A REAL TIME COAL CONTENT ORE GRADE (C2OG) SENSOR

PDF Version Also Available for Download.

Description

The overall approach of this effort is to spectrally image ore or coal, and then use the spectral content (i.e., the particular colors of the ore or coal) to differentiate between the ore or coal grades. Currently, experts with practiced eyes do just this to identify the grade of platinum/palladium ore from the Stillwater Mine in south-central Montana. Additionally, trained eyes can identify high-sulfur and high-ash coal visually. The premise of this effort is that machine vision can accomplish this same differentiation. During the first quarter, machine vision results using a digital color camera did not correlate as well with ... continued below

Physical Description

7 pages

Creation Information

Swanson, Dr. Rand January 31, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The overall approach of this effort is to spectrally image ore or coal, and then use the spectral content (i.e., the particular colors of the ore or coal) to differentiate between the ore or coal grades. Currently, experts with practiced eyes do just this to identify the grade of platinum/palladium ore from the Stillwater Mine in south-central Montana. Additionally, trained eyes can identify high-sulfur and high-ash coal visually. The premise of this effort is that machine vision can accomplish this same differentiation. During the first quarter, machine vision results using a digital color camera did not correlate as well with assay results for platinum/palladium ore as would be required for a commercial device. One of the possible reasons for this is that the digital camera did not provide enough spectral information to obtain good differentiation between the sulfides associated with high-grade platinum/palladium ore and background interference, most notably yellow grease that contaminates some of the sample and green colored rock. The second quarter efforts have largely been devoted to implementing an imaging spectrometer for machine vision. In brief, modifying an imaging spectrometer that was designed for remote sensing from a Remotely Controlled (RC) airplane has done this. The imaging spectrometer provides 320 spectral channels, allowing for much better spectral resolution that can be obtained with a digital color camera, which provides 3 spectral channels. Preliminary results, as discussed below in more detail, are encouraging. The technical portion of the report below is organized into subsections as dictated by the DoE contract for this effort. These sections are: Experimental Apparatus, Experimental and Operating Data, Data Reduction, and Hypothesis and Conclusions. Partners in this effort are: Montana Tech of the University of Montana, Stillwater Mining Co., Western Syncoal, and the Montana Board of Research and Commercialization.

Physical Description

7 pages

Notes

OSTI as DE00791709

Source

  • Other Information: PBD: 31 Jan 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FC26-01NT41057--02
  • Grant Number: FC26-01NT41057
  • DOI: 10.2172/791709 | External Link
  • Office of Scientific & Technical Information Report Number: 791709
  • Archival Resource Key: ark:/67531/metadc737445

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 31, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 25, 2016, 2:32 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Swanson, Dr. Rand. A REAL TIME COAL CONTENT ORE GRADE (C2OG) SENSOR, report, January 31, 2002; Pittsburgh, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc737445/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.