richards model which allows for infinite accelerations. 

'This research was partially supported by the Applied Mathematical Sciences Program, U.S. Department 
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1 Introduction, Model Description, and Statement of 
Results 

In this note we examine the behavior of traftic on a mi-directional highway when multiple 
traffic lights are present. For simplicity we assume the lights operate inLphase. 

The model postulates the dynamics of individual cars but may also be thought of as a 
coarse discretization of a continuum model introduced recently by Greenberg [l], Aw and 
Rascle [2], Aw, Klar, Materne, and Rascle [3], and Zhang [8] (details of this correspondence 
may be found in Section 4, eqs. (4.6) - (4.8)). 

We assume we are presented with an empirically determined function s + V ( s )  on L 5 s 
which satisfies 

V(L+) = 0, (1.1) 

dV d2V 
-(s) > 0 and -(s) < 0, L 5 s < 00, 
ds ds2 

and 

S - i o O  ds 

The independent variable s is interpreted as the spacing between cars, L is the minimum 
car spacing (a lower bound for L is the length of typical car), and V, > 0 is the maximum 
allowable speed of a car. A typical function, and one we shall use in simulations, is 

V ( s )  = V ,  (1 - 5) , L 5 s < 00. (1.4) 

In this classic Lighthill, Whitham, and Richards model [4,5, and 6) the function V ( - )  gives 
the velocity of individual cars; in ours it provides an upper bound for the velocity of an 
individual car. An extensive discussion of suitable functions, V ( - ) ,  may be found in [7, 
Chapter 41 and the references contained therein. Suffice it to say that the functions V ( - )  in 
our model are consistent with those used in practice. 

In this model x k ( t ) ,  1 5 k 5 N ,  denotes the position of the kth car at time t and 0 5 u k ( t )  

is the velocity of the kth car. Throughout 

and the cars are 
where the lights 

ordered so that ( x k + 1  - Z k ) ( t )  2 L, 1 5 k 5 N - 1. During time intervals 
are green we assume that 
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The parameter E > 0 may be thought of as a relaxation time. Equations (1.6) and (1.7) 
imply that during the green light periods the velocities, uk, satisfy 

(1.7b) 

The interesting feature of our model is how yellow or red lights effect the dynamics of an 
individual car. Our trafEc lights cycle from green to yellow to red and the numbers 0 < TG, 
0 < TY, and 0 < T R  denote the duration of the green, yellow, and red lights. At time t = 0 
we assume we have a sequence of N cars located at 

where L1 2 L (again L is the minimum allowable auto spacing) and we assume these cars 
are all at rest; i.e. 

~ k ( 0 )  = O  , 15 k 5 N .  (1.9) 

Finally we assume there at traffic lights located at 2 = Zr, 1 5 I 5 M ,  where 

( N  - ko)L1 < 11 < 12 < . . . < 1 ~ .  (1.10) 

'When k = N ,  UN = V ,  + (YN. 
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We further assume that each intersection is of width w > 0 and we let 

t, = (m - 1)(TG + TY + TR), m = 1,2, .  . . (1.11) 

denote the start of the mth light cycle. 

t ,  %-- t ,  + TG, the green lights turn yellow and this will have an effect on the traffic flow. 

encounters a light at 2 = 1.  We assume that 

During the time interval t, 5 t 5 t, + TG all cars satisfy (1.5) - (1.7). At time 

We start by describing what happens to the lead car, the one indexed by N ,  when it 

(1.12) 

If 

then the lead car will be able to completely clear the intersection if it travels with its current 
speed, U N ( ~ , ) .  We allow it to  clear the intersection by following its standard dynamics; that 
is over the time interval ty  5 t 5 t m + l  the Nth ca.r satisfies 

where 

U N  = V, + QN 

and CXN 5 0 satisfies 

(1.14) 

(1.15) 

(1.16) 

Following these dynamics the lead car accelerates through the intersection. 
On the other hand if 

then it will be impossible for the Nth car to clear the intersection during the yellow phase if 
it continues to travel at its current speed. If 

4 



X N ( t y )  + U N ( t y ) ( T Y  + TR)  5 1 ,  (1.18) 

then over the time interval t, 5 t 5 tn+l we require it satisfies the modified dynamics: 

(1.19) 

i.e. we insist that it travels at its current speed. This strategy avoids the Nth car accelerating 
and then possibly having to decelerate as it nears the light. 

