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Abstract

In this paper, by systematically treating the integrals involved in the piezoelectric
inclusion problem, explicit results were obtained for the piezoelectric Eshelby tensors for
a spheroidal inclusion aligned along the axis of the anisotropy in a transversely isotropic
piezoelectric material. This problem was first treated by Dunn and Wienecke (1996)
using a Green's function approach, which closely follows Withers' approach (1989) for
an ellipsoidal inclusion problem in a transversely isotropic elastic medium. The same
problem was recently treated by Michelitsch and Levin (2000) also using a Green's
function approach. In this paper, a different method was used to obtain the explicit
results for the piezoelectric Eshelby tensors for a spheroidal inclusion. The method is a
direct extension of a more unified approach, which has been recently developed by
Mikata (2000), which is based on Deeg's results (1980) on a piezoelectric inclusion
problem. The main advantage of this method is that it is more straightforward and
simpler than Dunn and Wienecke (1996), or Michelitsch and Levin (2000), and the
results are a little bit more explicit than their solutions. The key step of this paper is an
analytical closed form evaluation of several integrals, which was made possible after a
careful treatment of a certain bi-cubic equation.
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Abstract

In this paper, by systematically treating the integrals involved in the piezoelectric
inclusion problem, explicit results were for the piezoelectric Eshelby tensors for a
spheroidal inclusion aligned along the axis of the anisotropy in a transversely isotropic
piezoelectric material. This problem was first treated by Dunn and Wienecke (1996) by
using a Green's function approach, which closely follows Withers' approach (1989) for
an ellipsoidal inclusion problem in a transversely isotropic elastic medium. The same
problem was recently treated by Michelitsch and Levin (2000) by also using a Green's
function approach. In this paper, a different method was used to obtain the explicit
results for the piezoelectric Eshelby tensors for a spheroidal inclusion. The method is a
direct extension of a more unified approach, which has been recently developed by
Mikata (2000), which is based on Deeg's results (1980) on a piezoelectric inclusion
problem. The main advantage of this method is that it is more straightforward and
simpler than Dunn and Wienecke (1996), or Michelitsch and Levin (2000), and the
results are a little bit more explicit than their solutions. The key step of this paper is an
analytical closed form evaluation of several integrals, which were made possible after a
careful treatment of a certain bi-cubic equation.




1. Introduction

The importance of piezoelectric composites has been well documented in recent years
in relation to smart materials and smart structures as well as electronic packaging
(Taya, 1995). For production and application of the piezoelectric composites, the
characterization of piezoelectric composites becomes very important. In the
characterization of the linear elastic composite materials, Eshelby tensor has played a
dominant role (Mura, 1987, Mori and Tanaka, 1973). Similarly, the central issue in the
characterization of piezoelectric composites is determination of the piezoelectric
Eshelby tensors (Mikata, 2000).

This paper treats the explicit determination of the piezoelectric Eshelby tensors for a
spheroidal inclusion aligned along the axis of the anisotropy in a transversely isotropic
piezoelectric material. This problem was first treated by Dunn and Wienecke (1996),
and recently by Michelitsch and Levin (2000). There have been a number of studies on
piezoelectric inclusion problems as well as piezoelectric composites (Deeg, 1980,
Benveniste, 1992, Wang, 1992, Dunn and Taya, 1993 a & b, Dunn, 1994, Huang and
Yu, 1994, Dunn and Wienecke, 1996, Huang, 1996, Michelitsch and Levin, 2000,
Mikata, 2000). However, only three (Huang and Yu, 1994, Dunn and Wienecke, 1996,
Michelitsch and Levin, 2000) of the above studies have considered the piezoelectric
Eshelby tensors for a spheroidal inclusion in more details. In particular, Dunn and
Wienecke (1996) have obtained the piezoelectric Eshelby tensors for a spheroidal
inclusion explicitly using a Green's function approach, which closely follows Withers'
approach (1989) for an ellipsoidal inclusion problem in a transversely isotropic elastic
medium. Michelitsch and Levin (2000) also recently obtained piezoelectric Eshelby
tensors for a spheroidal inclusion explicitly by deriving Green's functions for
transversely isotropic piezoelectric materials. In this paper, we also obtain the
piezoelectric Eshelby tensors for a spheroidal inclusion explicitly, but using a different
approach. The method is a direct extension of a more unified approach, which has
been recently developed by Mikata (2000). The main advantage of this method is that
it is more straightforward and simpler than Dunn and Wienecke (1996), or Michelitsch
and Levin (2000), and the results are a little bit more explicit than their solutions.

