DENSE MEDIA CYCLONE OPTIMIZATION

Report Type: Quarterly Technical Progress Report
Reporting Period: January 1, 2002 - March 31, 2002
Principal Author: Gerald H. Luttrell
Submission Date: April 11, 2002 (Revised September 14, 2002)
DOE Number: DE-FC26-01NT41061
NETL Manager: David M. Hyman

Submitting Organization:
Department of Mining & Minerals Engineering
100 Holden Hall
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061

Other Participants:
Massey Coal Services
Partition Enterprises
Precision Testing Laboratories
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
The test data obtained from the Baseline Assessment that compares the performance of the density traces to that of different sizes of coal particles is now complete. The experimental results show that the tracer data can indeed be used to accurately predict HMC performance. The following conclusions were drawn: (i) the tracer curve is slightly sharper than curve for coarsest size fraction of coal (probably due to the greater resolution of the tracer technique), (ii) the Ep increases with decreasing coal particle size, and (iii) the Ep values are not excessively large for the well-maintained HMC circuits. The major problems discovered were associated with improper apex-to-vortex finder ratios and particle hang-up due to media segregation. Only one plant yielded test data that were typical of a fully optimized level of performance.
<table>
<thead>
<tr>
<th>Principal Investigator:</th>
<th>Gerald Luttrell</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETL Project Manager:</td>
<td>David M. Hyman</td>
</tr>
<tr>
<td>Prime Contractor:</td>
<td>Virginia Tech</td>
</tr>
<tr>
<td>Partners:</td>
<td>Massey Coal Services</td>
</tr>
<tr>
<td></td>
<td>Partition Enterprises</td>
</tr>
<tr>
<td></td>
<td>Precision Testing Laboratory</td>
</tr>
<tr>
<td>Total Project Cost:</td>
<td>$320K</td>
</tr>
<tr>
<td>DOE Share:</td>
<td>$154K</td>
</tr>
<tr>
<td>Participant Share:</td>
<td>$166K</td>
</tr>
<tr>
<td>Project Period:</td>
<td>18 months</td>
</tr>
<tr>
<td>Project Start Date:</td>
<td>14 Dec. 2000</td>
</tr>
</tbody>
</table>
Background

- Heavy media cyclones (HMCs) are high-tonnage devices used to upgrade 50-0.5 mm particles.
- Used in ≈80% of U.S. coal plants (installed capacity >85,000 tph).
- Small increase in HMC efficiency can greatly improve profits.
 - 1 percentage point = $45 MM/yr
 - Poor performance is not unusual
- Problems often corrected by low-cost changes to circuitry or O&M practices.
Project Objective

- To develop engineering tools to improve HMC performance.
- These include:
 - Low cost density tracers to rapidly assess HMC efficiency (used by plant engineers)
 - Process models to predict influence of operating and design variables (used by plant designers)
 - Model-based expert system to provide a user-friendly interface for trouble-shooting HMC problems (used by equipment operators)
A common cause of HMC yield loss is floats overload. This occurs when the media flow is too small to carry all of the low-density coal out the vortex finder overflow. It can be corrected by increasing pressure, reducing apex diameter, reducing feed rate of raw coal installing HMCs of greater volumetric capacity.

Another cause of HMC yield loss is surging. This occurs due to media thickening and buildup of middlings that eventually discharge with low-ash coal to the underflow. It can be corrected by using a larger apex (common), finer magnetite, and alternative bleed arrangements. Both “floats overload” and “surging” are difficult for operators to detect using traditional approaches.
Accrued Costs: $108,802 as of 3/31/02 ($89,264 Direct; $19,538 Indirect)
Invoiced Costs: $104,745 as of 2/28/02 ($100,810 Paid, $3,936 Outstanding)

<table>
<thead>
<tr>
<th>Source</th>
<th>First Year</th>
<th>Second Year</th>
<th>Third Year</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plan*</td>
<td>Actual</td>
<td>Plan*</td>
<td>Actual</td>
</tr>
<tr>
<td>Participant</td>
<td>$79K</td>
<td>$79**</td>
<td>$87K</td>
<td>---</td>
</tr>
<tr>
<td>DOE</td>
<td>$96K</td>
<td>$96</td>
<td>$58K</td>
<td>$1K</td>
</tr>
<tr>
<td>Total</td>
<td>$320K</td>
<td>$180</td>
<td>0</td>
<td>---</td>
</tr>
</tbody>
</table>

*Budget after no-cost time extension
**Does not include costs encumbered for sample analysis

KEY:
- Plan = Planned costs for the full year.
- Actual = Actual costs through the reporting period.
Milestones and Status