If (1.17) holds and (1.18) is violated, the lead car will have to slow down and possibly 
stop. When it satisfies the additional inequality 

the lead car is mandated to satisfy 

This constant deceleration strategy brings the Nth car to rest at x = I at 

5 tm+l and it then sits at the light until t = t m + l .  ( E  - x N  t = t , +  
U N ( t , )  

The dynamics described by (1.21) is equivalent to 

(1.21) 

and 
-- dxN - 0 ,  tu + 2 ( 1 -  2 N ( t , ) ) / 2 l N ( t V )  I t I tm+l. 

dt 
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~ Finally, when 

Z N ( ~ , )  + UN(~, ) (TY + TR) > I and Z N ( ~ , )  + u N ( t , ) ( T Y  + TR)/2 5 I, (1.22) 

the lead car is mandated to satisfy 

d X N  dUN - -2(Z~(t,) + U N ( & ) ( T Y  + TG)  - I) - = u ~ ( t )  and - - 
d t  d t  (TY + TG)2 

over the whole interval t ,  5 t 5 tm+l. This strategy brings the car to the light at 2 = 1 at 
tm+l with velocity 

(1.23) 

We note that if the lead car satisfies (1.17), then the cars with indices k 5 N - 1 follow 
their standard dynamics (1.5)-(1.7) over [t,,t,+l] unless they happen to be influenced by 
some other light at x = I' < 1. 

Having described what happens when the lead car encounters a yellow light at z = I 
we turn our attention to what happens when other cars encounter the same light. We let 
kl 5 N - 1 be the largest integer so that 

and we let pl 5 kl be the largest integer so that 

xP,(tY) + min uj(t,)TY < I + w + L. 
P i G l k i  

(1.24) 

(1.25) 

The pih car will be the first one that does not get through the light at z = 1. 

We consider first the situation when p1 < kl. We assume the existence of a number 
X 2 1 such that cars travelling with the maximum speed V, can safely brake at a constant 

deceleration rate a = - over a road segment of length XL. 
-VL 
2XL 

We first focus our attention on the situation where 

xpl(t,) < 1 - XL. (1.26) 

Our basic strategy is to let cars with indices k 2 pi + 1 follow their standard dynamics (1.5)- 
(1.7) over t, 5 t 5 tm+l. The cars with indices pl + 1 5 k 5 kl will clear the intersection by 
t ,  + T G  + TY !&f t,; i.e. satisfy 2 k ( t r )  2 1 + w + L. This follows from the observation that 
local spatial minima in the velocity are non-decreasing in t (for details see (2.79)-(2.81)). 
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Rules for the pjh Car 

So long as t ,  I t 5 t, and zp,(t) < 1 - XL we let the p:' car follow its standard dynamics 
(1.5)-(1.7). If there is a first tp, < t, so that zp,(tpl) = 1 - XL, then the driver must decide 
what to do. In the unlikely event that 

upi  ( t p ,  1 (tm+1 - tpi  ) 5 XL, 

then over the interval [t,, , t,+l] the pih car is required to satisfy 

(1.27) 

and 

- -  - v' ( z ~ , + l  - X P , )  (%+I - UP,) + (v (zP,+i - xp , )  - Up,) / E  and Up, (tu) = uP,(tu). 
dUP, 

dt 
(1.28) 

On the other hand if 

u p ,  ( t p t )  (tm+l - t p l )  > XL,  

then the pi" car will have to slow down and possibly stop. 
When the pih car satisfies the additional inequality 

where 

dU P I =  
d t  v'(xP,+l - .p,)(Up,+l - U p , )  + (V(Z,+l - xp, )  - Up,) / E  

and 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

(1.33) 



When (1.31) reduces to 

we see that 

dv u2 ( t  v& < -- 
2XL - 2XL 

PI = PI PI 
dt 

(1.34) 