The general strategy of this paper largely follows the one employed in the recent
publication by the present author (Mikata, 2000), where Deeg's results (1980) on a
piezoelectric inclusion problem were used. The key step of this paper is an analytical
evaluation of several integrals, which were made possible after a careful treatment of a
certain bi-cubic equation.




2. Governing equations of piezoelectricity
The governing equations of piezoelectricity are given by
ciji + =0 (1)

Gij = Cijmn €mn - €njj En )

=1
€mn = AUmn T U,
mn 5( m,n n,m) (3)

Dii=p @)
Di = €imn €mn + Kin En (5)
En=-0¢n (6)

where ojj, €mp, Uy and fj are stress, strain, displacement field and body force,
respectively, D;, E;, P, and ¢ are electric displacement, electric field, electric charge
density and electric potential, respectively, and Cijmp, in and ep;; are elastic moduli,

permittivity and piezoelectric constants, respectively. Egs. (1) - (3) describe the
elasticity of the material, whereas Egs. (4) - (6) describe the electrostatics of the
material. The coupling between elasticity and electrostatics, i.e., piezoelectricity, is
provided by the piezoelectric constants ep;j. It should be noted here that the

electrostatic part (Egs. (4) - (6)) is written in the rationalized MKSA system (see
Jackson, 1975).

Following Barnett and Lothe (1975) and Deeg (1980), we will rewrite the above
governing equations by defining the following variables.

_[un forM(=m)=123

U
M \d) forM=4 (7)
7 _| &mn forM(=m)=12,3
Mn \-En forM=4 (8)
5, =] o forJ(=)=123
' '\Di forJ =4 (9)
oy=] i forl=i=123

'\-p for]1=4 (10)
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Cijmn forJ,M=1,23
_[ enj forJ=1,23; M=4
€mn forJ=4;M=1,23
-Kijp forJ=M=4 (11)

Firvn =

where Uy, Zyn, Ziy, py and Fijyn are displacement - electric potential, strain - electric

field, stress - electric displacement, body force - electric charge density and
piezoelectric moduli, respectively. With the help of (7) - (11), the governing equations
of piezoelectricity, i.e., Egs. (1) - (6), can be compactly rewritten as (see Mikata, 2000)

Fismn Umpni =- p3 (12)




3. Piezoelectric inclusion problem

Let us consider a piezoelectric inclusion problem where a region Q in an infinite domain
R3 has a constant eigenstrain - eigen electric field Z*, which is both stress free and
electric displacement free (see Fig. 1). There are no body force and no charge density
for this problem. Mathematically, the problem is defined as follows:

25 =0 (13)
iy = FimalZmn - Zan (X)] (14)
Fismn Zvin = Fivin Umn (15)

where the eigenstrain - eigen electric field Zyn (%) is given by

1/2;/[,1 x € Q

Zna (x) = ;
\O x eR-Q

Substituting (14) and (15) into (13), we obtain
Finvin UMni = Fisvn 8 Zin (X) (17)

where % denotes the partial differentiation with respect to x;. It is seen from (17) that

Fin 8 Zym (%) acts as a body force - electric charge density. Deeg (1980) has
obtained a fairly general result for this problem in an integral form. The case when the
shape of the inclusion Q is an ellipsoid, however, is the most interesting. In this case,
the strain - electric field Z in Q resulting from Z* can be sometimes determined explicitly
by evaluating the integral analytically. Deeg (1980) did not do this explicit evaluation in
his dissertation. The result obtained by Deeg (1980) for the ellipsoidal case can be
recast into the following form.

Znin = Smnab ZAb in Q (18)

where Synap is @ piezoelectric analog of Eshelby tensor, and is given by -

|/ L Fijap (liomy + Limny) ~ when M =1,2,3
Svinab = | 87

'\ —1—FiJAinn4J when M=4
4t




Iinmy = a1 a3 a3 f % X Xn Ki\}u dS

_ K

I =1 (20)
n=vatxi+ a3 x3+aix3 (21)
Kmy = FpMiq Xp Xq= Fpimq Xp Xq (22)

