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Abstract 
LOCA, the Library of Continuation Algorithms, is a software library for 

performing stability analysis of large-scale applications. LOC A enables the 
tracking of solution branches as a function of a system parameter, the direct 
tracking of bifurcation points, and, when linked with the ARPACK library, 
a linear stability analysis capability. It is designed to be easy to implement 
around codes that already use Newton’s method to converge to steady-state 

solutions. The algorithms are chosen to work for large problems, such as 
those that arise from discretizations of partial differential equations, and to 

run on distributed memory parallel machines. This manual presents 
LOCA’s continuation and bifurcation analysis algorithms, and instructions 
on how to implement LOCA with an application code. The LOCA code is 

being made publicly available at www . cs . sandia. gov/loca. 
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Chapter 1 

Introduction 

1.1 LOCA Overview 

This document is the theory and implementation manual for version 1.0 of 
LOCA, the Library Of Continuation Algorithms. When implemented with 
an application code, LOCA enables the tracking of solution branches as a 
function of a system parameter and the direct tracking of bifurcation points. 
LOCA is designed to  drive application codes that use Newton’s method to  
locate steady-state solutions to  nonlinear problems. The algorithms are cho- 
sen to work for large problems, such as those that arise from discretizations 
of partial differential equations, and to run on distributed memory parallel 
machines. 

The approach in LOCA for locating and tracking bifurcations begins with 
augmenting the residual equations defining a steady state with additional 
equations that describe the bifurcation. A Newton method is then formu- 
lated for this augmented system; however, instead of loading up the Jacobian 
matrix for the entire augmented system (a task that involved second deriva- 
tives and dense matrix rows), bordering algorithms are used to decompose the 
linear solve into several solves with smaller matrices. Almost all of the algo- 
rithms just require multiple solves of the Jacobian matrix for the steady state 
problem to  calculate the Newton updates for the augmented system. This 
greatly simplifies the implementation, since this is the same linear system 
that an application code using Newton’s method will already have invested 
in. Only the Hopf tracking algorithm requires the solution of a larger matrix, 

8 



CHAPTER I .  INTRODUCTION 9 

which is the complex matrix involving the Jacobian matrix and an imaginary 
multiple of the mass matrix. 

The following algorithms are available in this version of LOCA: 

1. ZERO-ORDER-CONTINUATION 

2. FIRST-ORDER-CONTINUATION 

3. ARCLENGTH-CONTINUATION 

4. TURNINGJOINT-CONTINUATION (fold points) 

5. PITCHFORK-CONTINUATION 

6. HOPF-CONTINUATION 

7. PHASE-TRANSITION-CONTINUATION 

The LOCA library relies heavily on a robust linear stability analysis capa- 
bility. This is needed for detecting the first instance of Hopf and Pitchfork 
bifurcations and generating initial guesses for the null vectors for these rou- 
tines. We have used the P A W A C K  package [1][2] to indentify a few select 
eigenvalues and eigenmodes. With this release of LOCA, we are including 
routines that drive P-ARPACK to  perform the Cayley transformation, which 
we have found to work well for large scale problems [3][4]. 

(In addition, the LOCA interface has been linked to an rSQP optimization 
code. The RSQP-OPTIMIZATION option will be discussed in the implementa- 
tion section, but details on how to use this feature are outside the scope of 
this document .) 

The rest of the document is organized as follows. Some background informa- 
tion on bifurcations follows in Section 1.2. Chapter 2 is the theory manual, 
and presents the algorithms that are implemented in LOCA. Chapter 3 shows 
the directory structure of the Loca code and contains instructions on how to  
implement LOCA around a new application code, including a recipe to fol- 
low. Chapter 4 gives details on each of the wrapper routines that give LOCA 
access to routines in the application code. Chapter 5 goes through each of 
the elements of the two structures that control the continuation algorithms. 
Chapter 6 explains the typical strategies employed to track bifurcations. This 
document does not contain demonstrations of the LOCA library being used 
with application codes. 
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Publications and presentations that demonstrate the use of the LOCA library 
for analysis of applications can be obtained from the LOCA web page: 

0 www.cs.sandia.gov/LOCA 

This web page contains links to the download site for the source code and 
this manual. 

The LOCA code is being licensed under the GNU Lesser General Public 
License, a copy of which is available with the code and can also be found 
at www.gnu.org. We welcome users to submit suggestions, bug reports, bug 
fixes, extensions, and results and publications generated using LOCA. 

1.2 A Survey of Bifurcation Theory 

This section is meant to give the user a brief introduction to bifurcation 
theory. For more information we refer users to the following references [5, 6, 
7, 8, 91. The Seydel book in particular has an excellent list of references. 

1.2.1 Complex Behavior in Nonlinear System 

The existence of multiple steady state solutions, or of unstable steady solu- 
tions, can lead to interesting behavior in nonlinear systems. This interesting 
behavior can lead to undesirable effects such as a system operating in one 
way on certain occasions, and in another way on other occasions. On the 
other hand, this interesting behavior can also be desirable, as when one is 
interested in making switches or oscillators. 

' 

LOCA, and bifurcation theory in general, is aimed at helping scientists and 
engineers efficiently map out different regions of parameter space that have 
qualitatively different behavior. Although one could in principle map out 
these regions using only transient calculations, this would be inefficient and 
unreliable'. For example, suppose we wanted to  h o w  for what values of 
parameters a system has two stable steady state solutions. For a given value 

We should mention that transient calculations could yield information not obtained 
in a bifurcation analysis. Ideally one would use a transient analysis in conjunction with a 
bifurcation analysis. 

http://www.gnu.org
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of the parameters we could determine that there are multiple stable steady 
states by solving many different initial value problems. If some converge 
towards one solution, and others converge towards another, then we have 
multiple stable steady states. However, each transient calculation will be 
time consuming, and it is not clear how many trials we need to  do in order to  
be convinced that only one stable steady solution exists. Furthermore, once 
we have convinced ourselves how many stable steady states there are for one 
set of parameters, this information does not greatly reduce the search when 
we change the parameters slightly. 

Using tools like LOCA and PARPACK, one only solves for steady state 
solutions, but takes into account the transient behavior by looking at the 
eigenvalues of the linearized system. The bifurcation approach has two ad- 
vantages over the transient approach. 

0 We can solve steady equations, which is much more efficient computa- 
tionally then integrating until a steady state is reached. 

0 We can append equations to  our steady state solution that allow us to  
find the value of a parameter where the system changes its behavior. 
When we have more than one parameter in our system, we can then 
map out parameter space very efficiently. 

1.2.2 Generic Behavior 

Suppose that we have a dynamical system of the form 

BX = R(x, A) 

where x is a vector (possibly of infinite dimension) that determines the state 
of our system, and A is a parameter. Steady state solutions can be found by 
solving 

The stability of a steady state solution q is determined by finding the 
eigenvalues of the system 

where J( q) is the Jacobian of the function R evaluated at the steady 
solution w. If all of the eigenvalues of this system have real parts less than 

R(x, A) = 0 (1.2) 

~ B w  = J(XO)W (1.3) 
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zero, the steady state solution is stable. If any of the eigenvalues have a real 
part bigger than zero, the system is unstable. 

It is possible to find many different ways for a solution to lose its stability. 
For example, we can mathematically construct systems that have 10 modes 
all go unstable at the same value of the parameter. It can be exceedingly 
difficult to analyze such problems, but fortunately problems of this sort are 
unlikely to occur in practice. One of the basic ideas in bifurcation theory 
is that of generic behavior. We only concern ourselves with behavior that 
is likely to occur in a system. Behavior is said to  be non-generic if when 
we perturb our equations, the behavior no longer exists. For example, it is 
generic for two curves in the plane to intersect with non zero slope. If we 
slightly change the equations of the two curves, they will still intersect at 
some other point with non-zero slope. However, it is not generic for two 
curves in three dimensional space to  intersect. Although it is not difficult 
to find examples of curves that intersect. If we apply almost any arbitrarily 
small perturbation to  the equations, they will not intersect. 

We now apply this notion of a generic property to nonlinear stability prob- 
lems. Suppose we have a steady state solution %(A) that depends on a 
parameter A. Suppose that we analyze the stability of this solution, and find 
that at some value A0 this solution goes unstable. This implies that there is 
a critical eigenvalue that has a zero real part. Elementary bifurcation the- 
ory shows that there are only two generic ways that a solution can lose its 
stability. 

0 If the critical eigenvalue is zero, the system has a turning point. 

0 If the critical eigenvalue is imaginary, the system undergoes a Hopf 
bifurcation. 

A turning point is a point in parameter space where two solution branches 
merge and then disappear. For example the equation x2 + X = 0 has two 
solutions if X < 0, but no solutions if X > 0. The point z = 0, X = 0 
is a turning point (Figure l.la). Some physical examples of turning points 
include: 

0 The buckling of a shallow arch under symmetrical loading. 

0 The breaking away of a drop from a tube when the volume is too large. 
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X 

z z 

Figure 1.1: Bifurcation diagrams of a turning point: (a) one turning point, 
(b) multiple turning points (leading to hysteresis). 

0 The bursting of a balloon when a critical volume is reached. 

0 Ignition of an explosion. 

Elementary bifurcation theory shows that the stability of one mode changes 
as we go around a turning point. This implies that if one of the solutions 
is stable, then the other solution will be unstable. Frequently we encounter 
more than one turning point in a system. In this case we can get an S shaped 
solution branch (Figure Llb). For sufficiently large or small values of the 
parameters we will have only one solution, but for intermediate values we will 
have three steady solutions. The upper and lower branches will be stable, the 
middle branch unstable. This S shaped solution curve can lead to  nonlinear 
hysteresis, where as we increase our parameter value the solution suddenly 
jumps from the lower to the upper solution. If we then slightly decrease the 
value of the parameter the solution does not jump back to  the lower solution, 
but will only do this if we greatly reduce the value of the parameter. 

The other generic form of loss of stability is the Hopf bifurcation. After a 
Hopf bifurcation the system no longer settles down t o  a steady state, but 
will begin to oscillate periodically. Examples of Hopf bifurcations include 
the onset of : 

0 Vertex shedding behind bluff bodies. 

0 Flutter in airplane wings. 
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I 
a 

Figure 1.2: Bifurcation diagrams 

a 

of a symmetry breaking bifurcation: 
broken pitchfork bifurcation (b) pitchfork bifurcation. 

0 Oscillations in electrical circuits 

0 Shimmying of wheels. 

Note that when we have located either one of these bifurcations, we are 
at very interesting points in parameter space. The turning point and Hopf 
bifurcation are generically the only bifurcations we expect to see in a one 
parameter system. For this reason they are called co-dimension one bifurca- 
tions. If we have more than one parameter in our system we can get more 
degenerate bifurcations. These more degenerate bifurcations tell us even 
more about our system than a co-dimension one bifurcation. For example 
suppose our system has two parameters X and p. Suppose that for some value 
of p our solution curves as a function of X look like those in Figure 1.2a. If 
we know about the turning point T ,  we know that our solution has at least 
two solutions for some values of the parameters. However, knowing about 
the turning point does not tell us that the upper disconnected branch exists. 
Suppose that as we change the parameter p we find that for some value of 
p our solution curves look like those in Figure 1.2b. The particular value of 
A, p and x where we have these solution branches intersecting is an example 
of a co-dimension two bifurcation. (This particular co-dimension two bifur- 
cation is called a pitchfork bifurcation.) If we know about the existence of 
a co-dimension two bifurcation we know that when we unfold it, we will get 
behavior like we see in Figure 1.2a (and other behavior as well). This exam- 
ple illustrates the point that  there is more information in a co-dimension two 
bifurcation. 
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1.2.3 Symmetry Breaking 

When analyzing the stability of steady state solutions it is very common 
to find non-generic behavior. For example, if we take a beam and load it 
symmetrically we find that the simple solution where it is straight up and 
down is stable if the loading is not large. When the loading gets to be large 
enough the beam will buckle by bending either to the left or right. Note that 
this is not a turning point, or a Hopf bifurcation. It is not a Hopf bifurcation 
because the beam does not begin oscillating, It is not a turning point because 
we have two solution branches intersecting each other, rather than a single 
solution branch turning around on itsel€. 

At first sight this appears to cast some doubt on the usefulness of the concept 
of generic behavior. However, we can note that if the beam was not built 
perfectly symmetrical we would find that the pitchfork bifurcation gets split 
up into two branches that do not intersect. We only get the non-generic 
behavior in the symmetrical case. 

The best way out of this dilemma is to note that scientists and engineers 
often analyze symmetrical situations. We then ask what type of generic 
behavior we expect to encounter under the assumption that our system has 
some symmetry. It should be emphasized that these additional types of 
bifurcations are co-dimension one bifurcations in the presence of symmetry, 
but they would be co-dimension two (or higher) bifurcations if no symmetry 
were present. For this reason we see that the scientist or engineer is actually 
being wise in choosing to analyze a system with symmetry. This allows them 
to get more information out of a one parameter system. 