(1.35) 

and the strategy and thus we apply this constant braking strategy over tp, 5 t 5 tp, + - 2XL 

UP1 @ P , )  
2XL 

xpc ( t )  = 1 over tp, + - < t I tm+1. 
UPAtPI) - 

If instead of (1.30) the pih car satisfies 

the pih car is required to satisfy 

(1.37) 

and (1.33) and again Up, satisfies (1.32) and (1 .33)~.  
The dynamics for Up, postulated in (1.28) and (1.32) might seem a bit strange. What 

we are insisting is that the p;h auto must travel no faster than the minimum of its braking 
speed and the speed it would travel at if it disregarded the light and allowed its velocity 
to be determined by the car ahead. The latter speed U,, is computed from the standard 
dynamics equation (see (1.6), (1.7), (1.7a), and (1.7b)). 

If there is no such time tpl < t, so that xp,(tpI) = E-XL, then we know that xp,(t,) 5 Z-XL. 
In this situation we replace tpI in (1.27)-(1.37) by t ,  and the terms XL in all inequalities and 
identities by I - xpI ( tp) .  

Finally, if (1.26) does not hold; i.e. if 

1 - XL 5 ZP,(t,) < 1 ,  (1.38) 

we set tp, to t ,  in (1.27)-(1.37) and replace XL in these formulas by 1 - xp,(tY), 
The rules when pl = kl are similarly amended. 
The cars with indices pi-1 5 k 5 pl - 1 are required to satisfy their standard dynamics 

over [ty , t m + l ] .  
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Our first resuh deals with the model's consistency; we shall show that for all t 2 0 and 
all indices, L 5 ( z k + l -  z k ) ( t )  and 0 5 ' I l k ( t )  < v ( ( z k + l -  z k ) ( t ) ) .  We also have the theorem 
that no cars run any red lights. With two in-phase-lights, the number of cars through an 
intersection during the green and yellow phases is, after a start up period, a constant. This 
constant is less than the constant obtained with models which allow for infinite accelerations; 
i.e. discrete Lagrangian versions of the Lighthill, Whitham, Richards model [4,5,6]. 

One surprising observation about the model just described is that the largest decelerations 
are not necessarily associated with the cars indexed by pl but rather by cars with indices 
IC I pl - 1 which are forced to slow down because the pfh car has stopped. Equation (1.7a) 
implies that the latter cars' decelerations are determined by the negative velocity gradients 

Finally, we note that though we have been quite specific in postulating our stopping rules 
u k + l  - u k .  

for the pih car, it would have sufficed to have chosen any rule of the form 

and up, (t,) = upI (t, ) if pl 5 N - 1 and 

2 Model Consistency 
In this section we turn our attention to the issue of model consistency. The central issue 
before us is to show that for 1 5 k 5 N - 1 and 0 I t that 

and that for k = N and 0 5 t that 
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We are also interested in knowing that the distinguished cars indexed by pl do not run 
the red lights over the intervals tr def (rn - 1)(TG + TY + TR)  + TG + TY 5 t 5 m(TG + 
TY + TR)  def tm+l,  and that the (pl + car clears the intersection by t,; i.e. satisfies 

Once again 2 = I is supposed to be the leading edge of the intersection, 20 the width of the 
intersection, and L the length of an auto. 

There are two natural approaches one can take to establish the above claims. The first is 
to show that the desired conclusions follow directly from the governing differential equations 
and initial and constraining conditions while the second is to show that approximate solu- 
tions, generated by numerical discretization, satisfy the desired consistency results. Noting 
then that these consistency results are sufficient to guarantee that the approximate solutions 
converge (as At + 0) to solutions of the original model we are guaranteed that these limiting 
solutions satisfy the same consistency results. We adopt the latter procedure here since in 
the next section we shall perform computations with the discrete approximating system. 

Throughout, At will denote our time step and the quantities ( x z ,  uz, a;) will denote the 
values of the approximate solutions at tn = nAt. To keep matters simple we shall assume 
that the numbers TG/At ,  TY/At ,  TR/At ,  and € / A t  are all integers and we shall assume 
that At 5 min ( E ,  ( V ( L )  = max V ( s ) ) - ' ) .  