Where a; is the length of the semi-axis of the ellipsoid in the x;-direction. In light of the
fact that Syy,ap consists of 4 different tensors, in this paper, it shall be called
piezoelectric Eshelby tensors (cf., Mikata, 2000). X|= 1 s the surface of the unit
sphere and Kf\}IJ is the inverse of 4x4 matrix Kys, which is defined by (22). The shape

of the ellipsoid will affect the piezoelectric Eshelby tensors Syyap through p in the

integrand. It should be mentioned here that the coordinate axes are chosen such that
they coincide with the axes of the ellipsoid.




r——

4. Piezoelectric Eshelby tensors

The piezoelectric Eshelby tensors are defined by Egs. (19) through (22). The key part
of the definition is the integral i,y . Using the results of our previous paper (Mikata,

2000), we have

1 2n
IinMsz dtf Ginmy (yl 22, 23) dg
0

ay’ a3
-1 (23)

where y4, Y5, and y3 are given by
y1=‘\/1-tzcos¢, ya=41-1 sing y3 =t (24)
and

Ginmy (X) = X; Xn Ky (25)

Let us now specifically consider a transversely isotropic piezoelectric material.
The constitutive equations for the transversely isotropic piezoelectric material are given

by
Chyp Ci2 C3 0 0 0 r e ]
Ci2 Chi Csz 0 O 0 5y
[ Oxx | Cis Cz Gs3 0 O 0 £2s
Gyy
. 0 0 0 Cs4a O 0 2ey,
O'yz 0 0 0 0 C44 0 o
GZX L - =
| e el 0o 0 0 0 0 2(cl1 C12)__28Xy
B 0 0 €31 ]
0 0 €31
0 0 €33
0 €15 0 Ex
€15 0 0 Ey
-L 0 0 0 _|[Ez (26)




F T
Eyy
€zz

Dy 0 0 0 0 es 0 | 28y

Dy 0 0 0 es5 O 0 2ex

Dal=l es1 ex1 es3 0 0 0 L 2exy |

knu 0 0 ||Ex
0 x;; 0 ||Ey
+L 0 0 k33 ILE:

(27)

It should be noted here that the anisotropy axis is along the x3-axis. By using the
definition (11) of Fiymn, Kmy of (22) is given by (see Mikata, 2000)

—

L

Ci X%+C44X% 1
L(Ci1+Cp)x1x2 (Cz+C X
+J2~(C11-C12)x§ 2( 11+ C2) x1 x2 (Ci3+ Cag) X3 X1

! L(Cyy-Cp)
> (Cii+Ci2) x1 % 2

X , (Cit+Ca)x2x3
+ Cr1 x5+ Caq X3

Cua (X% + X%)

Cizs+Cy) x3x
(C13 + Cyg) X3 X1 + Cy3 ¥

(C13 + Caa) X2 X3

e1s (x§ + x3)

(e1s + e31) X2 X3 tegs 2

(e15+ e31) X3 X3

(e15+ e31) X3 X1

(e1s + €31) X2 X3

es (xf + x3)
+ €33 X%

- K11 (x] + x3)
- K33 X%

(28)

The inverse matrix Ki\}IJ is calculated as (see Huang and Yu, 1994, Mikata, 2000)

-




where

and

[ b;y bz bz by |
) by b b b
Kb = L 1 bx by by
Dl b3; b3z by by
L bar bay bz bag _

D (x1, X2, X3) =- PQ
P (x1, X2, X3) = (C11 - C12) z +2Cy4 %3
Q(x1, X2, X3)=q1 22+ Q22 x5+ @32 X3 + g4 x§

z=x%+ x%

_ 2 2 2 )
bii=(rin Xy + ri2x3) 22+ (r13 Xy + rq14 X3) X3 z
2 4 6
+(r115 X3 + 1116 X3) X3 + 1117 %8

bi2= X1 X2 [F121 22 + 11222 X5 + r123 X]]
bis=x1 X3P [r1312+ r13 x3]

bia=x1 X3P [r1a1 2+ 1142 x3]

bz = b1z

_ 2 2 2 2
boy = (1221 X} + o2 X3) Z2 + (1203 X + 1924 X3) X3 Z
2 2 o4
+ (r225 X3 + 1226 X3) X3 + 1207 %8

b23 = X2 X3 P [r231 2+ 123 X3]
b24= X3 X3 P [r241 2+ 1242 x3]
b31 = b3
b3z = b3

_ 2 4
b33 =P [r331 22 + 13372 X5 + 333 Xj]

(29)

(30)

1)

IO




_ 4
b3a =P [r341 22 + 13402 X3 + 343 Xj]

bs1 = bis
bz = bya
bsz = big

bas =P [raa1 22 + T442 Z X3 + T 443 X
Qi (i=1-4)in (30) and rj in (31) are functions of piezoelectric material parameters,
and are given in Appendix A. Since Ki\}u in (25) is a symmetric matrix, we have

Linmy = Tinym (32)

The piezoelectric Eshelby tensors Syjnap defined by (19) have already been obtained in
terms of I;,y for an arbitrary ellipsoid in a transversely isotropic material whose axes
coincide with the axes of the anisotropy (see Mikata, 2000).