Certain sorts of symmetry can ensure the existence of multiple eigenvalues 
in our system. This can lead to very interesting and complex behavior at 
bifurcation points. In LOCA we limit ourselves to the simplest sort of bi- 
furcations that can occur when a system has symmetry. These bifurcations 
assume that the critical mode has a simple eigenvalue. 

As in the previous section we assume that we are analyzing the stability of 
a steady solution -(A). However, we now assume that the governing equa- 
tions (and our solution xo(A)) are invariant under some group of symmetry 
transformations. We now suppose that at some value of A, our system goes 
unstable. We assume that the critical mode is a simple eigenvalue (this is 
not generically requited in all systems with symmetry). In this case if the 
critical eigenvalue has a nonzero imaginary part we will once again get a Hopf 
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bifurcation. This bifurcation will have some interesting spatio-temporal sym- 
metry. But, it is still a Hopf bifurcation. On the other hand, if the critical 
eigenvalue is zero, there are two possibilities. In order to understand these 
possibilities we need t o  realize that when we analyze a system with symme- 
try, then the eigenvector associated with a simple real eigenvalue must either 
be symmetric or anti-symmetric with respect to  any of the symmetries of 
the group. If the eigenvector is symmetric with respect to all of the trans- 
formations in the group, it is said to be a fully symmetric eigenvector. If 
it is anti-symmetric with respect to  some transformations, it is said to be a 
symmetry breaking eigenvector. 

When a symmetric system loses its stability at a simple real eigenvalue, there 
are two possibilities 

0 If the critical eigenvector is fully symmetric, then the system encounters 
a turning point. The symmetry of the solution does not change as we 
go around the turning point. 

0 If the critical eigenvector is symmetry breaking, then we encounter 
a pitchfork bifurcation. In this case the symmetrical solution %(A) 
continues to exist on both sides of the critical value of A. There is a 
second solution branch that intersects this symmetrical branch. This 
second branch only exists locally on one side of the bifurcation point, 
and the solutions on this branch are not symmetric with respect to  all 
elements of the group. Furthermore the elements on the upper and 
lower branches are transformed into each other by the elements of the 
group. 

1.2.4 Tranversality Conditions 

We used the example of two curves intersecting with non-zero slope in two 
dimensional space as an example of generic behavior. If we were a bit sloppy 
we could merely say that it is generic for two curves to intersect in two dimen- 
sional space, without mentioning the non-zero slope condition. The condition 
that they have non-zero slope is known as a transversality condition, and is 
included to guarantee that we do not have a degenerate situation, and that 
we can prove that for any small enough perturbation of our equations, we 
can find a new point of intersection. 
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In bifurcation theory the conditions stating that we are not at a degenerate 
point in parameter space are also known as transversality conditions. For 
example, suppose we have a system that has a turning point at x = XO, A = 
Xo. If this system is not degenerate, if we perturb it slightly, the perturbed 
system should also have a turning point nearby the original turning point. If 
this is not the case, then we are at a degenerate point in parameter space, and 
we have a situation similar to two two dimensional curves intersecting with 
zero slope. There are 3 transversality conditions which guarantee that we are 
not at a degenerate point. Let r and 1 be the right and left eigenvectors of 
the Jacobian matrix. The transversality conditions can be stated as follows: 

0 The zero eigenvalue is a simple eigenvalue. 

0 The quantity l T v  must not vanish. 

0 The quantity lT&(xo, Xo)rr must not vanish. 

For a one dimensional problem these conditions can be stated as # 0, and 
?$ # 0. For higher dimensional problems the term lTKXrr is the projection 
of the quadratic terms'onto the center manifold. 

For a Hopf bifurcation, the transversality conditions guarantee that if we 
have located a Hopf bifurcation, and then we perturb our system, we can 
locate a nearby Hopf bifurcation. The transversality conditions are 

0 The Jacobian matrix does not have a zero eigenvalue, and there is one 
and only one complex conjugate pair of eigenvalues that has a zero real 
part. 

0 The complex conjugate pair of eigenvalues are simple eigenvalues. 

0 Let .(A) be the critical eigenvalue. The real part of the critical eigen- 
value must pass through zero with non zero slope. That is R e v  # 0. 

The transversality conditions for a pitchfork bifurcation (in the presence of 
symmetry) are : 

0 The critical eigenvalue is simple. 

0 The critical eigenvalue passes through zero with nonzero slope,' # 
0. 



Chapter 2 

LOCA Bifurcation Algorithms 

In this chapter, we present the algorithms that are implemented in the LOCA 
library. These can be divided into three types: parameter continuation al- 
gorithms to track steady state solutions as a function of a single parameter, 
bifurcation tracking algorithms to calculate a parameter value (referred to as 
the bifurcation parameter) at which a bifurcation occurs as a function of a 
second (continuation) parameter, and a linearized stability analysis routine 
to ascertain the stability of the.steady state solution (using the ARPACK 
library [l, 21). 

18 

For references on computing bifurcations, we recommend Cliffe, Spence, 
and Tavener (2000) [5] and Govaerts (2000) [lo] and references therein. 
To see examples of the LOCA algorithms being used with large-scale 
analysis codes, see the publications section of the LOCA web page: 
www.cs.sandia.gov/LOCA. 

It is assumed that the application code uses a fully coupled Newton method 
to solve for steady states to a set of nonlinear equations. We have n residual 
equations R which form the basis of the model. The steady state problem is 
written as 

R(x, A) = 0, (2.1) 
which, given an initial guess for x, is solved iteratively with Newton's method, 

JAx = -R, x"" = x + Ax (2.2) 
where the Jacobian matrix J = E. The iteration on x converges when llAxll 
and/or IlRll decrease below some tolerances. For scalability to large applica- 
tions, the linear solve of the matrix equation 2.2 must be solved iteratively. 



CHAPTER 2. LOCA BIFURCATION ALGORITHMS 19 

2.1 Parameter Continuation Methods 

Steady state solution branches are tracked using continuation algorithms. 
Zero order, first order, and pseudo arc length continuation [ll] algorithms 
have all been implemented in the LOCA library. 

2.1.1 Zero Order and First Order Continuation 

This section covers zero order and first order continuation in a chosen pa- 
rameter A. Both of these algorithms consist of seeking a sequence of steady 
state solutions to a specified problem, 

R (xi, Xi) = 0 (2-3) 

where Xi  is a parameter value in the specified range of continuation and 
is the converged solution vector at the steady state corresponding to X = 
Xi. These are the simplest continuation algorithms, as they do not require 
augmentation or bordering of the problem matrix. 

In zero order continuation, the steady state solution x, obtained at each step 
is used as the initial guess for Newton iteration at the following step: 

P 
xis.1 = x, 

In first order continuation, the tangent vector, or sensitivity of the solution to 
the continuation parameter, is predicted by doing an additional linear solve 
of the system 

-ax aR 
(2.5) 

where J is the Jacobian matrix previously computed with X = Xi  and E is a 
forward-difference approximation obtained by perturbing X a small amount 
6 and reassembling the residual: 

(2.6) -- - [R (X i  + 6) - R (Xi)] /6 aR 
ax 

The first order prediction of xiS1 at the next continuation step &+I = Xi+AXi 
is then 

(2.7) 
dx 
ax 

P -  %+I - xi + -AX, 
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Thus, first order continuation entails one additional linear solve per continu- 
ation step, but this should reduce the number of Newton iterations required 
to attain convergence on each subsequent step. 

Step size control refers to the methods used to determine the change in the 
parameter value Xi  for each continuation step. The relevant LOCA input 
quantities are (see Section 5.2 for implementation details): 

Ab Beginning parameter value on entering LOCA. 

Xe Ending parameter value used to determine completion of continuation; 
may be larger or smaller than Ab.  

AXo Initial step size X1 - Xo. 

AAmin Smallest allowable absolute step size 1 AA I. 
AXmoz Largest allowable absolute step size IAXl. 

a Adjustable ‘aggressiveness’ parameter for increasing the step size, set to 
zero for constant step size. 

N,, Maximum Newton iterations per continuation step. 

N, Maximum number of continuation step attempts (including failures). 

If the first step fails to converge after N,, iterations, the entire continuation 
run is terminated. Otherwise, the parameter X is advanced by the specified 
initial step size AX0 and the second step is attempted. After the second step 
and each subsequent step, the step size AA is adjusted as described below. 

If the solution attempt failed to converge, the previous step size is halved. 
If the step size falls below AX,, or if N, is exceeded, continuation is ter- 
minated. Otherwise, the parameter value (and initial solution guess if doing 
first order) are updated for the new step size and the step is attempted again. 

If the solution attempt did converge, the next step size AX, = Xi+l  - X i  is 
computed as 

where a is the input step control parameter and Ni is the number of Newton 
iterations required for convergence on the last step. This value is reset to 
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AX,, if it exceeds that value. Also, if the new step size would take the 
parameter past its final value Xe, AX* is reset to A, - Xi, as this will be the 
last step. 

When a constant step size is specified (i.e. a = 0.0) and the step size is 
reduced after one or more failed step attempts, once convergence is again 
attained the step size is permitted to increase by using a = 0.5 in Equation 
2.8 until the initial (constant) step size is again reached. 

This procedure allows the parameter step size to be controlled adaptively 
based on the nonlinear solver convergence rate and is used for all LOCA 
algorithms, but is slightly modified for arc length continuation as discussed 
in the Section 2.1.3. 

2.1.2 Pseudo Arc Length Continuation 

When it  is desired to perform continuation of a problem at parameter val- 
ues in the vicinity of a stability limit (i.e. near a turning point), difficulties 
arise as the Jacobian matrix approaches singularity. Using simple parameter 
continuation methods would result in more failed step attempts and smaller 
step sizes as the turning point is approached. The pseudo arc length contin- 
uation algorithm [ll] is designed to alleviate the singularity by augmenting 
the linear system with an alternate arc length parameter s and an arc length 
equation. The augmented system is then described by 

(2.9) 
(2.10) 

where R is the Newton residual and n is an arc length equation. Here, both 
x and X are parameterized as functions of s, which can be defined by 

lldX112 + = (ds)2 (2.11) 

An arc length equation can then be obtained from Equation 2.11 by differ- 
entiating with respect to s: 

(2.12) 

However, it is more convenient to use a linearized form of Equation 2.12, as 
in [12] 

ax, ax, 
as as n ( x ( s ) ,  X(s), s)  = (xi - - - + (Xi  - &-I) - - As = 0 (2.13) 
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This algorithm seeks steady state solutions at predetermined intervals of arc 
length As rather than of the parameter AA. In Equation 2.9, the arc length 
equation establishes the relationship between AA and As, and the residual 
equations establish the steady state solution at the corresponding value of A. 

The augmented system can be expressed in matrix form as 

(2.14) 

where J, R, and Ax are computed during each Newton iteration using a 
guessed value of A. To solve the augmented system (Equation 2.14), it is 
necessary t o  update both A and the solution update x at each iteration. 
While it is possible to  simply construct the full ( N  + 1) x ( N  + 1) system 
and solve it once, the resulting matrix would be more dense than the original 
Jacobian. LOCA’s bordering algorithm (see also [12]) exploits the typically 
sparse nature of J by performing one resolve per iteration: 

Ja = -R 
dR 
ax J b = - -  

(2.15) 

(2.16) 

where a and b are temporary vectors. The new updates are then found by: 

AA = - (n + as ax -a) / (as ax + as ax - b) (2.17) 

Ax = a+ AAb (2.18) 

Like all other LOCA bordering algorithms, this algorithm is called from 
the application code’s nonlinear solver during each Newton iteration after 
the solution update is solved for but before the solution is updated (see 
step 2 of Section 3.2). The convergence status of the bordering algorithm 
updates (true or false) is returned, and becomes an additional criterion for 
convergence of the nonlinear solver. 

2.1.3 Arc Length Scaling and Step Size Control 

As discussed by Shadid [12], it is numerically advantageous for the relative 
magnitudes of the parameter and solution updates to be of similar order. In 
particular, the advantage of using arc length parameterization can be lost if 
the solution contribution to the arc length equation becomes very small. In 
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this algorithm, a single scaling factor 0 is used for the solution contribution 
in order t o  provide some control over the relative contributions of A and x. 
The modified arc length equation is then 

or equivalently 

~ + 0 2 ~ ~ g ~ ~ 2 ]  = 1 

Equation 2.20 cansbe rearranged to find g: 

The sign of 2 is chosen to be the same as that of the quantity 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

such that s increases as the parameter p proceeds in the direction from Ai-1 

to A i  [12]. This also enables detection of when a turning point is passed, as 
69 will change sign there. 