LSd 

Our first result deals with the traffic flow over the time intervals 

t ,  (rn - 1)(TG + TY + TR)  5 t,, = nAt 5 ty def t ,  + TG 

when all lights are green. Over such intervals we replace (1 .5 )  by 

and this yields 

where 

s t  = (xi+' - x ; )  and si+' = (zizi - zi"). 

The u's and s's are related by 

u; = V ( $ )  + a; 
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and 

?.f,i+' = v(s;+') + (1 - 
E 

These updates hold for indices n satisfying 

(m - 1)(TG + TY + TR)/At def nm 5 n 5 nm + TG/At - 1. 

Theorem 1 Suppose that 

L 5 stm and 0 5 uim 5 V ( S ; ~ ) ,  1 5 k 5 N - 1 

and 

0 5 ukm 5 V ,  = lim V ( s ) .  
d-s, 

(2.10) 

(2.11) 

(2.12) 

Then, the same inequalities hold for 

(2.13) &f n, L n 5 nm + TG/At = ny. 

Proof. The identity (2.6) implies that if s: 2 L and u:+~ - u: 2 0, then s:" 2 SI 2 L. In 
the situation where u;+' - u i  < 0, (2.6) implies that 

and the natural induction hypotheses a; 5 0, 0 5 uz 5 V(s;), and s; 2 L imply that 
- CY; 2 0. In the situation where 0 5 u;+' - a; < V ,  we are guaranteed a unique 

$+, E [L,oo) satisfying 

ti;+' - CY; = u(3;+') 

and here (2.14) reduces to 

(2.15) 

si" = s i  + (V(Sl;+') - V ( s ; ) )  At (2.16) 

or 
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p + l  k = (1 -,V'(S*)At)S; V'(S*)At$ (2.17) 

for some s* E (min ( s i ,  $+1), max (s:, q+l)). The latter identity, together with 

AtV'(L)  2 1  and min ( s ; , $ + ~ )  1 L,  (2.18) 

- (Y; 2 V,, the identity (2.14) implies that yields SI" 2 L. When u;+~ - u i  < 0 and 

s:" 2 SF + (V,  - V(si))At.  (2.19) 

The inequality (2.18)1, guarantees that s + s + (V, - V(s))At is strictly increasing on 
[L ,  co) and thus (2.19) implies that s:" 3 L + V,At 2 L as desired. 

The induction hypothesis a; 5 0 together with At/€ 5 1 and (2.9) guarantees that 
u:" 5 V(s:+'). What remains to be shown is that ut" 1 0. To establish this assertion we 
combine (2.8) and (2.9) to obtain 

V ( S ~  + (.;+I - ui)At) = V ( S ; )  + V'(s#)(ui+i - uL)At 

for some s# 2 L we find that 

u:" = V'(s#)Atu:,, + @ (V(s;) - u:) + (1 - V'(s#)At)uI .  
E 

The last identity, when combined with 

AtV'(s#) 5 1, A t / €  5 1 

yields u;+' 2 min ( u i , ~ ; + ~ )  2 0 as desired. 

) U; 2 0, ~;+1 L 0, and v(Si) - Ui 2 0, 

We now turn our attention to what happens over the yellow and red phases; i.e. when 

t, def (m - 1)(TG + TY + TR)  + TG 5 t, = nAt < tm+l def m(TG + TY + TR). (2.20) 

The results of Theorem 1 imply that when n = nY def (m - 1)(TG + TY + TR) + TG/At 
the following inequalities are valid: 
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and 

n 0 5 uNy 5 V ,  = lim V ( s ) .  
8+W 

Our next goal is to show that (2.21) and (2.22) hold for indices 

(2.22) 

ny 5 n 5 n,+l de_f m(TG + TY + TR).  (2.23) 

For definiteness we assume the lights are located at 21 < Z2 < . . . < ZM where M << N and 
that L << Zz+1 - ZZ, 1 5 I 5 M - 1. For 1 5 I 5 M ,  kz will be largest integer less than or 
equal to N so that 

xi; < 11 

and pz  will be the largest integer less than or equal to kz so that 

(2.24) 

z;;+( p r 3 l k r  min u f ) ~ ~ < ~ z + w + ~ .  (2.25) 

It can and does happen that for some I < M that 

Our first task is to establish the desired inequalities for indices (pz - l+  1) 5 k 5 pz = N 
for ny 5 n 5 n,+1. This is the situation that obtains when the lead car, indexed by N ,  has 
passed the (I - ,)st light but not the I th  light. 

