CO2 SEQUESTRATION AND RECYCLE BY PHOTOCATALYSIS WITH VISIBLE LIGHT

PDF Version Also Available for Download.

Description

Photocatalysis could provide a cost-effective route to recycle CO{sub 2} to useful chemicals or fuels. Development of an effective catalyst for the photocatalytic synthesis requires (i) the knowledge of the surface band gap and its relation to the surface structure, (ii) the reactivity of adsorbates and their reaction pathways, and (iii) the ability to manipulate the actives site for adsorption, surface reaction, and electron transfer. The research tasks accomplished during first six months include setting up a photo-catalytic reactor, optical bench, calibration of gas chromatograph, catalyst preparation, and catalyst screening study. Addition of Pt and Cu on TiO{sub 2} was ... continued below

Physical Description

vp.

Creation Information

Chuang, Steven S.C. December 31, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Photocatalysis could provide a cost-effective route to recycle CO{sub 2} to useful chemicals or fuels. Development of an effective catalyst for the photocatalytic synthesis requires (i) the knowledge of the surface band gap and its relation to the surface structure, (ii) the reactivity of adsorbates and their reaction pathways, and (iii) the ability to manipulate the actives site for adsorption, surface reaction, and electron transfer. The research tasks accomplished during first six months include setting up a photo-catalytic reactor, optical bench, calibration of gas chromatograph, catalyst preparation, and catalyst screening study. Addition of Pt and Cu on TiO{sub 2} was found to increase the activity of TiO{sub 2} catalysts for the synthesis of methanol and methane. The most active catalysts obtained from this study will be used for mechanistic study. The overall goal of this research is to provide a greater predictive capability for the design of visible light-photosynthesis catalysts by a deeper understanding of the reaction kinetics and mechanism as well as by better control of the coordination/chemical environment of active sites.

Physical Description

vp.

Notes

OSTI as DE00799755

Source

  • Other Information: PBD: 31 Dec 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FG26-99FT40579--02
  • Grant Number: FG26-99FT40579
  • DOI: 10.2172/799755 | External Link
  • Office of Scientific & Technical Information Report Number: 799755
  • Archival Resource Key: ark:/67531/metadc737552

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1999

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 11, 2016, 4:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chuang, Steven S.C. CO2 SEQUESTRATION AND RECYCLE BY PHOTOCATALYSIS WITH VISIBLE LIGHT, report, December 31, 1999; Pittsburgh, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc737552/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.