5. Spheroidal inclusion along the x;-axis

The spheroidal inclusion along the x3-axis can be represented by

aq=a, £2%) , as (33)

Substituting (33) into (23), we obtain

Linmy = f Ginmy (%, };—2, %) dS = f Ginmy (Y1, Y2, Bys) dS
Iyl=1 lyl=1 (34)

The second equality in (34) follows from the fact that G;,); (x) is @ homogeneous

function of order zero. Substituting (25) into (34), we obtain the non-zero components
of 'inMJ as

Iiimy = f 2 Kidr (¥1, ¥2, Bys) dS
lyl=1

Lomy = f y3 Kids (y1, Y2, Bys) dS
Iyl=1

Issmy = f B? v3 Kis (v1, y2, Bys) dS
lyl=1

Lo = f yiy2 Ki3 (1, y2, By3) dS
w=1 (35)

Iisi3 = [ B yiys Kii (y1, Y2, Bys) dS
fyl=1

L1314 = f B y1ys Kid (y1, y2, By3) dS
Iyl=1

(2




Ipsps = [ B y2y3 K33 (y1, y2, Bys) dS
lyl=1

In3pq = f B yays Kad (y1, y2, Bys) dS
lyl=1

Let us parametrize the unit sphere as follows.

y4 = sinb cosg, y> = 8ind singy3 = cosO
(36)
0<0<m, 0<p<2m
The area element is given by
dS = sin6 d6 d¢ (37)

It can be easily seen from (30) and (36) that D(y4, y», By3) does not depend on d.

Substituting (36) and (37) into (35), and performing the integration with respect to ¢, and
further changing the variables from 6 to t by

t = coso, dt = - sin6 do, sin29 =1 - t2 (38)

we finally obtain

1

2

Li111=Ion= g—j 1—i—)-t—[(?ﬂm +r12)(1 - 23 + B2 Briz + r1a)(1 - 9 £
0

+B* Briis + rie)(1 - ) t* + 4p° ryy7 t9]dt

1

2

I122 = I2211 =12Lf I—'DL [(Braz1 + ra0)(1 - £2)° + B2 (3razs + rana)(1 - 19 £
+ B* (3rzas + T226)(1 - 9) t* + 4B° rap7 1°]dt

1

) |
I1133=I233=-2m f 1JQ— [r331 (1 - )+ B2 r3s2 (1 - ) 2+ B 1335 tY]dt

0
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1

2
Liaa=Inaa=-27 f l—aL [raa1 (1 - 22+ B? ragn (1 - t2) 2+ B* rags t¥] dt

0

1

I1134=12234=-2ﬂ[ 1=t
0

2

[r341 (1 - t2)2 + ﬁz r34n (1 - t2) t2 + B4 I'343 t4] dt

e,

1

L3311 = Iz =272 | L
11 3322 B fOD

[\

[(in + rip)(1 - ) + B? (r113 + r1aa)(1 - 9 &
+ B (r11s + riig)(1 - ) t1+ 288 137 t°)dt | (39)

1
2
I3333 = - 4 7B’ f t6[r331 (1- €+ B?razz (1- ) €+ B razs t] dt
0
1
2
[3344 = - 41'5[32 f —t-d[r441 (1- t2)2 + B2 ra42 (1 - tz) 2 + B4 443 t4] dt
0

1
2
I3334 =- 4‘ltB2 j -16[1341 (1- '[2)2 + Bz r34n (1 - t2) t + B4 343 t4] dt
0

! 2.2
Iioi2= f'-zlf a -Dt ) [ri21 (1- )2+ B2 rizn (1 - 19 2+ B4 rpps t4] dt
0

1

2 2

I1313=Ip323=- 27t32[ t—(lQ—t) [r131 (1 - )+ B ry3p ] dt
0

1
| B 2
Iiz14 = Ip304 =- 27tl32f E(I—Qtl [r141 (1 - )+ B? riap ] dt

0

where

|4




D=-PQ

P=(Cii- Ci2)(1 - t2) +2Csq P> £ (40)