The rules laid out in (1.17)-(1.23) imply that X N ( - )  satisfies 

(2.27) 

where UN satisfies 

and WN(.) 3 0 is chosen so that if z ~ ( - )  satisfies 

d X N  

d t  
-- - VN and x N ( t y )  < ZI, 
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then x ~ ( t , + ~ )  5 EI. We replace this system with its discrete analogue: 

and these are solved subject to the initial conditions 

x: < 11 and 0 5 u? 5 Ul;' 5 V,. 

The discrete velocity ug is given by 

u& = min (w;, UG) 

and wl; 2 0 is a discretization of W N  with the property that if 

(2.32) 

(2.33) 

(2.34) 

Xkrn+l 5 11. (2.35) 

The identities (2.31), (2.32)2, and (2.33) guarantee that 

If we assume that ( p ~ - ~  + 1) 5 N - 1, then the ( N  - l)st car will follow the standard 
dynamics (1.5)-(1.7) on t, 5 t 5 tm+l and thus for n, 5 n 5 n,+l - 1 we have the 
approximating discrete system: 

where 
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The inequalities (2.21) and (2.22) imply that 
identities (2.37) and (2.38) imply that 

5 0, a? 5 0, and s:-l 2 L. The 

~ - 1  = sk-1 + (uk - 1 - - Q ~ N Y _ ~  - V(sk-1) )At  (2.39) ( 4t)n g + l  

and (2.37)2 and (2.39), together with 

(2.40) L 5 sly-1 n , a;;-, 5 0 ,  u& 2 0,  AtV'(L)  5 1, and At 5 E ,  

and the arguments used to  establish Theorem 1 imply that 

L L s k l  , ny L n I nm+i. (2.41) 

The arguments used to establish Theorem 1 along with (2.40) and (2.41) also yield 0 5 
U ~ N - ~  5 V ( s k - l ) ,  ny 5 n 2 n,+l. An induction on k for indices (PI-1 + 1) 5 k then yields 

L 5 s i  = - x i )  and 0 5 u: 5 V(s;),  ny i n 5 n,+1. (2.42) 

This situation when p ~ - ~  = N - 1 is handled similarly provided one adopts the proper 
first order integration scheme for Unr-1. The governing equation for UN-1 is 

and T J N - ~  2 0 is chosen so that if 

then 

Additionally 

xN-l(tm+l) I ZZ. 
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UN-1 “_r min (VN-1, UN-1). 

The integration scheme we use is 

(2.47) 

I where 

To complete the proof one does an induction on the index I, first replacing I by I - 1. 
One knows that the car with index (PI-1 + 1) has a velocity u~pI-l+l) satisfying 

and 

(2.50) 

(2.51) 

16 

(2.52) dSPI-1 - -- dt (U@I-l+l) - %1-1)* 

The rules laid out in (1.7)-(1.23) imply that 

-- dUP1-1 - ~‘(SPI-l))(’LL(PI-l+l) - ‘PI-1) + (~(S@,-1+1)) - UPI-l>/E (2.53) 
dt 

This scheme is essentially a first-order Euler scheme applied to (2.43). The scheme implies that 

U;;”: = UG-l + A tV‘ (~k-1) (u; - UE-1) + 7 (V (~k-1) - UE-1) + O(At)2. 
At 



and that the velocity field 0 5 vpI-l is chosen so that if zpI-l evolves as 

dXPI-1 - 
-- VPI-1 and ”PI-l(tY) < 2 1  dt 

then 

xpI-l (t*+l) L lz-1. 

