Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

PDF Version Also Available for Download.

Description

The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study ... continued below

Physical Description

vp.

Creation Information

Cohen, Yoram December 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

Physical Description

vp.

Notes

OSTI as DE00791375

Source

  • Other Information: PBD: 1 Dec 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/14715
  • Grant Number: FG07-96ER14715
  • DOI: 10.2172/791375 | External Link
  • Office of Scientific & Technical Information Report Number: 791375
  • Archival Resource Key: ark:/67531/metadc737821

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 2001

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Jan. 4, 2017, 1:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cohen, Yoram. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste, report, December 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc737821/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.