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Fractal Dynamics of Earthquakes 
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1 I .  I iNTRODUCTION 

Many objects in nature, from mountain landscapes to electrical breakdown and 
turbulence, have a self-similar fractal spatial structure (Mandelbrot, 1982). This is by no 
means a trivial observation, since it implies that systems are correlated over large distances. 
Much effort has been put into computer simulation and characterization of these objects. 
However the empirical geometrical observation and characterization do not by themselves 
serve as a physical explanation. It seems obvious that to understand the origin of self-similar 
structures, we must understand the nature of the dynamical processes that created them: 
Temporal and spatial properties must necessarily be completely interwoven. 

This is particularly true for earthquakes, which have a variety of fractal aspects, as 
discussed in this volume. The distribution of energy released during earthquakes is given by 
the Gutenberg-Richter (1956) power law. The distribution of epicenters appears to be 
fractal with dimension D = 1-1.3 (Kagan and Knopoff, 1980). The number of after shocks 
decay as a function of time according to the Omori (1894) power law. There have been 
several attempts to explain the Gutenberg-Richter law by starting from a fractal distribu- 
tion of faults or stresses (Kagan and Knopoff, 1987; Huang and Turcotte, 1990; Turcotte, 
1989). But this is a hen-and-egg approach: To explain the Gutenberg-Richter law, we 
assume the existence of another power-law-the fractal distribution. 

The Gutenberg-Richter law extends over several orders of magnitude. For instance 
Johnson and Nava (1985) present data on the New Madrid seismic zone indicating a power 
law over almost 5 decades. The upper limit is probably due to the fact that measurements 
were necessarily limited to a period of 167 years. from 1816-1983. Since a hum& lifetime 
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cannot play an essential role for earthquakes, there is no reason to believe that the 
distribution cannot be extended beyond earthquakes of size m = 7 to earthquakes of size 
8, 9, and 10, etc., if a geological time period were available for the measurements. 

The observation of power laws is of tremendous importance in physics, since it 
indicates the existence of an underlying scale-invariant mechanism. The Gutenberg- 
Richter law indicates that the mechanism of small earthquakes is essentially the same as the 
mechanism for large earthquakes, since otherwise their relative frequency cannot be 
expected to obey a simple law. Actually the quality of data for earthquakes is excellent 
compared with other areas of physics, where usually not more than 3 decades are available: 
Scaling over 8 decades is unheard of. We argue that this is due to the fact that the upper 
length and time scales for Earth dynamics are much larger than for any system set up by 
humans. 

Recently it has been recognized that many interacting dynamical systems naturally 
evolve into a self-organized critical state, with avalanches of all sizes-large and small 
(Bak and others, 1987, 1988; Tang and Bak, 1988; Bak and Chen. 1989). The discovery 
suggests a rather general dynamical mechanism for the emergence of scaling behavior 
(including fractal structure) in nature. Shortly after the discovery, it became clear that the 
simplest and most direct application of this idea might be to earthquakes: The Gutenberg- 
Richter law, the fractal spatial distribution of epicenters, and other power laws in earth- 
quakes are all manifestations that the crust of the earth operates at a self-organized critical 
state. Indeed several authors (Bak and others, 1988; Bak and Tang, 1989; Ito and Matsuzaki, 
1990; Sornene and Sornette, 1989 Carbon and Lager, 1989) have taken up the idea and 
presented supporting theoretical evidence, although the Carlson-Langer model fails to 
reproduce the scaling observed for large earthquakes. 

The concept of self-organized criticality is most easily visualized in terms of the 
prototypical example: a pile of sand. Consider a situation where the pile is built by slowly 
and uniformly by adding sand, one grain at the time, to a large flat surface with edges where 
the sand slides off. In the beginning, the sand remains close to the position where it lands. 
After a while, the pile achieves a slope, and now and then there are small avalanches when 
the slope somewhere becomes too steep. Avalanches can be thought of as generated by a 
chain reaction or branching process. Following the initial instability, the falling particle may 
e.ither stop falling, continue falling, or induce two or more falling particles. Later each 
falling particle may again stop, continue falling, or induce more falling particles, and so on. 
The total number of falling particles during this process is a measure of the size of the 
avalanche. As the process of adding sand continues, the pile becomes steeper and steeper, 
and larger and larger avalanches appear. Eventually the pile reaches a statistically stationary 
state where the amount of sand added in average is balanced by the amount of sand falling 
off the edges, and the growth of the slope stops. The chain reaction for avalanches becomes 
critical, and avalanches of all sizes occur; this is the self-organized critical state. The 
frequency of avalanches of different sizes follows a power law distribution similar to the 
Gutenberg-Richter law (Bak and others, 1987, 1988; Bak and Chen. 1990). 