The discretization we apply to the p;Ll car is 

xn+l = 
PI-1 + u;I-lAt and s;:: = S L  + (un@I-l+l) - a_,) At 

for ny i n 5 nm+l - 1. Moreover, for some ny 5 5 ny + TY/At - 1 

un+l = v(s;;;) + (1 - ”> (u;I-l - v(s;I-l)) 
E P I - 1  

and 

un+l = un+l 
PI-1 PI-1’ 

whereas for no 5 n 5 n,+1 - 1 

and 

u;;-l = u;;-l a d  X Z - ~  < ZI. 
Finally v;I-l is chosen so that if 

“;;;I 5 11. 

4See Footnote 3. 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 
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The arguments employed to establish Theorem 1 guarantee that for ny 5 n 5 no 

L 5 sn PI-1 and 0 I u;I-l 5 V(S;~-~)  

and that for n = no 

(2.64) 

(2.65) 

L I Sn PI-1 and 0 I u;I-l L q-l I v(s;I-l). (2.66) 

Proof. The identities (2.56) and (2.60) imply that 

n for mme s# 2 min 
make the induction hypotheses that 

+ ( u ( ~ ~ - ~ + ~ )  - u ; ~ - ~ ) A ~ ,  + (uGI-l+l) - U:I-l)At). If we now 

L I sn PI-1 .and 0 5 Up”l-l 5 V(S;~-~) ,  

then (2.59) implies that 

0 5 u;I-l 5 up”l-l L vs;I-l) 
and (2.69) and (2.42) with k = pz-1 + 1 implies that 

(2.68) 

(2.69) 

min ( S L  + (qpI-l+l)  - u;II-l)At, 

2 - v(s;,-l>At = m;I-l)- 
+ ( q p I - l + l )  - Up:-,>At) 

(2.70) 
&f 

This constraint AtV(s)  5 1, L 5 s guarantees 3(.) in nondecreasing on L _< s and this 
fact, together with F ( L )  = L,  guarantees that s;:! and s# are both greater than or equal 
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to L. Moreover, (2.67) also yields U;,+t 5 V ( S ; ~ - ~ ) .  The defining relation (2.60) and (2.70) 
and qpI-l+l)  > - 0 also implies that 

(2.71) 

for some s,, 2 L and (2.71) guarantees that U;:: 2 0. The last inequality and (2.59), with 
n + 1, guarantees that 

and this completes the proof of Lemma 1. w 
Once again an induction on k for indices ( P I - 2  + 1) I k yields 

and additionally yields 
Theorem 2. For nny I n 5 n,+1 = m(TG + TY + TR)  

0 I uk I v, = lim V ( s ) .  
8-bW 

Moreover, for 1 I I 5 M 

(2.73) 

(2.74) 

(2.75) 

Theorems 1 and 2 go a long way towards establishing the consistency of our model. What 
remains to be shown is that cars with index p~ + 1 clear the light; i.e. satisfies 

The reader should recall that the cars with these indices satisfy 

(2.77) 

(2.78) 
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and that cars with indices (PI  + 1) 5 k 5 kz evolve by the standard discrete dynamics for 
ny 5 n 5 ny + T Y / A t  - 1; i.e. 

xn+l k = x i  + u i A t  and ?.LE = V(st )  + 
where 

0 5 u? 5 V ( s 2 )  and L 5 st. 

It is a straight forward calculation to show that cars with these indices also satisfy 

At 
= AtV’(S#)U;Z+l+ ( 1  - AtV(s#))U; + - (V($)  - u:) 

E 

from some s# 2 L and this identity, along with 

AtV’(L) 5 1, .At 5 E, a d  0 5 V ( S ; )  - .;E’ 

implies 

ut+’ 2 min (U:,U~+~). (2.79) 

We now note that at t = t, (equivalently n = nY) the cars with indices pz 5 k typically 
satisfy 

(2.80) 

and 

U:;~-U;’>O , k o < k < k #  (2.81) 

where k# is greater than kz.  Moreover if the spacing of the lights is sufficiently large, then the 
spatial monotonicity of the velocities is preserved for ny 5 n 5 n,+TY/At and IC0 5 k 5 k#. 
When this is the case, the inequalities (2.78)-(2.81) guarantee (2.77). 

