MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

PDF Version Also Available for Download.

Description

Three test instruments are being evaluated to determine the feasibility of using photo-acoustic technology for measuring unburned carbon in fly ash. The first test instrument is a single microwave frequency system previously constructed to measure photo-acoustic signals in an off-line configuration. This system was assembled and used to test parameters thought important to photo-acoustic signal output. A standard modulation frequency was chosen based upon signal to noise data gained from experimentation. Sample heterogeneity was tested and found not to be influential. Further testing showed that sample compression and photo-acoustic volume do affect photo-acoustic signal. Many tests were performed in the ... continued below

Physical Description

17 pages

Creation Information

Brown, Robert C.; Weber, Robert J. & Suby, Andrew A. July 1, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Three test instruments are being evaluated to determine the feasibility of using photo-acoustic technology for measuring unburned carbon in fly ash. The first test instrument is a single microwave frequency system previously constructed to measure photo-acoustic signals in an off-line configuration. This system was assembled and used to test parameters thought important to photo-acoustic signal output. A standard modulation frequency was chosen based upon signal to noise data gained from experimentation. Sample heterogeneity was tested and found not to be influential. Further testing showed that sample compression and photo-acoustic volume do affect photo-acoustic signal. Many tests were performed in the third quarter, which included the effects of ambient temperature and humidity, as well as sample moisture content, and signal linearity. Conclusions regarding the data for sample bulk density and temperature are pending further review and may require further testing. Simultaneously, a second instrument is being constructed based in part on lessons learned with the first instrument, but which also expands the capabilities of the first instrument. Improvements include a control loop to allow more constant microwave power output and an ability to operate over a range of microwave frequencies. To date, all of the components for the second instrument have been received and most of them tested with the exception of the broadband impedance transformers, as they will be incorporated into the second instrument test chamber. The third instrument will be designed based on the experiences of the first two instruments and will operate in an on-line carbon-in-ash monitoring system for coal-fired power plants.

Physical Description

17 pages

Notes

OSTI as DE00809200

Source

  • Other Information: PBD: 1 Jul 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-01NT41220
  • DOI: 10.2172/809200 | External Link
  • Office of Scientific & Technical Information Report Number: 809200
  • Archival Resource Key: ark:/67531/metadc737693

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 3, 2017, 12:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Brown, Robert C.; Weber, Robert J. & Suby, Andrew A. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON, report, July 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc737693/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.