The relevant inputs for arc length scaling are (see Section 5.3 for implemen-. 
tation of these quantities) : 

A: Used to set the initial value of scale factor 0 and to periodically rescale 
the solution (default = 0.5). 

Value of at which rescaling is invoked (default = 0.0). 

y Used to adjust parameter step size when solution vector changes rapidly 
(default = 0.0). 

(default = 0.0). 
r, Used only when very small steps must be taken near a turning point 

After the first step is completed, the initial value 
2 = g, where g is the square root of A:: 

of 8 is found such that 

(2.23) 
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and 0dd is set to one initially. After each subsequent arc length step, the 
value of is recalculated, and if it exceeds ALm, Equation 2.23 is used to 
calculate the new 0 value which will restore to  its target value 9. However, 
if the new 0 value exceeds lo8, it is reset to lo8 and the new value of 

as (which will then differ from 9 )  is computed. Rescaling of the solution mll  
change the values and step sizes of the arc length parameter s, but will not 
effect the solution. 

After completing the first step, an initial arc length step size is computed as 

(2.24) 

Thereafter, step size control for arc length continuation is achieved by the 
same methods as for parameter continuation (see Section 2.2.1), except that 
the arc length step As is used in Equation 2.8 rather than Ap. However, the 
limits AAmin and AAmm still apply to AA, which is estimated as %As. If 
this estimate exceeds AA,,, then As is adjusted proportionately. For the 
final step, As is estimated such that A will reach its end value Ae, although 
it may not reach this value exactly. 

As in first order continuation, the tangent vector is computed by one 
linear solve after each successful step, and the initial solution guess at the 
next step is computed from it. The tangent vector also provides a means of 
detecting how fast the solution vector changes as the parameter is advanced. 
An indicator of this rate of change is the tangent factor: 

(2.25) 

r is the cosine of the angle between two successive tangent vectors, which 
varies from 1 when x vanes linearly with A toward zero as x changes more 
rapidly with A, such as when approaching a turning point. An additional 
means of step control enables the step size to  be reduced based on r: 

As = A S T ~  (2.26) 

Here, the value of As computed by Equation 2.8 is further adjusted by a 
factor of T raised to the power y, such that the degree of step control can be 
adjusted by changing y. (This step control helps generate visually appealing 
continuation plots. When plotting arclength continuation results, a solution 
curve is approximated by piecewise linear segments, and basing the step size 
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on r controls the discontinuity in the slope between those segments, avoiding 
jagged curves.) 

For some problems with complex turning points, difficulties may arise if a 
converged step takes the solution from a region of minor solution sensitivity 
to one of large solution sensitivity (to the continuation parameter). This may 
occur when the parameter value for the step is much closer to  the turning 
point than the previous value, and would be indicated by a small value of 
r .  Consequently, the next step attempt could be considerably larger than 
would be required to  reach the turning point, and numerous failed steps could 
occur. For even greater step size control, the tangent factor step limit r, 
can be invoked by setting its input value between zero and one. After each 
converged step, the tangent vector and 71 are immediately calculated. If 71 

is less than the specified r,, the step is treated as a failure and repeated at 
smaller step sizes until 71 increases to  at least 7,. This degree of control 
should rarely be necessary. 

2.2 Bifurcation Tracking Algorithms 

In this section we describe the methods implemented in the LOCA library for 
locating three common instabilities exhibited in nonlinear systems: turning 
(fold) point, pitchfork, and Hopf bifurcations. Each of the algorithms solves 
simultaneously for the steady state solution vector x of length n, the param- 
eter at which the bifurcation occurs, A, and the null vector w = y+zi, which 
is the eigenvector associated with the eigenvalue that has zero real part. The 
bifurcations are tracked as a function of a second parameter via simple zero 
order continuation. 

2.2.1 The Turning (Fold) Point Tracking Algorithm 

The turning point tracking al'gorithm uses Newton's method to converge to 
a turning point (fold point) and simple zero order continuation to  track it as 
a function of a second parameter. At a turning point bifurcation (or fold), 
there is a single eigenvalue y = 0 with associated real-valued null vector y. 
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We use the following formulation of to characterize the turning point [13]: 

R=O 
Jy = 0 
4.y = 1 

(2.27) 
(2.28) 
(2.29) 

Here 4 is a constant vector. The first vector equation (which is n scalar 
equations) specifies that the solution be on the steady state solution branch, 
the second vector equation specifies that a real-valued eigenvector y exists 
that corresponds to a zero eigenvalue, and the last scalar equation pins the 
length of the null vector at length 1 (and removes the trivial solution if 
y = 0). The vector 4 is chosen to be the same as the initial guess for y so 
that the final equation mimics a L2 norm yet is linear. This set of 2n + 1 
equations specifies the values of x, y, and A. 

A full Newton method for this system has the form 

. 

J O B  
(2.30) 

It would be desirable to formulate this system and send it to an efficient 
linear solver, but this is not practical with many large-scale engineering sim- ' 

ulation codes. One hurdle would be the formulation of the matrix z y ,  
which requires derivatives not normally calculated in an engineering code 
and does not lend itself well to efficient numerical differentiation. The sec- 
ond issue is the work involved in determining the sparse matrix storage for 
iterative linear solvers and partitioning and load balancing for applications 
sent to  parallel computers. The last row and column are not in general sparse 
and would require frequent global communications. The sparsity of the ma- 
trix J coming from many PDE solution methods (e.g. finite element, finite 
difference, finite volume) limits communications in the linear solver to only 
local communications between a processor and a handful (order ten) of its 
neighbors. 

To reduce the effort in implementing the bifurcation algorithms with appli- 
cation codes, bordering algorithms are used to solve the system of equations 
in (2.27). The linear equations in the Newton iteration for the turning point 
algorithm (2.27) can be equivalently formulated with four linear solves of the 
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. matrix J and some simple algebra: 

Ja = -R (2.31) 
8R Jb = -- a 

l - 4 . c  
4 . d  

AA = 

A x  = a +  AAb 
A y  = c + AAd - y 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
(2.37) 

The variables a, b, c and d are temporary vectors of length n. Each of 
the 4 linear solves of J are performed by the application code, in the same 
way that this matrix is solved for in Newton iteration (2.2). Work can be 
saved in the second, third, and fourth solves, by reusing a factorization for 
a direct solver and the preconditioner for an preconditioned iterative solver. 
The algorithm requires initial guesses for x and A, which usually come from a 
steady solution near the turning point as located by an arclength continuation 
run. LOCA supports the use of an initial null vector from a previous turning 
point tracking run of the problem if one is provided; otherwise, the initial 
guess for the null, vector and the fixed value of the vector q5 are both chosen 
to be scaled versions of the b vector from Equation (2.32), 

(2.38) 

where llb[l = 
satisfied. 

This scaling assures that Equation (2.29) is initially 

The derivatives on the right hand side of Equations (2.32 - 2.34) are all 
calculated with first order finite differences and directional derivatives. The 
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following formulas are used: 

(2.39) 

(2.40) dJy 
ax €2 

J(x + ,528, X)y - J(x, X)y - 

1 

aJy dJy -b+-m ax ax 
1 / I  1 \  

aJy dJy -b+-m ax ax 
1 1 

-J(x + esb, X)y + -J(x, X + E ~ ) Y  - 
E3 E1 

(2.41) 

" . -  
(2.41) 

The robustness and accuracy of the algorithm is dependent on the choice of 
the perturbations E .  The following choices have been found to work well on 
sample applications for 6 = 1 0 5  

€1 = S((X1 + a) (2.42) 

llxll E 2  = a(- +a) 
11a11 
llxll 

E3 = a(- + 6) 
llbll 

(2.43) 

(2.44) 

However, some problems have been observed to require an even smaller value, 
such as 6 = For this reason, the value to be used is an input to  LOCA 
and must be provided as discussed in Chapter 5. 

After convergence to a turning point, a slight modification of simple zero 
order continuation is used to converge to the next turning point at the next 
value of a second parameter. The initial guesses for X and y are the converged 
values at the previous turning point, and the constant vector is set to  qh = y. 
We found more robust convergence when the solution vector x was perturbed 
off the singularity by a small random perturbation of relative magnitude 

2.2.2 The Pitchfork Tracking Algorithm 

An algorithm for tracking Pitchfork bifurcations has been developed that 
requires little modifications to  the application code and model. Pitchfork 
bifurcations occur when a symmetric solution loses stability to a pair of 
asymmetric solutions. In this algorithm, we require that the user defines 
the symmetry by supplying a constant vector, $, that is antisymmetric with 
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respect to the symmetry being broken. We specify the Pitchfork by the 
following set of coupled equations: 

(2.45) 
(2.46) 
(2.47) 
(2.48) 

The variable not defined in the turning point algorithm above is the scalar 
variable CT that  is a slack variable representing the asymmetry in the problem. 
This additional unknown is associated with the additional equation 2.47, 
which enforces that the solution vector is orthogonal to the antisymmetric 
vector. The notation in this equation represents an inner product. For a 
symmetric model, B will go to zero at the solution. This system can be 
shown to  be a non-singular formulation of the Pitchfork bifurcation. 

We find this to be a convenient alternative to formulating the pitchfork track- 
ing algorithm on half the domain with symmetric boundary conditions for the 
solution and antisymmetric bounday conditions for the bifurcation problem 
[5]. For one, the applying of symmetry boundary conditions for some symme- 
tries (e.g. rotational symmetry) can break the sparsity pattern of a Jacobian 
matrix, and therefore the parallel communication maps. Secondly, it can be 
inconvenient to transfer solutions from half the domain onto the the whole 
domain when dealing with large databases for meshes and solutions. With 
our formulation, the same mesh and boundary conditions are used to locate 
the pitchfork bifurcation as to follow one of the pitchfork (non-symmetric) 
branches. However, the gains in efficiency of only solving half the domain 
make the traditional approach appealing. 

There are a few assumptions that were made to ease the implementation of 
the Pitchfork tracking algorithm, yet can make it trickier to use. First, we 
require that any odd symmetry in the variables is about zero so that the in- 
ner product of the solution vector with the antisymmetric vector is zero. For 
instance, the cold and hot temperatures in a thermal flow problem should be 
set at -0.5 and 0.5 instead of 0 and 1. Secondly, our current implementation 
uses a dot product of the vectors to calculate the inner product (x, $); how- 
ever, this strictly should be an integral over the computational domain. For 
instance, if the discretization (i.e. finite element mesh) is not symmetric with 
respect to the symmetry in the PDEs, then the dot product of the solution 
vector and antisymmetric coefficient vectors would not be zero. We allow the 
users of the LOCA library to supply the integrated inner product, yet in our 
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applications we have replaced it with the vector dot promct. If the mesh 
is not symmetric with respect to  the symmetry in the PDEs that is being 
broken at the Pitchfork bifurcation, the discretized system will exhibit an 
imperfect bifurcation. The algorithm presented here will converge to  a point 
that is a reasonable approximation of the Pitchfork bifurcation. However, at 
this point o # 0 and therefore we will not have R = 0. 

To start the algorithm, we expect the user to supply the vector $. The null 
vector y has the antisymmetry that we are requiring of $. We calculate $ 
and the initial guess for y by first detecting the Pitchfork bifurcation with an 
eigensolver. The eigenvector associated with the eigenvalue that is passing 
through zero at the Pitchfork is used for $ and the initial guess for y. For 
problems that have multiple pitchfork bifurcations in the same region of 
parameter space, which is often the case when the system can go unstable 
to different modes, the pitchfork algorithm can be started multiple times 
with different $ vectors to track each pitchfork separately. We choose o = 0 
as an initial guess and we rarely see it increase past lo-’’ throughout the 
iterations. 

We have tried a few different vectors for the constant vector 4, which is used 
to get an approximate norm of the null vector y. 

As with the turning point algorithm, we use a fully coupled Newton method 
to converge to  the Pitchfork bifurcation and a bordering algorithm to simplify 
the solution of the Newton iteration. The Newton iteration for this system 

This system can be solved using a mathematically (but not numerically) 
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equivalent bordering algorithm: 

Ja = -R 
dR Jb = -- 
dA 

JC = -$ 
8JY Jd = -- axa 

dJy dJy 
ax dX 

dJY 
ax 

Je = --b - - 

Jf = -- 
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(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

I - + . d - 4 . f ( A O + a )  
4 - e  

AA = 

Ax = a +  AAb + (Aa + a)c 

(2.57) 

(2.58) 
Ay = d + Axe+ (Aa + a)f - y (2.59) 

This algorithm has 6 temporary vectors (a, b, c, d, e, andf), each of which 
is the result of a linear solve with the same matrix J.  The vector c does 
not vary throughout the Newton iteration so this solve is only performed 
on the first Newton iteration of each solve to a pitchfork bifurcation. The 
right hand sides of these 6 linear systems are mostly the same as for the 
turning point algorithm, and so we reuse the same routines (and therefore 
the same differencing schemes and perturbations) that were presented above 
(equations 2.39 and 2.42). 