<table>
<thead>
<tr>
<th>Major Milestone</th>
<th>Description of Planned Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Baseline Assessment</td>
<td>Initial inspection and testing to establish existing performance of DMC circuits at four selected plant sites</td>
</tr>
<tr>
<td>2 - Circuit Modification</td>
<td>Modification of plant circuits and/or operating practices based on information from the Baseline Assessment</td>
</tr>
<tr>
<td>3 - Follow-Up Assessment</td>
<td>Secondary inspection and testing to establish technical and economic benefits of recommended modifications</td>
</tr>
<tr>
<td>4 - Sample Analysis</td>
<td>Detailed float-sink testing of representative samples from the DMC circuits at the four selected plant sites</td>
</tr>
<tr>
<td>5 - Data Analysis/Simulation</td>
<td>Detailed analysis of density tracer and float-sink test data (including mass balancing and simulation studies)</td>
</tr>
<tr>
<td>6 - Expert System Development</td>
<td>Development of mathematical routines and expert rules that can be used by operators for DMC optimization</td>
</tr>
<tr>
<td>7 - Concept Assessment</td>
<td>Technical and economic evaluations of the project work (including preparation of technical reports)</td>
</tr>
<tr>
<td>Planned Milestone</td>
<td>Scheduled*</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>1 - Baseline Assessment</td>
<td>July ‘01</td>
</tr>
<tr>
<td>2 - Circuit Modification</td>
<td>Sept. ‘01</td>
</tr>
<tr>
<td>3 - Follow-Up Assessment</td>
<td>May ‘02</td>
</tr>
<tr>
<td>4 - Sample Analysis</td>
<td>May ‘02</td>
</tr>
<tr>
<td>5 - Data Analysis/Simulation</td>
<td>May ‘02</td>
</tr>
<tr>
<td>6 - Expert System Development</td>
<td>May. ‘02</td>
</tr>
<tr>
<td>7 - Concept Assessment</td>
<td>June. ‘02</td>
</tr>
</tbody>
</table>

*Dates modified to reflect no-cost time extension.
Key Accomplishments

- Baseline testing and float-sink analyses now completed for all five plants.
 - Includes seven different HMC circuits.
- Size-by-size partition analyses completed for all circuits (see following slides).
 - Elk Run
 - Green Valley
 - Liberty
 - Long Fork
 - Omar
Key Accomplishments

Cutpoint Ep
Coal -16 +8m 1.42 0.019
Coal -4 +2m 1.41 0.035
Coal -1 +0.5 1.49 0.103
32mm tracer 1.43 0.011

Elk Run Coarse Circuit

% to Underflow
0% 25% 50% 75% 100%
R D
0 0 0 0 0 0 0 0 0 0

Comments
• Apart from a glitch in the curve for –4+2 mm coal, these results are typical of good operation.
Key Accomplishments

Comments
- The low pivot point suggests that the ratio of spigot diameter to vortex finder diameter is too small.
Key Accomplishments

Comments

• Tracer cutpoints are slightly higher than coal indicating absorption of water and/or of float-sink liquids by coal.
Key Accomplishments

• Tracer cutpoints are slightly higher than coal indicating absorption of water and/or of float-sink liquids by coal.

Comments

Partition Curves for Green Valley Secondary HMCs

<table>
<thead>
<tr>
<th>Cutpoint</th>
<th>Ep</th>
<th>R D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal -16 +8mm</td>
<td>1.34</td>
<td>0.021</td>
</tr>
<tr>
<td>32mm Trace</td>
<td>1.37</td>
<td>0.010</td>
</tr>
</tbody>
</table>

January - March 2002 Quarterly Report
Key Accomplishments

Comments
- Small ratio of spigot to vortex finder and retention at 1.48-1.52 SG (implies surging loss of coal to rejects).
Key Accomplishments

Comments
• High pivot point indicates that the spigot to vortex finder ratio is too large (16 mm tracers used).
Key Accomplishments

Comments

• Another case of small ratio of spigot to vortex finder diameter and tracer retention around 1.68-1.70 SG.
Good News!

- Tests comparing density traces and coal particles now completed.
- The trace data can be used to accurately predict HMC performance.
 - Tracer curve slightly sharper than curve for coarsest size fraction of coal.
 - Difference attributed to the greater resolution of the tracer technique.
 - Increasing Ep with decreasing coal size.
- Ep values are not excessively large for the well-maintained HMC circuits.
Good News!

- Preliminary task reports provided to all plants.
 - Recommends modifications to circuitry and operating practices.
- Follow-up assessments being performed at all plants.
 - Currently conducted on a monthly basis.
- Website being prepared to distribute project findings and software.
 - VT will provide future support for website.
2002 - International Conferences

2002 - Short Courses and Workshops

- Operating and Maintenance Standards for Heavy Media Cyclones,” Half-Day Workshop, Sponsored by Massey Coal Services, Charleston, WV, February 1, 2002, 7 attendees.
- Operating and Maintenance Standards for Heavy Media Cyclones,” Half-Day Workshop, Sponsored by Massey Coal Services, Charleston, WV, March 1, 2002, 14 attendees.
Commercialization Outlook

- **New Funding**
 - Spin-off project recently funded by CAST to develop “smart” density tracers.
 - Makes use of recent advances in electronic transponder identification technology.
 - Will allow a single person to conduct a complete HMC efficiency test in just minutes.

- **Marketing Agreement**
 - Agreement in place for Precision Testing Laboratories to market tracers in the U.S. coal industry.
 - Technical support to be provided by VT and Partition Enterprises.
 - All parties providing cost-sharing funds and personnel to develop the new “smart” tracers.