The basic principle of self-organized criticality is that large interactive dynamic 
systems naturally organize themselves into a state that is perpetually critical. Dynamic 
forces inevitably carry the system to the critical state without fine tuning external forces. In 
contrast to critical, for chaotic few-degrees-of-freedom systems (which can be described 
by a few variables), the self-organized critical state is robust with respect to any change in 
local microscopic mechanisms for the system. For example, in terms of the sandpile 
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picture. if we try to prevent avalanches by building snow screens, then for a while there will 
be fewer and smaller avalanches. But eventually the slope adjusts to the new situation, and 
the critical state is resumed: The critical state is a global urrrucror of the dynamics. This 
resiliency is important for representing real dynamics in nature. The scaling laws of this 
critical state are properties of whole systems with many degrees of freedom, and they 
cannot be deduced by studying local properties. It makes no sense to try to explain large 
events with a detailed microscopic-engineenng approach. 

The characterization of the Earth's crust as a system operating at the self-organized 
critical state is in  complete contrast to the view that the crust is a low-dimensional chaotic 
system. In fact as we demonstrate later. the self-organized critical state is not chaotic at all 
but operates perpetually at the border of chaos. 

We present results of a simple stick slip model of earthquakes, which evolves to a self- 
organized critical state. Our emphasis is on demonstrating that empirical power laws for 
earthquakes indicate that the Earth's crust is at the critical state, with no typical time, 
space, or energy scale. Of course the model is tremendously oversimplified; however in 
analogy with equilibrium phenomena we do not expect criticality to depend on details of the 
model (universality). 

1 I .2. MODELS AND SIMULATIONS 

In 1956 Gutenberg and Richter observed that the number Q of earthquakes of 
magnitude greater than m is given by the relation' 

log,,Q = c - bm 
where b is a universal constant with a value approximately unity. 0.8 < b < 1.2. The 
researchers also estimated that the energy E released during an earthquake increases 
exponentially with m 

log,,E = c' + dm 
where d is not known very accurately but generally assumed to be in the range of 1.5 < 
d < 2.5 .  Combining those two relations; we realize that the Gutenberg-Richter law is 
essentially a power law for the distribution of energy release 

However despite the universality of the relation, there has been no explanation of this 
power law behavior. Note that most of the uncertainty lies in relating m to E; there is little 
doubt that we are indeed dealing with a power law. Kagan (19%) finds the exponent f3 to lie 
between 0.5-0.6 from analyzing the Harvard earthquake catalog for large earthquakes. 

It is generally assumed that earthquake dynamics are due to a stick-slip mechanism 
involving the Earth's crust sliding along faults (Burridge and Knopoff, 1967; Otsuka, 1972; 
Stuart and Mavko, 1979; Sieh, 1978; Mikumo and Miyatake, 1978, 1979; Choi and 
Huberman, 1984). When a slip occurs at some location, the strain energy at that position is 
released, and the stress propagates to the near environment. While this picture is rather 
well-established, no connection between stick-slip models and the actual spatial and 
temporal correlations has been demonstrated. 
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The situation that we want to describe is shown in Fig. 1l.la. Two segments of 
material, representing tectonic plates, are slowly pressed against each other, causing them 
to slip along their interface. A scaled-down laboratory experiment has actually been 
performed by Bobrov and Lebedkin (1989), who used aluminum and niobium rods. A fault 
region was generated as pressure increased, causing a transition from elastic flow (where 
the rod returns to its original shape once pressure is released) to ductile flow (where 
compression is irreversible). The researchers indeed observed earthquakes along the fault 
with a power law distribution independent of the slip material and mechanism (believed to 
be different for the two materials). In the present context, blocks are tectonic plates grinding 
against each other along a fault or a fault system. Now and then, parts of the plates slip 
relative to each other; these slips are ruptures of the crust in earthquakes. 