2.2.3 The Hopf Point Tracking Algorithm 

The algorithm for tracking Hopf bifurcations is characterized by a complex 
pair of eigenvalues that have a zero real part. The purely imaginary eigen- 
values can be written y = f w i  with complex eigenvectors w = y + zi. By 
separating the real and complex parts, the following set of equations can be 
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used to describe a Hopf bifurcation in real arithmetic (14, 151, 

R=O 
J y  = -WBZ 
Jz = wBy 
+ y = l  
q5.z=0 
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(2.60) 
(2.61) 
(2.62) 
(2.63) 
(2.64) 

where B is the matrix of coefficients of time dependent terms. This system 
of 3N + 2 equations and unknowns solves for the the solution vector [x, y, 
z, w, and A]. The first vector equation specifies that we are on the solution 
branch, the next two equations specify that we are at place where there 
is a purely imaginary eigenvalue, and the last two scalar equations set the 
phase and amplitude of the eigenvectors (which are otherwise free). The 
Hopf bifurcation tracking algorithm is the complex valued equivalent to  the 
real valued turning point tracking algorithm. Setting w to zero yields two 
redundant turning point tracking algorithms. Also note that the same Hopf 
bifurcation can admit a second solution to  this system of equations at (x, y, 
-b fz ,  -w, A). 

One Newton iteration for the fully coupled solution of this system is the 
linear system, 

R - aR J 0 0 0  
J wB Bz ~ F w -  

I ]  [ ;3] ??Z+WaB1; 
- - w %  a% lf -wB J -By 
ax m-w% 

0 4 0 0  0 
0 0 4 0  0 - 

(2.65) 

In this derivation we have allowed for # 0 and E # 0. While in many 
situations these terms can be neglected, the matrix B can depend on the 
solution vector through dependence of the inertial coefficients (e.g. density 
and heat capacity) on the local state vector. The ,matrix B will depend on 
the parameter very strongly when A is a geometric parameter that moves the 
mesh locations. 

Again we solve this linear system by a bordering algorithm that breaks it into 
simpler linear solves. It is not possible to solve this system by solves of just 
the matrix J ,  but also requires solves of the complex matrix J + wBi. The 
bordering algorithm for the Newton iteration of the Hopf tracking algorithm, 
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written in terms of real-valued variables, is, 

Ja = -R 
aR Jb = -- 
aA 
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(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

(2.73) 
(2.74) 
(2.75) 

This algorithm has 8 temporary vectors a through h, which are solved 
with two solves of the J matrix and three solves of the 2n x 2n matrix [ -iB "J" 1. This algorithm differs from the turning point and pitchfork 

tracking algorithms which only require solution of the steady state Jacobian 
J, a routine which codes using Newton's method already have. Since the 
location of the nonzeros in the sparse matrix B are a subset of those for the 
matrix J, a parallel iterative solver for the 2n x 2n matrix can use the same 
local communication maps as used for solces of J. An algorithm for solving 
complex matrix equations with a real-valued sparse iterative solver has re- 
cently been published [16] and implemented in the Komplex extension to the 
Aztec library of preonditioned iterative Krylov solvers. This algorithm also 
requires the formulation of the B matrix, a routine which a code performing 
linear stability analysis of equation 2.89 will already have. 

To initialize the routine, we assume that an initial Hopf bifurcation has 
been detected with an eigensolver, by having the real part of a complex 
pair of eigenvalues pass through zero with successive steps in the parameter. 
This gives good starting values for all the unknowns in the Hopf tracking 
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algorithm. 

2.2.4 The Phase Transition Tracking Algorithm 

A phase transition occurs when two different phases (i.e. liquid and vapor) 
can coexist under the exact same thermodynamic conditions and have the 
same free energy. The phase transition tracking algorithm uses Newton’s 
method to converge to a parameter value and two solution vectors which 
have equal free energies. Simple zero order continuation tracks the phase 
transition as a function of a second parameter. Use of this algorithm in the 
Tramonto code usually has a partial pressure as the first ‘bifurcation’ param- 
eter, and temperature as the second continuation parameter. We characterize 
the phase transition by the following set of 2n + 1 equations: 

(2.76) 
(2.77) 
(2.78) 

Here XI and x2 are two solution vectors and s1 is the expression for the free 
energy. 

A full Newton method for this system has the form 

J1 

(2.79) 

Here the subscript i on the variable R, J, and s1 represent evaluation with 
solution vector xi .  

As in the bifurcation tracking algorithms above, a bordering algorithm is 
used to solve the system of equations in (2.76). The linear equations in the 
Newton iteration for the turning point algorithm (2.76) can be equivalently 
formulated with two linear solves of the matrix J1, two of the matrix J2, 
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some simple algebra: 

Jla = -R1 

G + (%a - E c )  
AA=-,, + ( g b  - 2 d )  

Ax, = a + AAb 
Ax2 = c + AAd 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 
(2.86) 

The variables a, b, c and d are temporary vectors of length n. The quan- 
tities in equation 2.84 with the E terms can be quickly approximated with 
directional derivatives, such as, 

(2.87) 8Q1 aQ2 G(xl +ea,x2 + ec) - G(xl,x2) 
a x 1  h 2  E 
- a - - c =  

where the perturbation is chosen as 

(2.88) 

with 6 = lob6. 

The algorithm requires initial guesses for xl, x2 and A, which usually come 
from picking two solutions from near a phase transition from an arclength 
continuation run. As with the bifurcation tracking algorithms, the strength 
of the phase transition algorithm is not locating the first occurrence, but the 
automatic tracking of the phase transition with respect to a second parame- 
ter. 

2.3 Linearized Stability Analysis 

The stability of the steady solutions to small perturbations can be ascertained 
through linearized stability analysis. Linearization of the transient equations 
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around the steady state lead to  a generalized eigenvalue problem of the form 

Jw = yBw, (2.89) 

where B is the matrix of coefficients of time dependent terms, y is an eigen- 
value of the system (generally complex), and w is the associated eigenvector, 
which can be written in terms of real values vectors w = y + zi. The linear 
theory shows that a perturbation in the solution vector in the direction of w 
will evolve in time (t) with amplitude ert. It is clear from this that a solution 
will be linearly stable if all eigenvalues satisfy Real(y) < 0, and therefore 
decay in time. If any eigenvalue has positive real part, then perturbations 
with any component in the direction of the associated eigenvector will grow 
exponentially, and the steady state solution is deemed unstable. A system 
loses stability, and experiences a bifurcation, when a stable steady state so- 
lution branch, as parameterized by a system parameter A, passes through a 
point where Real(y) = 0. 

We have developed a robust linearized stability analysis capability for large 
scale problems that accurately approximates leading eigenvalues of the sys- 
tem in equation 2.89. This method is based on the Cayley transformation 
to make the eigenvalues of interest have largest magnitude, and then uses 
the implicitly restarted Arnoldi method of the ARPACK and PARPACK 
libraries [l, 21. Details of the methods are found in [3] and benchmarking 
and application of the methods to incompressible flows are found in [4], [17], 
P81. 



Chapter 3 

LOCA Software and 
Implementation 

The LOCA library is “C” code that performs parameter continuation and bi- 
furcation tracking for an application code. LOCA is designed for use around 
codes that use Newton’s method to locate steady-state solutions. The algo- 
rithms in LOCA (presented in the previous Chapter) are designed to be as 
non-invasive as possible, and make use of the application code’s own routines. 
The algorithms in LOCA are programmed to wrapper routines which must 
be filled in by the user. For the most part, these routines will be already 
available in a code performing Newton’s methods: residual fills, Jacobian 
matrix fills, and linear solves of the Jacobian matrix. (More involved devel- 
opment is usually needed to enable the Hopf bifurcation tracking routine, 
where a Mass matrix and complex matrix solve capabilities are required.) 

In this chapter, we will first detail the directory structure of the LOCA code, 
and give details on how to  compile the library, the test-driver, and how to run 
the test suite. The second section gives the recipe for implementing LOCA 
in a new application code. Items 3 and 4 of this recipe include numerous 
sub-tasks, with details in the -following two Chapters of this manual. 

37 
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3.1 LOCA Directory Structure 

The LOCA software has the directory structure shown in Figure 3.1, and 
consists of 6 directories under the Loca top directory. The most important 
of these is the src directory of source code with loca and test-driver sub- 
directories. In src/loca is the source code for the LOCA library, which are 
the files that are independent of the application code. These files can be 
compiled once per platform to create a l ib loca .  a library. The Fortran files 
are only needed when the user wants to enable the linear stability analy- 
sis (eigenvalue) capability, and require linking to the ARPACK library. In 
src/test-driver is the file loca-interf ace. c ,  which is the file that must 
be extensively modified to interface LOCA with a new application. Here it 
is filled in to interface the test-driver problem with LOCA. The test-driver 
is the remaining files in this directory, and solves for the stability of a beam 
conveying fluid (the garden hose problem). 

The build directory is for compiling. The makefiles are set up to require 
three environment variables to be set: 

1. setenv LOCAHOME pat6-to-top-LOCA-dctory 

2. setenv LOCAARCH architecture-name 

3. set env LOC A-C 0 M M communication- type 

LOCAARCH is used to organize the compilation of LOCA for different plat- 
forms, (e.g. SG164, LINUX, SOLARIS) and LOCA-COMM is usually set to 
SERIAL or MPI to distinguish the communication type compiled for. When 
compiling, the makefile automatically looks for compiling information from a 
file named makefi1e.LOCAARCH.LOCA-COMM, and the object code and 
the library are placed in subdirectories (withing the src and l i b  directories) 
with the name LOCAARCH.LOCA-COMM. 

Within the machine dependent makefiles, the paths to compilers, lapack, 
blas, and arpack libraries must be set. A define flag, EIGENVALUE-DEFINES, 
should be set equal to EIGENSERIAL or EIGENSARALLEL if the linear stability 
analysis capability is desired. These flags control the compilation of the 
three files with names src/loca-eigen*. After setting the three environment 
variables, the code can be compiled from within the build directory by typing 
one of the following: 



B Loca 

build 

Makefile 

makefileAFKH.COMM 

makefile. LlNUXMP I 

makeflle.LINUXSERlAL 

makefile.SGI64.MPI 

makefileSG 164.SER IAL 

doc 

src-latex 

install-arpack-here 

ARCH.COMM 

liblocaa 

figures 

lombib 

I oca-booktex 

loca-chap I .tex 

loca-chap2.tex 

loca-chap3.tex 

loca-chap4.tex 

Ioca-chap5.tex 

loca-chap6.tex 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

loca-eigen-cayley.l 

loca-eigenvalue.c 

*.dat*(reference-files) 

pmh*(input-files) 

yvec*( restart-vector) 

Figure 3.1: Directory structure of the LOCA code:, with directories build, 
doc, external, lib, src and tests. The src/loca directory holds the 
source code for the LOCA library, while the src/test-driver contains the 
interface file loca- interface.^ (here filled out to work with a test code) 
which must be extensively modified to link LOCA to a new application code. 
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1. gmake loca (compiles just src/loca to form 1ibloca.a) 

2. gmake test-driver (compiles just src/test-driver) 

3. gmake (compiles both loca and test-driver) 

The makefile also recognizes clean and clobber targets. 

external is the directory to  put the ARPACK library. It is expected that 
the compile arpack libraries will reside in this directory, and the paths to 
the arpack libraries in the makefiles will point to here. doc is the doc- 
umentation directory, which includes latex code for this manual. l i b  is 
the directory where compiled 1ibloca.a libraries are placed, within sub- 
directories that are created from the name of the environment variables: 
LOCAARCH.LOCA-COMM. 

The t e s t s  directory contains an automatic test script for running the 
test-driver code and checking against reference output files. The test script 
currently runs ten different input files (named prob) and the reference output 
files are also in this director, and contain the string dat in the name. The 
test script is executed by running: 

per1 loca-test 

For more information on the physical problem being solved by the test-driver 
application, please see the paper entitled “A Multi-parameter, Numerical 
Stability Analysis of a Standing Cantelever Conveying Fluid” by Bou-Ftabee, 
Romero, and Salinger, which can be accessed from the LOCA web page: 
www.cs.sandia.gov/LOCA. 