Q=q (-’ +p2 - E+B qs(1- ) t*+ B8 qqts

In (39), the equalities 1111 = l2222, 11122 = 12211, 13311 = l3322, 11313 = 2323, 11314 =
2324, are obtained from the relations among ry given in Appendix A. It should be

noted that ;5\, in (39) coincide with Gmiin in (20) of Huang and Yu (1994) with the
following notational correspondence

Gin = Linvy

p=p

except that there are a few misprints in their paper regarding the coefficients of the
polynomials in the integrands which are given in Appendix A of their paper.

(41)

By using the equation (46) of our previous paper (Mikata, 2000) and (39) above, the
piezoelectric Eshelby tensors Sy,ap for a spheroidal inclusion along the x-axis can be

obtained in terms of |,y @s

Sttt = S = ZIE [Ci1 1111 + Ci2 Liziz + Ciz Lisiz + e31 1i314]

S1122 = S2211 = ﬁ[Clz i + Cop L2z + Cuz Liziz + e31 1i314)
Si133 = S2233 = ZI;I— [Ci3 (T1111 + Ti212) + Cs3 L1313 + €33 I1314]

Si143 = So43 = ﬁ [e31 (Trinn + Ti212) + e33 11313 - k33 Li314]

S1212= S1221 = 2112 = Sp121 = é (Ci1- C)lI122 + Li212]

S1313 = S1331 = S3113 = S3131 = $2323 = S2332 = S3203 = S3032

- 8_ln_ [Cas (T1133 + L3311 + 2L1313) + €15 (T1134 + L1314)]

S1341 = S3141 = S2342 = S3242




= i [e1s (T1133 + Is311 + 211313) - ®11 (T1134 + T1314)]

(42)
S3311 = S3322 = 4—11; [Ci1 Li313 + Cr2 Inzzz + Ci3 L3333 + €31 [3334]

S3333 = # [Ci3 (T1313 + I2323) + C33 13333 + €33 I3334]
S3343 = 4—17; [e31 (L1313 + I2323) + €33 3333 - K33 [3334]

Sa113 = Sa131 = Sa223 = Sap32 = ﬁ [Cas (I1134 + T1314) + €15 L1144]

Sa141 = Sapa2 = ﬁ [e1s (T1134 + I1314) - k11 Li144]
Sa311 = Saz2 = ﬁ [Ci1 L1314 + Ci2 I2324 + Ci3 I3334 + €31 I3344]
Saz33 = ﬁ [C13 (11314 *+ I2324) + C33 I3334 + €33 I3344]

Saza3 = # [e31 (I1314 + I2324) + €33 I3334 - K33 I3344]

Smnab = 0, otherwise

It will be shown in the following that we can proceed further, and in fact we can
evaluate the integrals in (39) analytically in an exact closed form. To this end, let us
rewrite (39) as

I1111 = T2

=- 32-11(252(344, C11-Ci2; B%q4, B*qs, B2qa, q1; S111, S112> S113, S114)
I1122 = Inong

=- J5-11(252(344, C11-Ci2; B8qa, B*qs, B2q2, q1; 221, S222, 5223, $224)

11133 = Ioo33 = - 27 La(B%qs, B*qs, B2q2, qu; Brsss, BPrase, r331)

T114s = Tn24s = - 27 La(B%as, Bas, B2, qu; Brass, P’rasz, T441)
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L1134 = Looza = - 21 La(B%qs, B*qs, Bq2, 1; B'raas, BPraaz, r3a1)

Is311 = In322

= - 2nB? 1(2B%Cas, C11-Ci2; BOqu, Bas, B2, u; s331, 8332, 8333, $334)
T3333 = - 477 Is(B%qs, B*as, B2az, qi; Brass, B°rase, r331) (43)
T334 = - 4B Is(B%q4, B a3, Bqz, 15 Brass, Brasz, raqr)

I3334 = - 4P% Is(Bqu, Bas, B2, qi; B'raas, Brasz, r341)

Lioip=- %13(252(344, C11-Ci2; Bqa, Bas, B2, qis Bri23, BPri22, T121)

