EXPERIMENTAL CHARACTERIZATION OF COHERENT, RADIALLY-SHEARED ZONAL FLOWS IN THE DIII-D TOKAMAK

PDF Version Also Available for Download.

Description

A271 EXPERIMENTAL CHARACTERIZATION OF COHERENT, RADIALLY-SHEARED ZONAL FLOWS IN THE DIII-D TOKAMAK. Application of time-delay-estimation techniques to two-dimensional measurements of density fluctuations, obtained with beam emission spectroscopy in DIII-D plasmas, has provided temporally and spatially resolved measurements of the turbulence flow-field. Features that are characteristic of self-generated zonal flows are observed in the radial region near 0.85 {<=} r/a {<=} 1.0. These features include a coherent oscillation (approximately 15 kHz) in the poloidal flow of density fluctuations that has a long poloidal wavelength, possibly m = 0, narrow radial extent (k{sub r}{rho}{sub I} < 0.2), and whose frequency varies monotonically ... continued below

Physical Description

31 pages

Creation Information

MCKEE,GR; FONCK,RJ; JAKUBOWSKI,M; BURRELL,KH; HALLATSCHEK,K; MOYER,RA et al. November 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A271 EXPERIMENTAL CHARACTERIZATION OF COHERENT, RADIALLY-SHEARED ZONAL FLOWS IN THE DIII-D TOKAMAK. Application of time-delay-estimation techniques to two-dimensional measurements of density fluctuations, obtained with beam emission spectroscopy in DIII-D plasmas, has provided temporally and spatially resolved measurements of the turbulence flow-field. Features that are characteristic of self-generated zonal flows are observed in the radial region near 0.85 {<=} r/a {<=} 1.0. These features include a coherent oscillation (approximately 15 kHz) in the poloidal flow of density fluctuations that has a long poloidal wavelength, possibly m = 0, narrow radial extent (k{sub r}{rho}{sub I} < 0.2), and whose frequency varies monotonically with the local temperature. The approximate effective shearing rate, dv{sub {theta}}/dr, of the flow is of the same order of magnitude as the measured nonlinear decorrelation rate of the turbulence, and the density fluctuation amplitude is modulated at the frequency of the observed flow oscillation. Some phase coherence is observed between the higher wavenumber density fluctuations and low frequency poloidal flow fluctuations, suggesting a Reynolds stress contribution. These characteristics are consistent with predicted features of zonal flows, specifically identified as geodesic acoustic modes, observed in 3-D Braginskii simulations of core/edge turbulence.

Physical Description

31 pages

Notes

INIS; OSTI as DE00814000

Source

  • THIS IS A PREPRINT OF A PAPER TO BE PRESENTED AT THE 44TH ANNUAL MEETING OF THE DIVISION OF PLASMA PHYSICS, ORLANDO, FL (US), 11/11/2002--11/15/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: AC03-99ER54463
  • Office of Scientific & Technical Information Report Number: 814000
  • Archival Resource Key: ark:/67531/metadc737369

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 3, 2017, 2:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MCKEE,GR; FONCK,RJ; JAKUBOWSKI,M; BURRELL,KH; HALLATSCHEK,K; MOYER,RA et al. EXPERIMENTAL CHARACTERIZATION OF COHERENT, RADIALLY-SHEARED ZONAL FLOWS IN THE DIII-D TOKAMAK, article, November 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc737369/: accessed April 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.