Almost all of the code development needed to  implement LOCA around a 
new application code occurs in the file loca-interf ace. c. All the other 
LOCA files should in theory remain unmodified. The other files include the 
header file loca-const . h, which contains definitions of flags (e.g. #define 
ARCLENGTH-CONTINUATION 2)  used in the library, and definitions of the 
con structure of structures which holds all the problem specific information. 
The file loca-lib.  c contains the parameter continuation loop, including step 
control logic and predictor calculations. The file loca-bord . c contains the 
bordering algorithms that get called within each Newton iteration. The file 
loca-uti1 . c contains utility routines needed by the rest of the codes, such 
as vector copies and dot products. 
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3.2 Implementation Recipe 

0. Modularize your code. LOCA needs to  be able to call the nonlinear 
solver (Newton) iteration loop. If your nonlinear solver includes code 
before the Newton loop begins, such as reading in a mesh or creating 
an initial guess for a solution vector, these need to be separated into 
another routine. LOCA also needs to call a residual (right hand side) 
fill routine and a Jacobian matrix fill routine. Make sure your code still 
works after these changes. 

1. Put in a call to  do-loca0. This will cede control to the LOCA library. 
This call needs to come after all initialization is done, including gen- 
erating an initial guess for the solution vector. This is the same place 
where the Newton iteration loop is called for steady state calculations 
and a time stepper is called for transient problems. You can choose the 
arguments you want to send to doloca(), which are usually the same 
as you send to the nonlinear solver. A piece of code might look like 
this: 

i f  (method==STEADY) 
newton-solver (arglist)  ; 

e l s e  if (method==TRANSIENT) 
t ime-integrat ion (argl i s t  1 ; 

else i f  (method==CONTINUATION) 
do-loca (arglis t ; 

In the file loca-interface. c, the first routine is do-locao. Fill in 
the argument list as you have chosen it. Also, any header files that 
are included at the top of the nonlinear solver function should also be 
included at the top of loca-interf ace. c. Add a prototype for the call 
to  do-locaO. 

2. A hook is needed in the middle of your Newton iteration to  invoke the 
bordering algorithms. (This is not needed if all you want to use 

First, add an argument to your nonlinear solver routine called 
void *con-ptr, and pass it a value of NULL wherever you usu- 
ally call your nonlinear solver. Define an integer variable called 
cont inuat ion-converged in your nonlinear solver. This will be a flag 
indicating whether or not the part of the Newton iteration performed 
in the bordering algorithms is converged. 

is ZERO-ORDER-CONTINUATION and FIRST-ORDER-CONTINUATION.) 
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In the Newton loop, after the linear system has been solved for the 
update vector, but before the update is added to  the current value of 
the solution vector, put in the following code: 

if (con-ptr==NULL) 

else { 
contination-converged=TRUE; 

continuation-converged=FALSE; 
cont inuat ion-converged = 

continuationhook(x, deltax, con-ptr, -01, atoll ; 
1 

Here double *x is the current solution vector, double *delta2 is 
the Newton update to the solution vector, double rtol and double 
at01 are tolerance to  determine convergence of the update (with 
reltol=10-2 and abstol=10-6 as typical values). 
Note that the vector delta2 gets modified in the bordering algorithms. 
The next lines after this hook are usually the update loop (xCi1 = x Cil 
+ deltaxCi1). 

Add the condition that continuation-converged==TRUE to the con- 
vergence criteria for the Newton iteration. 
Finally, make sure your nonlinear solver returns the number of Newton 
iterations taken before convergence, whether in the argument list or as 
a return value. 

3. The next part of the implementation, and the most time con- 
suming, is the filling in of all the needed wrapper routines 
in the file loca-interf ace. c. Wrapper routines (which in- 
clude linear-solver-conwrap, assign-parameter-conwrap, and 
solut ion-output-conwrap) provide LOCA access to routines in the 
application code. A complete list of the wrapper routines is given in 
Chapter 4, each with a description of the required functionality, argu- 
ment lists, return values, and a list of which continuation strategies use 
it. (For example, wrapper routines dealing with the mass matrix are 
only required for Hopf tracking and eigenvalue calculations.) 
The algorithms in LOCA access the solution vector and residual vector, 
and assumes that these quantities are continuous in memory on each 
processor. They can therefore be identified by a pointer to the begin- 
ning of the array and a length. (Future version of LOCA will relax 
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these assumptions and allow the user to supply routines for all vector 
operations.) LOCA is however blind to the matrix and all other at- 
tributes of the problem, such as the mesh. Because of this, the wrapper 
routines have minimal argument lists. For instance, when LOCA needs 
the application code to multiply the Jacobian matrix times a vector x 
to  render a vector y, the call is simply 

matvec_mult-conwrap(x,y) ; 

The function void matvecrmulLconwrap(doub1e *x, double *y> ; 
needs to  know about the matrix, but doesn’t receive information about 
it through the argument lists. This is accomplished by making all 
information that is needed in the wrapper routines - but which is not 
passed through LOCA - global to the file loca- interface.^. 
Since the steady-state nonlinear solver of the application code must 
have information about the matrix (address, sparsity, etc.), this same 
information will be available in the routine do-loca at the top of the 
file loca-interf ace. c. This is because step 1 above gave doloca the 
same argument list and include files as the nonlinear solver. To access 
the matrix information in the wrapper routines below in the same file, 
this information needs to be made global to the file. If the information 
is already in a header file included at the top of the file, then it is 
already global to the file. If it is passed in through the argument list to 
do-loca, then it needs to be made global to the file by the passdown 
structure. The passdown structure is not used explicitly by the LOCA 
library but is made available for the user to pass parameters to the 
wrapper routines. 
For example, if the variable double *J is passed to do-loca, 
and is needed by the matrix-vector multiply wrapper routine 
(matrixresidualfill-conwrap), the structure element passdown. J 
of the same variable type can be defined. Then the following line of 
code in the routine do-loca can be added: 

passdown. J = J; 

This variable can now be accessed anywhere in the file as passdown. J. 

Following this example further, let’s assume a users code uses the fol- 
lowing prototype to fill a matrix: 

f ill-residual (*x, *rhs, *J, *options) 
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Where x is the solution vector used to evaluate the residual and matrix 
fill, *rhs is the residual vector, *J is the matrix storage structure, and 
*options contains a list of options needed by the users code during the 
matrix fill. The user would add the required objects to  the passdown 
structure in the file loca-interf  ace. c: 

st ruc t  pass down-st ruc t  { 
MATRIX *J; 
i n t  *opt ions ; 

} passdown; 

Then the void matrixiesidualfill-conwrap would use the 
passdown structure information in the call to the users fill function: 

void matrixsesidualfill-conwrap(doub1e *x, double *rhs,  

switch (matflag) { 
case RHS-ONLY: 

passdown. options->f ill-f l a g  = 
break; 

passdown. opt ions->f i l l - f  l a g  = 
break; 

passdown. opt ions->f ill-f lag = 
break; 

case MATRIX-ONLY: 

case RHSXATRIX: 

1 
m a t r i x f i l l  (x,  rhs , passd0wn.J , 

passdown.options) ; 

i n t  matf lag) 

RESIDUAL; 

MATRIX; 

MATRIXRESIDUAL; 

4. Set the elements of the con structures in the routine doloca .  The con 
structure contains 8 structures which the user must load with param- 
eters and flags that control the continuation runs. For instance, the 
con. general-inf o structure contains storage space for the solution 
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vector, the parameter, and the problem size. These structures are de- 
fined in the file loca-const .h. A description of each of the elements 
of these structure is given in Chapter 5. 
Most of the values in these structures need to be set through an input 
file and not by hardwiring them in source code. Therefore, each ap- 
plication code needs to read in the relevant parameters to control the 
continuation algorithms, pass that information to  the do-loca routine, 
and then assign them to the appropriate con structures. This task 
includes determining which quantities needed by LOCA are already 
provided in the existing application code and which new ones need to 
be added. For those which already exist (such as a solution vector), it is 
only necessary to pass the input values in to  LOCA and assign them to  
the relevant LOCA structures. For inputs which must be added (such 
as a step control variable), the following procedure is recommended to 
provide LOCA with its required inputs. 

a Create and define a C structure to hold all LOCA inputs to  be added to 
the code. Ensure that there is an input to indicate that LOCA will be 
used. 

b Provide a subroutine to  allocate this structure and call it prior to parsing 
the code’s input file. 

c Add the necessary lines to the input file and add routines to read them 
in to the code’s input parser. Some of these values should be assigned 
defaults if not included in the input file, following the examples of 
existing inputs. 

d If the application code runs in parallel, use its established procedure to 
communicate these inputs to each processor. 

e Include this structure in the argument list for do-loca and assign each 
value to the relevant LOCA structure entries. 

The template loca-interf ace. c file for running the example problems shows 
an example of how this is done. Also included with the example problems 
is an input file reader that can be adapted for use with a new application 
code. 



Chapter 4 

LOCA’s Wrapper Routines 

The wrapper routines provide the interface between LOCA and the user’s 
code. All wrapper routines are contained in the file loca-interf ace. c. This 
file (and only this file) must be extensively modified for every new code that 
uses the library. It consists of do-loca, the top level routine called by the 
application code, a passdown structure for user supplied arguments and -15 
wrapper routines, which must be filled for your specific code. Some wrap- 
per routines are specific to  certain tracking algorithms. Therefore, the user 
need only complete the wrapper routines that are required for the particular 
tracking algorithms they wish to utilize. In this chapter we describe the re- 
quirements of each wrapper routine, including the input, output, and return 
value, as well as’a list of which continuation methods require that wrap- 
per. For instance, implementing LOCA without enabling the Hopf tracking 
capability saves the need to fill several of the wrapper routines. 

The wrapper routines make extensive use of the passdown structure. This 
structure is used to make information available to wrapper routines without 
passing that information through LOCA. The passdown structure is not used 
explicitly by the LOCA library but is made available for the user to  pass 
parameters to the wrapper routines. The structure provides a means to pass 
objects to the wrapper routines without forcing the user to declare the objects 
globally. The passdown structure and an example of its use are described in 
section 3.2. 

46 
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4.1 nonlinear-solver-conwrap 

int  nonlinear-solver-conwrap(doub1e *x, void *con-ptr , i n t  
stepnum) ; 

Description: Put  a call to  your Newton method nonlinear solver here, using 
double *x as the initial solution vector. The argument void *con-ptr 
needs to be added to  your nonlinear solver argument list (see item 2 of the 
recipe in section 3.2). You can also use the nonlinear solver in the example 
version of loca-interf ace. c ,  which does a simple Newton, instead of your 
own. 

On Input: 

x Current guess of the solution vector. 

con-ptr Pointer to the con structure, cast to a pointer to void. This pointer 
equals NULL for zero order and first order continuation, and not other- 
wise. When not equal to NULL, the bordering algorithms are invoked. 

stepnum Continuation step number, which may be used by some nonlinear 
solvers. 

On Output: 

x is the updated solution vector for the finished nonlinear iteration. 

Return Value: Cintl The number of Newton iterations taken for con- 
vergence needs to be returned, with any negative number signaling a failed 
Newton step. The number of Newton iterations is used to decide the size of 
the next continuation step (see Eq. 2.8). 

This wrapper required for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
TURNING-POINT-CONTINUATION, PITCHFORK-CONTINUATION, 
HOPF-CONTINUATION, PHASE-TRANSITION-CONTINUATION 

This wrapper not needed for: RSQP-OPTIMIZATION 
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4.2 hearsolver-conwrap 

int linear-solver-conwrap (double *x, int  j a c f l a g ,  double *tmp> ; 

Description: Put the call to your linear solver here. 
proceeded by a matrix fill call. 

This is always 

On Input: 

x is the current guess of the update vector to the linear system. 

j a c f l a g  is the flag indicating the status of the Jacobian so that precondi- 
tioners can be used: 
NEW-JACOB1 AN: recalculate preconditioner. 
OLD-JACOBIAN: reuse preconditioner. 
SAME-BUT-UNSCALED-JACOBIAN: Must rescale the matrix and can reuse 
preconditioner. This happens when the matrix has been recalculated 
at the same conditions as before. 
CHECK-JACOB IAN: Jacobian may be scaled or unsealed depending on 
whether it was reassembled or previously saved and recopied; rescale 
only if necessary. 

tmp is the work space array with the same length as x. This only comes in 
allocated for the SAMEBUT-WSCALED-JACOBIAN option; otherwise it is 
set to NULL and should not be accessed. 

On Output: 

x is the solution vector for the linear solve. 

Return Value: Cintl flag that indicates the success of the linear solve. 
Any negative number signals a failed Newton step. 

