The Particle Cleanliness Validation System

PDF Version Also Available for Download.

Description

The Particle Cleanliness Validation System (PCVS) is a combination of a surface particle collection tool and a microscope based data, reduction system for determining the particle cleanliness of mechanical and optical surfaces at LLNL. Livermore is currently constructing the National Ignition Facility (NIF), a large 192 beam laser system for studying fusion physics. The laser is entirely enclosed. in aluminum and stainless steel vessels containing several environments; air, argon, and vacuum. It contains uncoated optics as well as hard dielectric coated and softer solgel coated optics which are, to varying degrees, sensitive to opaque particles, translucent particles, and molecular contamination. ... continued below

Physical Description

1,550 Kilobytes pages

Creation Information

Stowers, I.F. & Ravizza, D.L. December 21, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Particle Cleanliness Validation System (PCVS) is a combination of a surface particle collection tool and a microscope based data, reduction system for determining the particle cleanliness of mechanical and optical surfaces at LLNL. Livermore is currently constructing the National Ignition Facility (NIF), a large 192 beam laser system for studying fusion physics. The laser is entirely enclosed. in aluminum and stainless steel vessels containing several environments; air, argon, and vacuum. It contains uncoated optics as well as hard dielectric coated and softer solgel coated optics which are, to varying degrees, sensitive to opaque particles, translucent particles, and molecular contamination. To quantify the particulate matter on structural surfaces during vendor cleaning and installation, a novel instrument has been developed to-both collect surface particles and to quantify the number and size distribution of these particles. The particles are collected on membrane filter paper which is ''swiped'' on a test surface for a proscribed distance to collect sufficient particles to significantly exceed the cleanliness of the filter paper. The swipe paper is then placed into a cassette for protection from further. contamination and transported to a microscope with x-y motorized stage and image analysis software, The surface of the swipe paper is scanned to determine both the background particle level of the paper, the cassette cover, and the portion of the paper which made contact with the test surface. The cumulative size distribution of the collected particles are displayed in size bins from 5 to 200 {micro}m. The quantity of particles exceeding 5 {micro}m is used to compute the IEST-STD-1246D cleanliness Level. Eight image analysis microscopes have been constructed for use with several dozen particle collection tools. About 30,000 cleanliness measurements have been taken to assure the clean construction and operation of the NIF laser system.

Physical Description

1,550 Kilobytes pages

Source

  • 48th Annual Technical Meeting of the Institute of Environmental Science and Technology, Anaheim, CA (US), 04/28/2002--05/01/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-145932
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 802923
  • Archival Resource Key: ark:/67531/metadc737760

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 21, 2001

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 2:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stowers, I.F. & Ravizza, D.L. The Particle Cleanliness Validation System, article, December 21, 2001; California. (digital.library.unt.edu/ark:/67531/metadc737760/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.