GA-C23333

DIRECT ENERGY CONVERSION FISSION REACTOR

for the period June 1, 2001 through September 30, 2001

> by L.C. BROWN

Prepared under Nuclear Energy Research Initiative (NERI) Program. DE-FG03-99SF21893 for the U.S. Department of Energy

DATE PUBLISHED: NOVEMBER 2001

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

GA-C23333

DIRECT ENERGY CONVERSION FISSION REACTOR

for the period June 1, 2001 through September 30, 2001

> by L.C. BROWN

Prepared under Nuclear Energy Research Initiative (NERI) Program. DE-FG03-99SF21893 for the U.S. Department of Energy

GENERAL ATOMICS PROJECT 30052 DATE PUBLISHED: NOVEMBER 2001

Direct Energy Conversion Fission Reactor

Nuclear Energy Research Initiative (NERI) Program DE-FG03-99SF21893 Technical Progress Report June through September 2001

Highlights

- The stability of a string of fission electric cell cathodes to regular perturbations in electric field was investigated in two dimensions.
- The model of the fuel recycle loop of the Vapor Core Reactor was expanded to include the fission product species SrF₂, ZrF₄, MoF₆, Xe, CeF₃ and NdF₃.

Introduction

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation.

Current Quarter Accomplishments

Magnetically Insulated Fission Electric Cell

Work has begun on modeling the side forces on a string of cathodes. Previously it was shown analytically, for a limiting case, that a single cathode could not be maintained near the center its anode. A single cathode was assumed to be supported on a small rod inside the anode. The length of the rod was three meters, the length of a string of cathodes in the reactor. If the cathode was off center by an infinitesimal amount, no reasonable tension in the support rod could prevent the cathode from being pulled to the anode, thus shorting the system. Steve Slutz of Sandia suggested that the side forces can be mitigated by deliberately offsetting alternate electrodes in opposite directions so as to increase the angle of the central rod at each electrode and thus increase the restoring force. The geometry was modeled on ANSIS assuming that the top and bottom cathodes were mounted one foot from the support to provide the required electrical isolation. The side forces still gave an unacceptable deflection for any reasonable tension. Analytical results were obtained for the case in which the end supports are one-half the cathode to cathode center distance. For this case the results are encouraging.

Fission Fragment Magnetic Collimator Reactor

No work was done on the Fission Fragment Magnetic Collimator Reactor during this period.

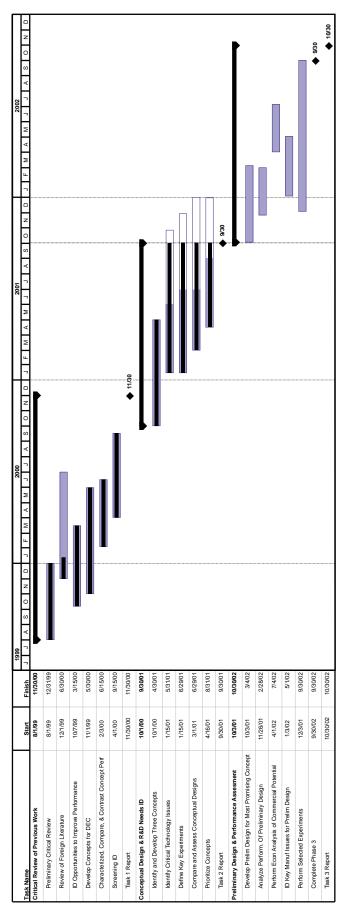
Vapor Core Reactor

Work on the Aspen Model of the Vapor Core Reactor primary flow loop continued. The model incorporates the fission product species SrF_2 , ZrF_4 , MoF_6 , Xe, CeF_3 and NdF_3 , in addition to the fuel UF₄ and the carrier He. Theses fission species account for more than 70 percent of the fission products formed. They also represent species that are more volatile than UF₄, have similar volatility and are less volatile. The effort has concentrated on reducing the circulating activity while

minimizing the impact on thermal efficiency. The model is not complete but the fission products have been concentrated into minimal volumes without seriously affecting efficiency. An attempt has been made to keep the circulating activity at no more than ten times the instantaneous generation rate.