This wrapper required for: FIRST-ORDER-CONTINUATION, 
ARCLENGTH-CONTINUATION, TURNINGJOINT-CONTINUATION, 
PITCHFORK-CONTINUATION, HOPF-CONTINUATION, 
PHASE-TRANSITION-CONTINUATION, RSQP-OPTIMIZATION, 
EIGENVALUE-CALCULATIONS 
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This wrapper not needed for: ZERO-ORDER-CONTINUATION 

4.3 komplex-linear-solver-conwrap 

i n t  komplex-linear-solver-conwrap (double *c , double *d, i n t  
jacflag, double *omega, double *tmp); 

Description: Put the call to your complex linear solver here. complex 
solves an NxN linear system of complex vectors by separating the real and 
imaginary components and performing a coupled 2Nx2N linear solve using 
all real values. The complex linear solve is composed of: 

See section 2.2.3 for a more detailed explanation. 

On Input: 

c is the right hand side vector (real part) in equation 4.1. 

d is the right hand side vector (complex part) in equation 4.1. 

jacflag is the flag indicating the status of the Jacobian so that precondi- 
tioners can be used: 
NEW-JACOBIAN: recalculate preconditioner. 
OLD-JACOBIAN: reuse preconditioner. 
OLD-JACOBIANDESTROY: reuse preconditioner, then destroy the precon- 
ditioner. 

omega is the imaginary value of the eigenvalue that is tracked with the Hopf 
bifurcation tracking algorithm. 

tmp is an allocated temporary storage vector with the same size as x. 

On Output: 

c is the real part of update vector to the komplex linear solve. 
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d is the complex part of update vector to the komplex linear solve. 

Return Value: lint] flag that indicates the success of the linear solve. 
Any negative number signals a failed Newton step. 

This wrapper required for: HOPF~CONTINUATION 

This wrapper not needed for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
TURNINGSOINT-CONTINUATION, PITCHFORK-CONTINUATION, 
PHASE~TR4NSITION~CONTINUATION RSQP-OPTIMIZATION 

4.4 matrixresidualfill-conwrap 

void matrixiesidualfill-conwrap(doub1e *x, double *rhs , int 
matf lag) ; 

Description: Put the call to your matrix/residual fill routine here. 

On Input: 

x is the solution vector used to  evaluate the matrix/residual fills. 

rhs is storage space for the residual vector, and comes in allocated even 
when the residual vector are not requested. 

matf lag is a flag indicating the type of fill requested: 
FtHS-ONLY: residual fill only. 
MATRIX-ONLY: matrix fill only. 
RHSXATRIX: fill both the residual and matrix. 
RHS_MATRIX-SAVE: fill the residual, and optionally fill and save the 
unperturbed and unscaled Jacobian matrix. 
RECOVERXATRIX: matrix fill only, optionally recover from a saved copy 
rather than reassembling. 

On Output: 
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rhs contains the residual vector, when requested by matf lag. 

passdown.matrix The Jacobian matrix J should be calculated when re- 
quested by matflag. The user can choose how to  store this 
matrix so that it is available in the linear-solver-conwrap and 
matvecrmult-conwrap routines. This would typically be done via the 
passdown structure. 

Return Value: [void] 

This wrapper required for: FIRST-ORDER-CONTINUATION, 
ARCLENGTH-CONTINUATION, TURNINGJOINT-CONTINUATION, 
PITCHFORK-CONTINUATION, HOPF-CONTINUATION, 
PHASE-TRANSITION-CONTINUATION, RSQP-OPTIMIZATION, 
EIGENVALUE-CALCULATIONS 

This wrapper not needed for: ZERO-ORDER-CONTINUATION 

x is the solution vector used to  perform the mass matrix fill. 

rhs is the residual vector, allocated but not used. 

On Output: 

passdown .mass_matrix The Mass matrix (the coefficient of time dependent 
terms, B) should be calculated. The user can choose how to store this 
matrix so that it is available in the komplex-linear-solver-conwrap 
and massxatvecrmult-conwrap routines. This would typically be done 
via the passdown structure. 

4.5 massmatrix-fill-conwrap 

void massrmatrix-f illxonwrap(doub1e *x, double *rhs); 

Description: Put the call to your mass matrix fill routine here. 

On Input: 
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Return Value: [void] 

This wrapper required for: HOPF-CONTINUATION, 

This wrapper not needed for: ZERO-ORDER-CONTINUATION, 

EIGENVALUE-CALCULATIONS 

FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
TURNINGPOINT-CONTINUATION, PITCHFORK-CONTINUATION, 
PHASE-TRANSITION-CONTINUATION, RSQP-OPTIMIZATION 

4.6 matvecmult xonwrap 

void matvecslult-conwrap (double *x, double *y> ; 

Description: Put the call to your matrix-vector multiply routine, using the 
Jacobian matrix J here. 

On Input: 

x is the vector of length number of unknowns. 

On Output: 

y contains the vector J x. 

Return Value: [void] 

This wrapper required for: TURNING-POINT-CONTINUATION, 
PITCHFORK-CONTINUATION, HOPF-CONTINUATION, 
RSQP-OPTIMIZATION, EIGENVALUE-CALCULATIONS 

This wrapper not needed for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
PHASE-TRANSITION-CONTINUATION 
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4.7 massmatvecmult -conwrap 

void mass_matvec_mult-conwrap(doub1e *x, double *y> ; 

Description: Put the call to your matrix-vector multiply routine, using the 
mass matrix B, here. 

On Input: 

x is the vector of length number of unknowns. 

On Output: 

y contains the vector B x. 

Return Value: [void] 

This wrapper required for: HOPF-CONTINUATION 
EIGENVALUE-CALCULATIONS 

This wrapper not needed for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
TURNING90INT-CONTINUATION, PITCHFORK-CONTINUATION, 
-TRANSITION-CONTINUATION, RSQP-OPTIMIZATION 

4.8 assign-parameter xonwrap 

void assign-parameter-conwrap (double param) ; 

Description: Put the call to a routine here to  assign the continuation 
parameter value param in the users code. For instance, if you want to  
continue in value of a global parameter alpha, then this routine consists of 
the single line: 
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alpha = param; 

On Input: 

param is the new value of the continuation parameter. 

On Output: 

Return Value: Cvoidl 

This wrapper required for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
TURNINGPOINT-CONTINUATION, PITCHFORK-CONTINUATION, 
HOPF-CONTINUATION, PHASE-TRANSITION-CONTINUATION 

This wrapper not needed for: RSQP-OPTIMIZATION 

4.9 assign-bif-paramet er -conwrap 

void assign-bif -parameter-conwrap (double bif -param) ; 

Description: Put the call here to a routine that assigns the bifurcation 
parameter value bif-param in the application code. This is the parameter 
that is part of the solution in the tracking routines. 

On Input: 

bif -param is the new value of the continuation parameter. 

On Output: 

Return Value: [void] 
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This wrapper required for: TURNING-POINT~CONTINUATION, 
PITCHFORK-CONTINUATION, HOPF-CONTINUATION, 
PHASE-TRANSITION-CONTINUATION 

This wrapper not needed for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
RSQP-OPTIMIZATION 

4.10 calcscale-vec-conwrap 

void calc-scale-vec-conwrap(doub1e *x, double *scale-vec, int 
numunks 1 ; 

Description: Put the call to a routine to calculate a scaling vector here. 

On Input: 

x is the solution vector of length number of unknowns. 

scale-vec is a dummy vector of length number of unknowns. 

numUnks is the number of unknowns on this proc (the length of x and 
scale-vec). 

On Output: 

scale-vec Vector of length number of unknowns used to scale variables so 
that one type of unknown (e.g. pressure) doesn’t dominate over others. 
Used to  balance the variables and the arc-length variable in arc-length 
continuation, and for scaling the null vector in turning point tracking. 
Using reciprocal of the average value of that variable type is a good 
choice. Vector of all ones should suffice for most problems. 

Return Value: [void] 

This wrapper required for: ARCLENGTH-CONTINUATION, 
TURNINGPOINT-CONTINUATION, PITCHFORK-CONTINUATION 
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This wrapper not needed for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION , 
HOPF-CONTINUATION, PHASE-TRANSITION-CONTINUATION, 
RSQP-OPTIMIZATION 

4.11 gsum-double-conwrap 

double gsum-double-conwrap(doub1e sum) ; 

Description: Put the call to a routine to calculate a global sum. Just return 
sum for single processor jobs. This is used by the global dot product routines. 

On Input: 

sum is the value of double on this processor to be summed on all procs. 

On Output: 

Return Value: [double] The global sum is returned on all processors. 
' 

This wrapper required for: ARCLENGTH-CONTINUATION, 
TURNING90INT-CONTINUATION, PITCHFORK-CONTINUATION, 
HOPF-CONTINUATION, PHASE-TRANSITION-CONTINUATION, 
RSQP-OPTIMIZATION 

This wrapper not needed for: ZERO~ORDER~CONTINUATION, 
FIRST-ORDER-CONTINUATION 

4.12 pert urbsolut ion-conwrap 

void perturb-solution-conwrap (double *x , double *x-old, double 
*scale-vec , int num0wnedUnks) ; 
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Description: Put a routine to  perturb the solution vector a little bit here. 
This is to move a converged solution at a singularity off of the singularity 
before doing continuation. We have used a random vector with elements 
of order This isn’t 
pretty but has helped convergence on some turning point tracking problems. 
Leaving this routine empty works fine. 

times the solution vector as the perturbation. 

On Input: 

x is the current solution vector. 

x-old is the current solution vector, and should not be modified in this 
routine. 

scale-vec is the work space for a vector to scale x. 

numOwnedUnks is the length of owned nodes part of x, x-old, scale-vec 

On Output: 

x Solution vector perturbed a bit. 

Return Value: [void] 

This wrapper required for: TURNING-POINT-CONTINUATION, PITCH- 
FORK-CONTINUATION 

This wrapper not needed for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
HOPF-CONTINUATION, PHASE-TRANSITION-CONTINUATION, 
RSQP-OPTIMIZATION 

4.13 solution-output-conwrap 

void solution-output-conwrap(int num-soh-flag, double *x, 
double param, double *x2, double param2, double *x3, double 
param3, int stepnum, int num-its, struct con-struct *con); 

~ ~ 
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Description: Put  the call to your solution output (both file and screen) 
routines here. This routine gets called with a flag value for how many 
vector-parameter pairs are being sent. The solution vector and continuation 
parameter value are always passed. The real null vector and bifurcation 
parameter are also passed if bifurcation tracking is being performed. For 
Hopf tracking, the imaginary part of the null vector and the frequency w are 
passed as well. The call to the eigensolver should be put inside this routine. 

On Input: 

num-solnflag Number of solution vector - parameter pairs to print out. 
This is 1 for parameter continuation, 2 for turning point, pitchfork, 
and phase transition tracking, and 3 for Hopf tracking. 

x is the solution vector to be printed. 

param is the continuation parameter value. 

x2 is the real part of the null vector for turning point, pitchfork, and Hopf 
tracking, and the second solution vector for phase transition tracking 
(set to NULL when num-solnflag = 1). 

param2 is the bifurcation parameter value (set = 0 when num-solnflag = 
1). 

x3 is the imaginary part of the null vector for Hopf tracking (set to NULL 
when num-solnflag < 3). 

param3 is the frequency w for Hopf tracking (set = 0 when num-solnflag 
< 3). 

stepnum is the index to output to (stepsum is 0 based). 

num-its is the number of Newton iterations taken to converge this step. 

con-struct is the con structure used in the problem, for passing information 
to  the eigensolver. 

On Output: 

Return Value: [void] 
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This wrapper required for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
TURNING-POINT-CONTINUATION, PITCHFORK-CONTINUATION, 
HOPF-CONTINUATION, PHASE-TRANSITION-CONTINUATION 
RSQP-OPTIMIZATION 

This wrapper not needed for: 

4.14 eigenvector-output-conwrap 

void eigenvector-output-conwrap(int j, int num-solnflag, double 
*xr, double evr, double *xi, double evi, int stepnum); 

Description: Put in code to print out an eigenvalue and eigenvector 
here. This routine gets called only from loca-eigenva1ue.c. When the 
eigenvalue is a complex conjugate pair, this routine is called once with the 
real and imaginary parts of the eigenvector and eigenvalue. 

On Input: 

j is the eigenvector index, which may be needed for writing multiple eigen- 
vector modes. 

num-solnflag is 1 when a real eigenvalue/eigenvector is to be printed, and 
' 

2 when a complex pair is to be printed. 

xr is the real part of the eigenvector. 

evr is the real part of the eigenvalue. 

xi is the imaginary part of the eigenvector (set to NULL when 
num-solnflag = 1). 

evi is the imaginary part of the eigenvalue. 

stepnum is the index to output to (stepaum is 0 based). 

On Output: 

Return Value: [void] 
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This wrapper required for: EIGENVALUE-CALCULATIONS 

4.15 free-energy-diff-conwrap 

double f ree-energy-dif f -conwrap (double *x, double *x2) ; 

Description: Call to  return the free energy difference between two solu- 
tions. This is the function G in Eq. 2.76. This can be generalized to any 
constraint on the problem that must be satisfied for two different solutions. 