3 Simulations 

In this section we present some simulations of the system outlined in Section 1. We chose 
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V ,  = 50f/s, L = 20f, L1 = 2 5 f ,  X = 5 ,  E = 5s and N = 600. 

Our maximal velocity was given by 

V ( s )  = v, (1 - 5) , L I s. 

We restrict our attention to a roadway with two in-phase lights located a t ,  

II = 1 mile = 5280 f and Z2 = 2 miles = 10,560 f 

and we assume that the width each intersection is 

w = 20f. 

Finally the durations of the green, yellow, and red lights were chosen to be 

TG = 25s ,  TY = 5 s ,  and T R  = 30s. 

Our initial data is taken to be 

X k ( 0 )  = 2 5 ( k  - 400) and 'LLk(0) = 0, 1 5 k 5 600. 

Snapshots of the solution are shown at times 30, 147, 151, 179, and 191 seconds in Figures 
1-5 respectively, and a film may be seen at www.math.cmu.edu/users/plin/21380/traffic.html 

In the first frame of each snapshot we plot the auto velocity u k  (in miles/hour) versus 
current auto position x k  (in miles) and in the second frame we plot the empirical density 

(in cars/mile) versus current auto position 2 8  (in miles). 
1 

P k  = 
x k + 1  - x k  

After an initial startup period we are able to get 18 cars through each light during each 
green-yellow-red cycle. This number should be contrasted with what one obtains in the 
singular limit where E = O+, TY = Os, TG = 309, w = 0 f, and X = 5.  In this limit 

and if, perchance, we have a car satisfying 

and 

u k ( ( t m  +TG)-) > 0, 

then for times t ,  + TG < t 5 tm + TG + TR, 

zk(t) = I and uk(t) E 0. 
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For this singular model we declare a car through the light at E if X k ( t , )  > 1. The singular 
model has the potential for infinite accelerations. In steady state the singular model allows 
us to get 20 cars through an intersection during each green-red cycle. 

We note that our choice of which car must stop is made at times t ,  = t ,  + TG (when a 
green light turns yellow) and is conservative when the car chosen to stop satisfies x p l ( t , )  < 
I - XL. A more aggressive strategy would have been to allow the pih car follow its standard 
dynamics until time tpI < t ,  + TY where zpl ( tpl)  = 1 - XL and then reevaluating whether the 
pih car can get through the light in the remaining time t ,  + TY - tpl: i.e. checking whether 

x p l ( t p l )  + min u k ( t p I ) ( t ,  + T y  - t P I )  >_ E + w + L. 
P l I k I k l ( t , , )  

If the latter inequality holds, the aggressive strategy would allow the pih car through and 
stop the (pi - ,)st car. We avoided this strategy because it did not seem to be worth the 
effort to get one more car through the intersection during the green-yellow-red cycle. 

The attentive reader will by now realize that once we have determined which car will 
slow down or stop at a given light the particular braking strategy adopted is immaterial; all 
that is required is the velocity associated with the braking strategy, wpl ,  be such that if xpl 
satisfies 

then x p l ( t m + l )  5 1.  We adopted constant braking strategies here because they were simple 
and realistic. 

4 Concluding Remarks 

There are some obvious connections between the discrete model studied in this paper and 
the continuum or macroscopic models of Aw, Klar, Materne and Rascle [3]. 

If one assumes that the maximal velocity V ( - )  introduced in (1.1)-(1.3) is actually a 

function of y = - defined on y = - > 1; i.e. 
S S 

L L -  

then (1.1) and (1.7) takes the form 

where again 
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and 

The connection between the follow-the-leader system (4.1)-(4.4) is now clear. One introduces 
reference coordinates 

lets 

and 

and 

x ( x k ,  t )  = x k ( t )  and u ( x k ,  t )  = U k ( t ) )  (4.6) 

ax 
as the downwind finite difference approximations to - 

L d X  
u k + l  - u k  interprets 'yk and 

dU 
- at the reference point x k ;  i.e. ax 

With these identifications one obtains, at least formally, the Lagrangian traffic equations 

where 

This correspondence is faithful if one restricts one's attention to initial value problems ex- 
clusively. We have not seen how to incorporate the traffic light problem into a continuum 
format. 
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