Planned Next Quarter Activities

We will continue analysis of the fuel recycle loop of the gas core reactor concept. As time permits we will extend the cathode model to three dimensions.


Schedules and Budgets

The GA contract was out of synchronization with the contracts of the other participants. This has been rectified with the granting of a no cost extension by DOE. This reporting period was extended from August 14 to September 30. Future reporting periods will be on a quarterly basis.

The overall project is behind schedule, as previously reported by Sandia. A decision was made at meeting at Sandia to delay the down selection to a single direct energy conversion concept. Status of all tasks of the combined project schedule is indicated in Table 1 and Fig. 1. Expenditures to date and projected expenditures for the rest of Phase 2 are given in Fig. 2.

Identification Number	Milestone/Task Description	Planned Completion Date	Actual Completion Date	Comments
1A(i).	Preliminary critical review of previous work	Jan 2000	Jan 2000	Work complete
1A(ii).	Review foreign literature	Nov 2000	N/A	Task abandoned due to classification issues
1B.	Identify opportunities for improvement	Mar 2000	Mar 2000	Work complete
1C.	Develop new/alternate concepts	May 2000	May 2000	Work complete
1D.	Characterize/compare alternate concepts	Jun 2000	July 2000	Work complete
1E.	Screen to 3 promising concepts	Jul 2000	Sept 2000	Work complete
1F.	Final (annual) Report for Task 1	Nov 2000	Nov 2000	Work complete
2A.	Identify and develop 3 concepts	Apr 2001	April 2001	Work complete
2B(i).	Identify critical technology issues	May 2001		Behind schedule Expected 10/01
2B(ii).	Define key experiments	Jun 2001		Behind schedule Expected 11/01
2C.	Compare and assess conceptual designs	Jun 2001		Behind schedule Expected 12/01
2D.	Prioritize concepts	Aug 2001		Behind schedule Expected 12/01
2E.	Final (annual) Report for Task 2	Oct 2001		Work in progress
3A.	Preliminary design of most promising concept	Mar 2002		Phase 3
3B.	Analyze technical performance	Jul 2002		Phase 3
3C.	Analyze economic performance	Jul 2002		Phase 3
3D.	Identify manufacturability issues	Jun 2002		Phase 3
3E.	Perform selected experiments	Sep 2002		Phase 3
3F.	Complete Phase 3 and project	Oct 2002		Phase 3
3F'.	Final Report for Phase 3 and project	Oct 2001		Phase 3

Table 1. Summary of NERI Tasks – Phases 1–3

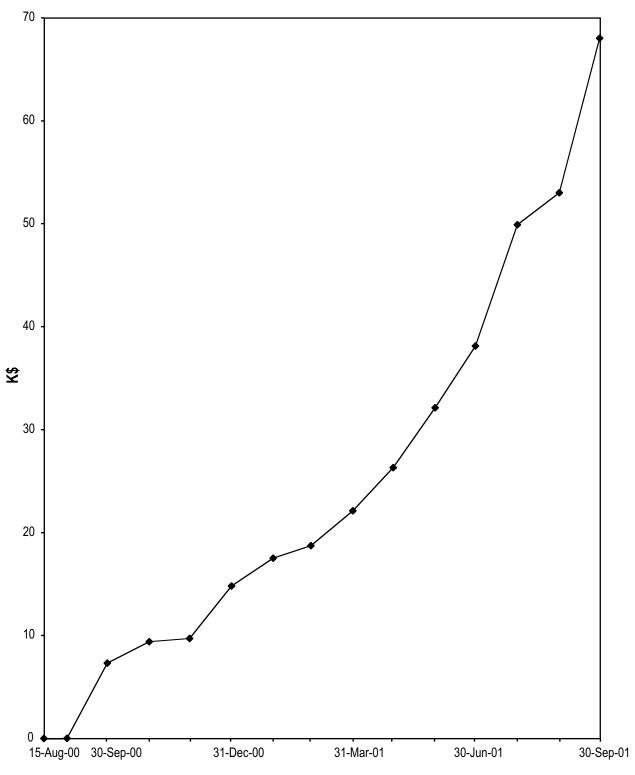


Fig. 2. Spending Profile