On Input: 

x first solution vector, x1 in Section 2.2.4. 

x2 second solution vector, x2 in Section 2.2.4. 

On Output: 

Return Value: [double] The difference in the free energy between the two 
solutions. 

This wrapper required for: PHASE-TRANSITION-CONTINUATION 

This wrapper not needed for: ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARCLENGTH-CONTINUATION, 
TURNING-POINT-CONTINUATION, PITCHFORK-CONTINUATION, 
HOPF-CONTINUATION, RSQP-OPTIMIZATION 

4.16 creat eshift ed mat rix-conwrap 

void create-shifted_matrix-conwrap() 

Description: Call to allocate a new matrix (the same size and sparsity as 
the J matrix) for use by the Cayley-enabled ARPACK Eigensolver. The 
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matrix is never seen by LOCA, but is accessed by other conwrap routines, 
so should be part of the passdown structure. 

On Input: 

On Output: 

Return Value: Cvoidl 

This wrapper required for: EIGENVALUEXALCULATIONS 

4.17 shiftedmatrixfill-conwrap 

void shif tedaatrix-f  ill-conwrap (double sigma) 

Description: Routine to fill the shifted matrix for the eigensolver, which 
is just (J - OB). This call is proceeded by calls to the Jacobian and Mass 
matrices, so it can be assumed that these are up to date. 

On Input: 

sigma Value of the rs parameter of the Cayley transformation. This routine ’ 

is called once with cr = 0 as part of a projection step, and sometimes 
rs is changed after a restarting of Amoldi’s method in the eigensolver, 
so make sure to use the sigma variable that is passed in and not just 
the input value of rs. 

On Output: 

Return Value: Cvoidl 

This wrapper required for: EIGENVALUE-CALCULATIONS 

4.18 shifted-linear solver-conwrap 

void shif ted-linear-solverxonwrap(doub1e *x, double *y , int  
j a c f l a g ,  double tol) 
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Description: Put a call to the linear solver here, using the shifted matrix 
(as filled in the previous wrapper routine). This will be very similar to  the 
linear-solver-conwrap, but using a different matrix. Also, the argument 
list is currently different. For iterative solvers, scaling should be turned off 
for this solve. 

On Input: 

x Right hand side vector. 

j a c f l a g  is the flag indicating the status of the Jacobian so that precondi- 
tioners can be reused: 
NEW-JACOBIAN: The Jacobian is a new one, so recalculate preconditioner 
(or recalculate LU factorization for a direct solver). 
OLD-JACOBIAN: The Jacobian is the same as the previous call, so reuse 
preconditioner (or just back solve a previous LU factorization when 
using a direct solver). 

to1 Acceptance tolerance for an iterative linear solver, computed dynami- 
cally to adjust to the problem scaling. 

On Output: 

y Solution vector of the linear solve: (J - oB)y = x. 

Return Value: [void] 

This wrapper required for: EIGENVALUEXALCULATIONS 

4.19 destroyshiftedmat rix-conwrap 

void destroy-shif t edslatrix-conwrap 0 

Description: Call to free memory for the shifted matrix, as allocated by 
the create-shif tedaatrix-conwrap routine above. 

On Input: 
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On Output: 

Return Value: [void] 

This wrapper required for: EIGENVALUE-CALCULATIONS 

4.20 gmaxint-conwrap 

int  pax- in t  -conwrap ( in t  max) 

Description: Put a global max operation here for parallel runs. Just return 
max for serial runs. 

On Input: 

rnax Integer value on this processor. 

On Output: 

Return Value: Cint] Maximum of all the rnax values over all processors. 

This wrapper required for: EIGENVALUE-CALCULATIONS 

4.21 random-vector-conwrap 

void random-vector-conwrap (double *x , in t  numOwnedUnks) 

Description: Put a call to a random vector generating routine here. This 
is used as an initial guess for the iterative eigensolver. 

On Input: 

num0wnedUnks Length of the vector x that needs to be filled with random 
real values. 
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On Output: 

x Double precision vector filled with random components. 

Return Value: [void] 

This wrapper required for: EIGENVALUE-CALCULATIONS 
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LOCA Inputs 

All the problem specific information that must be supplied to  LOCA from the 
application code gets set in the con structure. This is a structure made up 
of several structures (referred to  hereafter as sub-structures), each dealing 
with a separate part of the problem. The elements of the sub-structures 
that must be loaded in the do-loca interface routine can be seen in the file 
loca-const . h, and a sample working version of the dQlOCa routine can be 
seen in loca-interf ace. c. 

Table 5.1 shows the names of the sub-structures, a description of what type 
of information this structure holds, and for what problem types this struc- 
ture is accessed. As can be seen in this table, the con.genera1-info and 
con.stepping-info structures must always be set, at most one of the next 
five structures must be set, and the con.eigen-info structure needs only be 
set when eigenvalues calculations are required. 

5.1 The con. general-info structure 

The following structure elements must be supplied for all problems. 

int con. general-info .method Flag which sets the continua- 
tion strategy that LOCA should perform. The choices are: 
ZERO-ORDER-CONTINUATION, 
FIRST-ORDER-CONTINUATION, ARC-LENGTH-CONTINUATION, 
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Structure Name Requested Info 
con. Solution method, problem size, 
general-inf o solution vector, parameter, etc. 
con. Initial step size, number of 
st epping-inf o steps, step size control, etc. 
con. Arclength equation scaling 
arclength-inf o control, step size control 
con. Initial guess of 
turning-po int -info Bifurcation parameter 
con. Antisymmetric + vector and 
pitchfork-inf o bifurcation parameter guess 
con. Guesses for frequency, eigen- 

When Needed 
Always 

Always 

Arclngth 
Cont. Only 

Turning 
Point Only 
Pitchfork 

Only 
Hopf 

hopf -inf o 
con.phase- 

vectors and bifurcation param Only 
Guesses for second solution Phase Trans - 

transit ion-inf o 
con. 

Table 5.1: Table describing the 8 ‘sub’structures to the con structure. This 
is the problem-specific information that the user must supply to  LOCA. 

vector, bifurcation parameter Only 
Cayley parmeters, Arnoldi Eigenvalues 

TURNING-POINT-CONTINUATION, PITCHFORK-CONTINUATION, 
HOPF-CONTINUATION, PHASE-TRANSITION-CONTINUATION, 
LOCA-LSA-ONLY. 
loca-const . h which can be used in place of the name. 

Each of these strings is assigned an integer in 

eigen-inf o 

double con. general-inf 0 .  param Initial value of continuation parameter. 
This parameter gets assigned to a parameter in the application code 
in the assign-parameter-conwrap wrapper routine (see Section 4.8. 
This is the parameter that gets stepped in all algorithms except the 
pseudo arclength continuation, where it is solved for. This parameter 
is X in Section 2.1, but not the parameter X in Section 2.2 (which is 
the bif -param in the following sections. 

double *con. general-info . x Pointer to current solution vector, allocated 
and filled. 

space size, tolerances, etc. I Requested I 

double con. general-inf 0 .  perturb Parameter used to  apply perturba- 
tions to  several quantities. 

int con. general-info .numUnks Number of owned plus ghost (external) 
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unknowns on current processor. This is used for allocating new vec- 
tors of the same length as the solution and residual vectors, and when 
vectors are copied. 

int con. general-info . num0wnedUnks Number of owned unknowns on cur- 
rent processor. This is the length of the vector that is acted upon, e.g. 
by dot product routines. 

int con. general-info . printproc Logical flag indicating if this processor 
executes print statements. This flag is usually set to TRUE for serial 
runs and for the first processor on parallel runs. It is usually set false 
for all other'processors in parallel runs, but can be set to TRUE for 
debugging. 

int con. general-info . nvrestart Logical flag indicating if the turning 
point algorithm is to be restarted using a previously saved null vector. 

int con. general-info . nvsave Logical flag indicating that the final null 
vector from a turning point tracking run is to  be written to a separate 
file for later restart. 

5.2 The con. stepping-inf o structure 

The following structure elements must be supplied for all problems. These 
parameters control the continuation steps. This is used even for bifurcation 
tracking routines, by controlling the zero order continuation of the bifurcation 
point. 

double con. stepping-inf 0 .  f irst-step Initial parameter step size, which 
is variable Ab in Section 2.1.1. This is only approximate for pseudo 
arclength continuation. 

int con. stepping-inf 0 .  base-step Starting number of continuation steps 
for code-specific output, should be 0 or 1. 

int con. stepping-inf o .ma-steps This is the maximum number of con- 
tinuation steps allowed for the run, variable N, in Section 2.1.1. Failed 
steps count as steps. 

int con. stepping-inf 0 .  last-step Logical flag which is TRUE when the 
final continuation step is in progress. 
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int  con. stepping-info .ma-param Ending parameter value for the run. 
This can be a max or min, and is variable A, in Section 2.1.1. 

double con. stepping-inf 0. max-delta-p Largest allowable parameter step 
size (entered as an absolute value). This is the variable Axm, in 
Section 2.1.1. Step size is reset to this value if it is exceeded. 

double con. stepping-inf 0. min-delta-p Not currently implemented. 
Smallest allowable parameter step size (entered as an absolute value). 
This is variable AAmc in Section 2.1.1. If step size decreases below 
this value due to failed steps, continuation run is aborted. 

double con. stepping-inf 0 .  step-ctrl  This is an adjustable parameter 
used to control the rate of step size increase. This is the variable a 
in Eq. 2.8 in Section 2.1.1. When set to zero, step size will remain 
constant unless there is a convergence failure. 

int  con. stepping-info .max_newton-its The maximum number of New- 
ton iterations allowed by the nonlinear solver. This is used to adjust 
the continuation step size, since it is variable Nm, in Eq. 2.8.. 

5.3 The con.arclength-info structure 

The following structure elements must be supplied for arc 
length continuation problems, when con. general-inf 0. method 
=ARCLENGTH-CONTINUATION. This structure is not accessed for any 
other method. 

double con. arclength-inf o .dp_ds2_goal Desired fraction of parameter 
contribution to  arc length equation; used to  set and reset solution scale 
factor for arc length continuation. This is variable in Section 2.1.3. 

double con. arclength-inf 0. dp-dsmax Used in arc length continuation 
for periodic solution rescaling. The solution scale factor is recalcu- 
lated when the parameter sensitivity to  arc length exceeds this value. 
This is variable Section 2.1.3. 

double con. arclength-inf 0. tang-exp Adjustable parameter used to de- 
crease step size in arc length continuation near turning points. A value 
of zero has no effect, and large values (e.g. 5.0) greatly decrease the 
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step size in regions of high curvature. This is the exponent y in Eq. 
2.26 in Section 2.1.3). 

double con. arclength-info. tang-steplimit Used in arc length contin- 
uation to provide greater step size control near complex turning points. 
If the cosine of the tangent to the solution branch at two consecutive 
steps (T in Eq. 2.25) drops below this value, the step is failed. See 
discussion below Eq. 2.26 in Section 2.1.3). 

5.4 The con. turning-point-inf o structure 

The following structure elements must be supplied for turn- 
ing point continuation problems, when con. general-inf o .method 
=TURNING-POINT-CONTINUATION. This structure is not accessed for 
any other method. 

double con. turning-point-info . bif -param Initial guess for the bifurca- 
tion parameter, which is X in Eq. 2.30. This is the parameter that is 
solved for as part of the solution procedure for the bifurcation. This 
parameter must be assigned in assign-bif -parameter-conwrap. 

double *con. turning-point-inf o .nv Pointer to a restarted null vector, 
used only for restarting a turning point tracking run when a previ- 
ous null vector is provided and con.genera1info.nvrestart has been set 
to  TRUE. This pointer must be set to the location of the previous null 
vector within doloca, and is then used to initidize the null vector array 
in the turning point bordering algorithm. 

5.5 The con.pitchfork-info structure 

The following structure elements must be supplied for pitchfork continuation 
problems, when con. general-inf o .method =PITCHFORK-CONTINUATION. 
This structure is not accessed for any other method. 

double con. pitchf ork-info . bif  -param Initial guess for the bifurcation 
parameter, which is X in Eq. 2.49. This is the parameter that is 
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solved for as part of the solution procedure for the bifurcation. This 
parameter must be assigned in assign-bif -parameter-conwrap. 

double *con.pitchfork-info . p s i  The II, vector that is antisymmetric 
with respect to the symmetry being broken by the pitchfork bifurcation 
(see Eq. 2.45). This is also used as the initial guess for the null vector 
y. This is usually computed first by the eigensolver. 