Figure Il.lb shows a one-dimensional model of a single fault. For simplicity one plate 
is assumed to be rigid and the other to be an elastic medium represented by an array of 
blocks at positions x , ,  x2, x 3  . . . connected by springs. The blocks interact with the rigid 
plate by means of static and dynamic friction forces. We assume that the array is open at one 
end and extends infinitely in the other direction. Whenever the spring force on a particular 
block exceeds the critical static friction force, it slides until interaction forces have been 
reduced below the critical dynamical friction. In the aluminum rod experiment, the process 
may be dislocation motion caused by an atomic bond shifting. During this process, 
potential energy is first converted into kinetic energy, then dissipated (radiated) when the 
blocks are decelerated by the frictional forces. 

a 

1 

1 I i + l  . \ - 
b V 

FIGURE 1 I . I .  (a) Blocks slipping along fault system when subjected to stress. (b) Onedimensional illustration of 
our model. The block-spring chain IS pushed along a rough surface with a low velocity v.  
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Of course since the blocks are at rest between slips, the total force on each block is 
zero; thus spring forces exactly balance friction forces. When a block slides, the friction 
force on the block is reduced and so is the spring force on that block. There must be exact 
conservation of friction forces (or equivalently spring forces) at the individual sliding event 
since the blocks are at rest both before and after the event. For simplicity we assume that the 
force is redistributed evenly among nearest neighbors. Note that while forces are conserved, 
the density of blocks is not: There can be wide fluctuations of the local density of blocks. 
This distinguishes the model from leaf-spring models (Burridge and Knopoff, 1967) where 
the average distance between blocks is fixed by leaf springs hooked to a rigid rod. We 
believe that this model is not physical and introduces a characteristic length into the model. 
This length leads to deviations from the Gutenberg-Richter law (dominating characteristic 
large events) not found in nature (Carlson and Langer, 1989). We must explicitly include the 
perpendicular to the fault system. 

The model is driven by slowly pushing the rigid surface relative to the other surface. 
The time scale set by the pushing is a geological one, and it can be viewed as infinitely large 
compared with a realistic observation time, so that there is no typical time scale. This is 
essential for generating power laws and fractal scaling for spatial and temporal correlation 
functions. 

Let us monitor the friction force zi (which equals minus the spring force) on the ith 
block. Initially a random distribution of subcritical forces is chosen. The zis grow at a small 
rate p until somewhere z reaches the critical value, and a slip event takes place. Without 
loss of generality, the critical friction force is chosen to be an integer Z,,, and the reduction 
of friction force is taken to be two units, so 

(4) ti=, -+ zikl + 1 
Bak and Tang (1989) present a model dnven by letting zi -+ zi + I at random positions. 

This has the advantage that all operations are integers; Le., the model is a random cellular 
automaton. In contmt the present model is completely deterministic, with all randomness 
entering through the initial condition. The model appears to be more physical, since no 
external random forces are needed. Nevertheless the results., including critical exponents, 
fractal dimensions, etc., remain the same. 

The process initiated by the event in Eq. (4) transfers force to neighbors, allowing for a 
chain reaction. This chain reaction is the earthquake. As the process continues, the forces zi 
generally increase, causing larger and larger earthquakes. Eventually the system is pumped 
up to a minimally stable state where all forces are near the critical value; that is Int (2;) = 
Z,, - 1 for all i at this state.'The next instability is propagated throughout the system until 
the excess force is released at the boundary and the system is back to a minimally stable 
state. Thus statistically stationary state has been reached. We assume that the Earth's Crust 
has had sufficient time to reach a stationary state, so we are generally concerned with this 

The dynamics of this one-dimensional model is rather trivial, and the preceding 
discussion should be viewed as a pedagogical exercise only. To achieve nontrivial critical 
behavior, it is sufficient to generalize the model to include next-nearest neighbor inter- 
actions (Kadanoff and others, 1989). Here we generalize the model to two and three 
dimensions, keeping in mind that the Earth's crust, and particularly the fault region, is a 
higher dimensional system. The generalization is rather trivial: Blocks are situated on a 
&dimensional lattice, and each block is connected with its 2d nearest neighbors. Now z 
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that the model is not in the same universality class as earthquakes. What is important is that 
there are power laws indicating that the Earth's crust is at a critical state. with no typical 
time, space, and energy scale. 

