The CDF silicon vertex trigger

PDF Version Also Available for Download.

Description

The CDF experiment's Silicon Vertex Trigger is a system of 150 custom 9U VME boards that reconstructs axial tracks in the CDF silicon strip detector in a 15 {mu}sec pipeline. SVT's 35 {mu}m impact parameter resolution enables CDF's Level 2 trigger to distinguish primary and secondary particles, and hence to collect large samples of hadronic bottom and charm decays. We review some of SVT's key design features. Speed is achieved with custom VLSI pattern recognition, linearized track fitting, pipelining, and parallel processing. Testing and reliability are aided by built-in logic state analysis and test-data sourcing at each board's input and ... continued below

Physical Description

133 Kilobytes pages

Creation Information

Ashmanskas, B.; Barchiesi, A. & Bardi, A. June 23, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The CDF experiment's Silicon Vertex Trigger is a system of 150 custom 9U VME boards that reconstructs axial tracks in the CDF silicon strip detector in a 15 {mu}sec pipeline. SVT's 35 {mu}m impact parameter resolution enables CDF's Level 2 trigger to distinguish primary and secondary particles, and hence to collect large samples of hadronic bottom and charm decays. We review some of SVT's key design features. Speed is achieved with custom VLSI pattern recognition, linearized track fitting, pipelining, and parallel processing. Testing and reliability are aided by built-in logic state analysis and test-data sourcing at each board's input and output, a common inter-board data link, and a universal ''Merger'' board for data fan-in/fan-out. Speed and adaptability are enhanced by use of modern FPGAs.

Physical Description

133 Kilobytes pages

Source

  • 9th Pisa Meeting on Advanced Detectors: Frontier Detectors for Frontier Physics, La Biodola, Isola d'Elba (IT), 05/25/2003--05/31/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-03/168-E
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 811924
  • Archival Resource Key: ark:/67531/metadc737597

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 23, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Aug. 5, 2016, 3:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ashmanskas, B.; Barchiesi, A. & Bardi, A. The CDF silicon vertex trigger, article, June 23, 2003; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc737597/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.