L1313 = Iozo3 = - 27B° Ls(B%qa, Bqs, B2, qu; Brise, r131)

L1314 = Inzpg = - 27P? Is(B%qq, B*qs, B2q2, qu; Brisz, T1a1)

where
_ _ n4 _ a2
sin=4B%n7,  si2=B*Gris+rie), s113= B°Bri13 + r14)

S114 =3r111 + 112

_ 4 _

spo1 = 4B%rays S222 = B7(3ra2s + r226) s223 = B*(3ra23 + T224)

$224 = 31221 + 1222 (44)
_ _ 4 _ |

s331 = 2B%r117 s332= P (r115 + r116) 5333 = BX(r113 + r114)

$334 = I111 T I112
and
I, (e,f; a,b,c,d; A,B,C,D)

1
(1- B)[AL +Bt*(1 - &)+ CE(1 - ) +D(1 - )]
e+ £(1 - P)][at° + bt'(1 - ) + (1 - Y +d(1 - )]

dt

i1




I (e,f; a,b,c,d; A,B,C,D)

1

CIAC+Br -2 +CP1 - +DA-]
e + (1 - O)[a® +bt'(1 - )+ ct(1 - & +d(1 - )]

I3 (e,f; a,b,c,d; A,B,C)

1

_ (1- A +BA1 - O+ C(1 - O] i
e+ (1 - [t + be*(1 - )+ (1 - 2 +d(1 - )]
(45)
1
I (ab.c.d; AB,C) = (1 - A+ Bl - B) +C(1 - )] g
Cat®+bth(l - ) + o1 - Y +d(1 - &
1
Is (ab.c.d: AB.C) = 2[At* + BX(1 - B+ C{ - )] i
. at® + bt¥(1 - )+ ct¥(1 - &) +d( - &)
1
I (a.b,c,d; AB)= %(1 - )[A? + Bl - t9)] dt

Catt +bti(l - )+ ol - ) +d(1 - )’

For the real piezoelectric material parameters, the above integrals are expected to be
finite. In fact, this condition will impose additional constraints on the piezoelectric
material parameters, which was discussed in our previous paper (Mikata, 2000), where
the integrals treated were different from the above integrals. However, exactly the
same constraints will be obtained from the consideration of the above integrals.

The analytical evaluations of the above integrals 11 ~ I are given in the following.
First, let us set

€= f

e (46)

When the condition discuésed above is satisfied (see Mikata, 2000), we have the
following results. Here we have assumed that all of the poles of each integrand are a

| B



sjmple pole. If they are not, then we would have different expressions, which are not
listed in the following.

2+ 4 p3<0
(a) When E 27p

I = é [EiJi(e?) + FiJi(a?) + GiJi(B%) + HiJi(y2)]
I = -L[A+ Bali(e?) + FaJi(a?) + Gali(B?) + HoJi(y2)]

I;= i [EsJi(g2) + F3Ji(a?) + GsJi(B) + HeJi(v2)] -
(47)
L =L [Fali(0?) + Gali(B%) + HiJi(v?)]

Is= i [A + FsTi(o?) + GsIi(B?) + Hsli(y?)]
Is =L [Feli(a?) + Geli(B%) + Heli(r2)]

2+ 45350
(b) When . 27p

I, = é [K1Ji(e2) + L1J1(82) + Ja(g,h; M,Ny)]
L= L[A+KoJi(e) + Lali(3%) + ha(gh; My, Np)]

Is = L [KsJi(2) + LaJi(8%) + Ta(gh; Ms,N3)]
| (48)
Iy= %1- [LaJ1(8°) + Ja(g,h; Ma,Ny)]

Is = L [A+ LsTi(3%) + ha(gh; Ms,Ns)]
I¢= % [LeJ1(8%) + Ja(g,h; Ms,Ng)]
with

g=-2(&- 12
(49)

9




h=(&+n>)’

where a, B, 1, §, £, n, p and q are defined in Appendix B, and the coefficients

E; (i=1~3), F; (i=1~6), G; (i=1~6), H; (i=1~6), K; (i=1~3), L; (i=1~6), M; (i=1~6), N; (i=1~6)

are given in Appendix C. Finally the functions J4 and J, are defined as follows.