I I .3. DISCUSSION AND CONCLUSIONS 

As discussed in the introduction, the critical state is robust with respect to randomness, 
etc. It is trivial to see that a random distribution of critical forces has no effect, since the 
model can be transformed into the uniform one by simply shifting the variable z (a gauge 
transformation). We have also studied models where a fraction of the springs were randomly 
removed (Bak and others, 1988) and a critical state with the same critical exponents was 
reached. If the properties of the system are changed during the simulation (due to some 
external event), the system returns to the self-organized critical state after a transient 
period. The critical state is a global artrocfor of the dynamics. This resiliency is important 
for self-organized criticality to apply to a wide range of natural phenomena. 

Systems with few degrees of freedom (like the Feigenbaum map, coupled oscillators, 
circle maps, etc.; for reviews, see Hao, 1984) may alsoexhibit critical points with power law 
correlations. Since these have no spatial degrees of freedom, then can not possibly have 
fractal power law spatial correlations. However critically requires fine tuning some parame- 
ter, and the critical point, separating regular from chaotic states, has no robustness at all. 
Thus any small perturbation throws the system off the critical point by destroying long-time 
memory effects. Attempts to explain the complicated behavior of earthquakes as low- 
dimensional (few degrees of freedom) chaos must be considered fundamentally misguided, 
since chaos implies exponentially decaying correlations, not power laws. The belief that 
there may be a connection between low-dimensional chaos and fractals is without mathe- 
matical foundation. Our model cannot be reduced to a few degrees of freedom at the critical 
state. Sooner or later, information from far away affects the dynamics of any given point. 

Figure 11.3 compares the number of blocks slipping versus time in a simulation where 
z increases by p ='0.00002 per unit time for a system of the size 50 X 50. Note the irregular 
evolution of the individual events. The outcome of a single earthquake is quite unpredict- 
able, since it depends on minor details far removed from the initial point of instability. 

Forecasting individual earthquakes in such a system is quite impossible, since accurate 
global information is needed. How do we characterize this unpredictability? Usually the 
unpredictability of dynamic systems is characterized by the Lyapunov exponent, which 
defines the amplification of small differences in the initial condition as the system evolves. 
A positive Lyapunov exponent indicates chaos. We have simulated systems at the critical 
stationary state that initially differ by a small forcef., wheref is a random number from 
-9-4' and q is a small number of the order Figure 11.4 shows the average difference 
of z per site as a function of time (the Hamming distance). The straight line indicates power 
law behavior. Hence the Lyapunov exponent is zero, and the system is at the border of chaos. 
Nevertheless the fact that the power is positive indicates the uncertainty of the state of the 
system grows. albeit much less dramatically than for chaotic systems. The situation for 
predicting earthquakes is less desperate than for fully chaotic systems, although there is the 
added complexity of having to deal with many degrees of freedom. We denote such systems 
as weakly chaotic. Since many dynamic systems are expected to be self-organized critical, 
we expect weak chaos to be quite ubiquitous in nature. 
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FIGURE I I 3 Evolution of activity, including several eanhquakes. for 30 X 30 system driven at a rate of p = 
0 ooO1 The plot shows h e  number of sliding blocks versus time 
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FIGURE 11 4 Power law growth of a small random difference in the mirial condition (weak chaos) The plot 
shows h e  evolution of the Hamming distance, which is the sum of absolute values of the difference between a 
system in the critical state and the same system with a small initial. random perturbation versus t ime  
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.4, 

Once the existence of the self-organized critical state has been established, it is not so 
difficult to derive other exponents, such as the fractal dimension, characterizing different 
correlation functions (Tang and Bak, 1988). In particular I t0  and Matsuzaki (1990) have 
generalized our model by adding a random disturbance to sites just subjected to an 
earthquake. They obtained a spatial clustering of epicenters with a fractal dimension of I .  I.  
They were also able to obtain a power law distribution of aftershocks (Omori's law). 
Sornette and Sornette (1989) have shown the existence of llfnoise in the time gap between 
large earthquakes. A number of other works applying the principle of self-organized 
critically to earthquakes have been performed. In collaboration with S. Obukhov, Chen and 
others (1990) have proposed a crack propagation model of earthquakes, which includes 
realistic features of a long-range redistribution of elastic forces following local ruptures. 
The model evolves to a self-organized critical state with exponent 0 close to the observed 
one. We also notice that Brown and others (1990) have studied a spring block model of 
earthquakes similar to the one discussed in that paper. Their study confirms the general 
picture just presented. 
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