5.6 The con. hopf Anf o structure 

The following structure elements must be supplied for Hopf continuation 
problems, when con. general-inf o .method =HOPF-CONTINUATION. This 
structure is not accessed for any other method. 

double con. hopf -info. bif -param Initial guess for the bifurcation param- 
eter, which is A in Eq. 2.65. This is the parameter that is solved for 
as part of the solution procedure for the bifurcation. This parameter 
must be assigned in assign-bif -parameter-conwrap. 

double con. hopf -info. omega Initial guess for the frequency w of the Hopf 
bifurcation (see Eq. 2.60). This is the imaginary part of the eigen- 
value whose real part is zero. This is usually computed first by the 
eigensolver. 

double *con.hopf-inf0.y-vec This is the initial guess for the real part 
of the eigenvector at the Hopf point, y in Eq. 2.60. This is usually 
computed first by the eigensolver. 

double *con.hopf-inf0.z-vec This is the initial guess for the imaginary 
part of the eigenvector at the Hopf point, z in Eq. 2.60. This is usually 
computed first by the eigensolver along with y. 

i n t  con. hopf -info .mass-f l a g  Flag speclfying whether or not to compute 
(a) the mass matrix derivative with respect to the bifurcation parameter 
(E) andor (b) the mass matrix derivative with respect to the solution 
vector ( E ) ,  during Hopf bifurcation tracking. These derivatives are 
often zero and need not be calculated, but for some formulations and 
parameters’(e.g. geometry parameters) these can not be ignored. The 
possible values are: 1 calculate both (a) and (b); 2 calculate (b) only; 
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3 calculate (a) only; 4 calculate neither (a) nor (b); 5 calculate (a) and 
(b) once, and if the norms are non-negligible then include these terms 
in the Newton iteration. 

5.7 The con .phase-transition-inf o structure 

The following structure elements must be supplied for phase tran- 
sition continuation problems, when con. general-inf o .method 
=PHASE-TRANSITION-CONTINUATION. This structure is not accessed 
for any other method. 

double con. phase-transition-inf 0 .  bif  -param Initial guess for the bifur- 
cation parameter, which is A in Eq. 2.79. This is the parameter that 
is solved for as part of the solution procedure for the phase transition. 
This parameter must be assigned in ass ign-bif -parameterxonwrap. 

double *con. phase-transit ion-inf 0 .  x2 This is the initial guess for the 
second solution vector at the phase transition point, x2 in Section 2.2.4. 
The first, XI, is supplied in con. general-inf 0 .  x. 

5.8 The con. eigen-inf o structure 

The following structure elements must be supplied when eigenvalue calcu- 
lations are requested. These parameters are passed to the Cayley-enabled 
version of PARPACK that has been linked with LOCA. This can be turned 
on for any method choice in con. general-info .method. 

int  con. eigen-info . NumXigenvalues This is the number of eigenvalues 
that the eigensolver should try to converge, nev in ARPACK. 

int  con. eigen-info .NumXigenvectors This is the desired number of 
eigenvalues (modes) to be output at each continuation step. 

int con. eigen-info .sort Logical flag indicating that the converged eigen- 
values, and their associated eigenvectors, are to  be sorted in descending 
order of real eigenvalue part. 
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double con. eigen-info .Shi f tSoint  [SI This length 3 array contains the 
Cayley parameters 0 and p, and the experimental parameter S which 
in general should be set to 1.0. 

int  con.eigen-info.Arnoldi This is the requested size of the Arnoldi 
space, known as ncv in ARPACK. 

double con. eigen-info .Residual-Tol C21 This array of length 2 contains 
the convergence tolerance for the eigensolver, to1 in ARPACK, and 
the convergence tolerance for the iterative linear solver, q. 

int  con. eigen-info .Max-Iter This is the maximum number of outer iter- 
ations of the restarted Arnoldi method (1 means no restarts). This is 
iparam [MAX-ITRSI in ARPACK. 

int  EveryaSteps This is the desired number of continuation steps b e  
tween eigensolver calls. 



Chapter 6 

Nonlinear Analysis Strategies 

This chapter describes procedures for performing nonlinear analysis on a 
system of equations using the algorithms provided by LOCA. These proce- 
dures are strategies for dealing with the fact that Newton’s method is only 
locally convergent. For example, a Hopf bifurcation tracking requires highly 
accurate guesses for the eigenvectors of the complex pair of eigenvalues as- 
sociated with the Hopf bifurcation. This section will discuss what the user 
is required to  supply prior to running the tracking algorithms. A typical 
nonlinear analysis would follow these steps: 

1. Calculate a steady state solution for the set of nonlinear equations from a 
trivial solution. This may require changing a parameter value so that 
the problem is more linear (e.g. decreasing the Reynolds number). 

2. Use parameter continuation (zero order, first order, and arc-length) and 
eigenvalue analysis (linear stability analysis) to continue to parameter 
regions of interest and locate bifurcation points on the the steady state 
branch. 

3. Using solution and eigenvalue/eigenvector information calculated near a 
bifurcation point, the tracking algorithms are used to “lock-on” to  the 
solution and value of the bifurcation parameter at the bifurcation point, 
and track it as a function of a second parameter. 
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6.1 Steady State Solutions 

We assume that the code was designed for steady state calculations and that 
this can be achieved trivially. If the initial steady state can not be found 
using pure Newton’s method, a globalized Newton method can be applied 
[19, 20, 21, 221 (including integration in in time) or continuation in real or 
contrived parameters (Homotopy) can be used to get to the initial steady 
state of interest. For parameter continuation the idea is to  converge to  a 
solution at simplified conditions (where Newton’s method converges with 
a trivial initial guess). Then repeatedly adjust the parameters, while using 
previous solution hiformation to generate a good initial guess for the solution 
vector, until you reach the steady state conditions of interest. For example, 
this can be critical in reacting flow applications comprised of coupled sets 
of descretized PDEs. Here one would converge to a solution at isothermal 
conditions and slowly increase (take continuation steps) in temperature until 
the desired conditions are achieved. 

6.2 Parameter Continuation 

Once a steady state has been calculated, one can search along the steady 
state branch by stepping in the continuation parameter, A. LOCA pro- 
vides algorithms for performing zero order, first order and arc-length 
parameter continuation, set by the flags ZERO-ORDER-CONTINUATION, 

tively. 

When a zero order or first order continuation run repeatedly has failed steps 
that results in cuts in the step size, this often indicates that the algorithm is 
approaching a turning point. This is where the solution branch doubles back 
and no solution exists locally for the next parameter step. Near this point 
one should restart the algorithm using the initial guess at the last converged 
solution but switch to arc-length parameter continuation. If the parameter 
doubles back on a new branch, a turning point has been located. 

FIRST-ORDER-CONTINUATION, AND ARCLENGTH-CONTINUATION, respec- 
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6.2.1 Locating a Bifurcation Point 

A turning point can be identified directly by using the arc-length continu- 
ation algorithm as discussed in the previous section. To identify any other 
bifurcation we must use the eigenvalue capabilities in LOCA to locate bifur- 
cation points by monitoring the rightmost eigenvalues. Section 1.2 gives a 
detailed description of bifurcation phenomena which we summarize here. A 
bifurcation point occurs when the real part of an eigenvalue of the system 
under study is zero. If the eigenvalue is purely real the bifurcation may be 
a turning point or a higher codimension bifurcation such as a pitchfork bi- 
furcation. If the eigenvalue has an imaginary component (i.e. is a complex 
conjugate pair), the bifurcation is a Hopf bifurcation. Eigenvalue calcula- 
tions can also ascertain branch stability. If all the eigenvalues are on the left 
side of the complex plane (Le. all the eigenvalues have negative real parts) 
then the solution is a stable steady state. 

To locate a bifurcation point, step in the continuation parameter while mon- 
itoring the eigenvalues. When the real part of an eigenvalue passes zero, you 
have evidence of a bifurcation point. Once a bifurcation point is identified, 
the solution and corresponding eigenvalues and eigenvectors should be cal- 
culated and saved for initial guesses for the bifurcation tracking algorithms 
discussed in the next section. Often the bifurcation tracking algorithms will 
converge using a solution and the appropriate eigenvectors from somewhere ' 
near the bifurcation point, and it is not necessary to zero in on the bifurca- 
tion using parameter continuation and eigenvalue calculations before starting 
the tracking algorithm . However, we have sometimes found that this extra 
work is needed to launch the tracking algorithms. 

6.3 Bifurcation Tracking 

The bifurcation tracking algorithms calculate the parameter value (referred 
to as the bifurcation parameter) that corresponds to  a bifurcation point while 
doing zero order continuation in another parameter (referred to  as the con- 
tinuation parameter). In order to perform bifurcation tracking, certain steps 
must be taken beforehand. First, a bifurcation point must be located as 
discussed in section 6.2. The solution nearest the bifurcation should be used 
as the initial guess for the solution vector of the bifurcation tracking run. 
The tracking algorithms calculate the steady state solution, eigenvector(s) 
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(also called the NULL vector(s)), and a bifurcation parameter value. Some 
tracking routines require accurate initial guesses for the NULL vectors while 
others can use a trivial guess. We will discuss the typical ways to converge 
the initial step of a tracking algorithm individually. 

Since LOCA was written for massively parallel distributed memory systems, 
we assume an iterative linear solver is used. The bordering algorithms force 
us to  solve nearly-singular linear systems so we typically tighten the linear 
solver tolerances and loosen the nonlinear solver tolerances during bifurcation 
tracking. Convergence is determined by driving the scaled update norm 
for the solution vector, NULL vector, bifurcation parameter and' any other 
algorithm specific unknowns to less than one: 

l x i '  1' (6.1) \1 f $ [ 1xil * RToZ + AToZ 
Scaled Vector Update Norm = 

where RToZ and AToZ are the relative and absolute tolerances for the non- 
linear solver, N is the number of unknowns, and xi is the ith unknown value 
in the vector. We often run with tolerances around 1.OE2 and 1.OE5 for the 
relative and absolute tolerances in the nonlinear solver. Linear solver toler- 
ances are usually kept in the range 1.0e-4 to 1.OE-8 and can greatly effect 
the convergence of the Newton method. 

6.3.1 Turning Point Tracking 

The turning point tracking only requires initial guesses for the solution vector 
and bifurcation parameter. Section 6.2.1 describes the process for identifying 
the turning point with arclength continuation. Starting with the extreme pa- 
rameter value and associated solution vector from the arclength continuation 
run will usually be adequate starting points for the turning point algorithm. 
No auxiliary variables are required by the code. 

6.3.2 Pitchfork Tracking 

For pitchfork tracking, the code requires an initial guess for the solution 
vector, the antisymmetric vector ($), and the bifurcation parameter. We 
use the $ vector as an initial guess for y. This vector is calculated by 
first detecting the Pitchfork bifurcation with an eigensolver. By choosing 
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as initial guesses the solution and parameter value at the point where the 
eigenvalue was closest to  zero, and choosing the associated eigenvector as $, 
the pitchfork tracking algorithm will usually converge. For problems that 
have multiple pitchfork bifurcations in the same region of parameter space, 
which is often the case when the system can go unstable to  different modes, 
the pitchfork algorithm can be started multiple times with different $ vectors 
to track each pitchfork separately. 

6.3.3 Hopf Tracking 

The Hopf tracking algorithm requires an initial guess for the solution vector, 
the bifurcation parameter, the value of the imaginary part of the eigenvalue, 
w ,  and the real and complex parts of the corresponding eigenvector, y and 
z. The procedure is the same as that for the pitchfork bifurcation, except 
that a complex pair of eigenvalues crosses the imaginary axis. By finding 
the point on a continuation run where the real part is closest to zero, all the 
information is available to create initial guesses to  start the Hopf tracking 
algorithm. Since the eigenvectors given by the eigensolver will not generally 
satisfy the normalization conditions (Eq.s 2.63 and 2.64), the initial guesses 
for the eigenvectors are initially rotated and scaled so that these conditions 
are met. We have found that excess Newton iterations a,re taken after the 
solution vector and bifurcation parameter are converged if we keep the same 
tolerances for both the solution vector and the eigenvectors. Therefore, while 
we require the scaled update norm to be less than one for the solution, imag- 
inary eigenvalue, and bifurcation parameter, we only require the eigenvectors 
to have a scaled update norm of less than 100. 

6.3.4 Phase Transition Tracking 

Phase transition tracking is initiated after first identifying one instance of a 
phase transition. When arclength continuation locates a region of hysteresis, 
the solution branch can be plotted using the free energy as a measure and 
a phase transition can be visually picked off. By using other solution on 
each branch nearest the visible crossing as initial guesses for x1 and x2, and 
the parameter value where they appear to cross, we have found the phase 
transition algorithm to be very robust. The system of governing equations 
does become singular at a critical point, so there is a limit to how close the 
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algorithm can come to this point. 
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