1
Jik) = _1-2 4
o (1-KP+k

1 1 log‘&ﬁ when k> 1
k‘l 2(1{_1)%& VE-‘ Vk‘l
- 1 4 13 tan'quﬁ when 0 <k<1
-k i3k >

2 when k=1
3
1
2 2 2
To(g.h; MIN) = (1-t)[Mt“+N( -t )]2 dt
) t*+ gt?(1 - )+ h(1 - )
1+ p)*+ &2
= N-M , 1 [&k,g( P+ ¢
L-g*th -g+m?*t2 " (1-pP+ 0
-S-(tan'l——1+p+tan'1—l'p)]
G G G
where
____8-2h y=_V4h-g> _ 28
2(1-g+h) 2(1-g+h) 1-g+h
cos O = U sin § = —¥Y—
r= Vu2+V2, vu2+ V2, VU2+V2,

p rcosz’ C rsm2

(50)

(51)

(52)
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T=(h- M- (g- 2N U=hM-(g- )N

R=1L [T+ U] s=l[r. U | ,
2 4 2 2
pr+q (53)

By using the results of (43), (47) and (48) into (42), we obtain the piezoelectric Eshelby
tensors for the spheroidal inclusion along the x3-axis. It should be emphasized that

these are exact closed form expressions for the piezoelectric Eshelby tensors.

6. Conclusion

In this paper, by systematically treating the integrals involved in the piezoelectric
inclusion problem, explicit results have been obtained for the piezoelectric Eshelby
tensors for a spheroidal inclusion aligned along the axis of the anisotropy in a
transversely isotropic piezoelectric material. The method employed is a direct
extension of a fairly unified approach, which has been recently developed by Mikata
(2000), where Deeg's results (1980) on a piezoelectric inclusion problem were used.
The key step of this paper is an analytical evaluation of several integrals, which were
made possible after a careful treatment of a certain bi-cubic equation, whose details are
given in Appendix B.
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Appendix A qq ~ q4 and r

q1=Ci1 (Cag k11 + €d5)

G =- Ci3 %11 + C1y (Cas %11 + Cag k33 + 215 €33) - 2C13 (Cag K11 + efs)
- €31 (2Cy3 e15 - Cas €31)

45 = Cs3 Caq k11 - (Ci3 - Cyy C33+2C3 Cag) k33 + Ca3 (e5 + €31)’
- €33 (2Cy3 e15- Cr1 €33) - 2(Ci3 + Cya) €31 €33

q4 = Cys (Cs33 X33 + €35)

=_Ch-Cpp
ri =- =—=q
Cn
rie=-2q

r113=- (Ci1 - C12) (C33 k11 + Cas K33 + 2€15 €33) - 2Cas (Cas k11 + €f5)
ru=-2q

r115 =-(Ci1 - Ci2) (Cs3 K33 + e23) - 2Caq (C33 k11 + Caq K33 + 2615 €33)

rie=-2q3
ri17=-2q4
~_C+Cpp
rp) = —————=qi
Cu

ri22=(Cr1 + C12) (Cs3 k11 + Cas K33 + 2€15 €33) - 211 (C3 + Cag)?
-2 (e15+ e31) [2Cy3 e15 + Cag (€15 - €31)]

r123=(Ci1 + Ci2) (Cs3 k33 + €%3) - 233 (C13 + Caq)® + 2C33 (€15 + €31)?
- 4e33 (Cy3 + Cag) (€15 + €31)

r131 = (Ciz + Cas) k11 + €15 (15 + €31)
riz2 = (Ci3 + Caa) k33 + €33 (€15 + e31)
ria1 = Ciz e15- Cyqq €39

ri42 =- Cs3 (e15+ e31) + e33 (Ci3 + Cyg)

24




21 =-2q1=I112

rzzzz-glc—_(ﬁ%:rm
11

I23=-2q2=T1114
1224 = T113
I25=-243=Tr1i6
226 = I'115

127=-2Q=T1117

I231 = I'131
r232 = I132
I241 = T'141
242 = T'142

r331 = - Ci1 K11

_ 2
133 =- Cas K11 - C11 K33 - (€15 1 €31)

r333 = - Cyq K33

r341 =- Ci1 €15

1342 = Ci3 (€15 + e31) + Cas €31 - Cyg €33

1343 = - Cy4 €33

ra41 = C11 Cys

ragn = Ci1 Ca3- Cf3-2C13 Cg

ra43 = C33 Cy4




Appendix B Roots of the bi-cubic equation

The key to the evaluation of the integrals 14 ~ Ig is the following bi-cubic equaﬁon

azb+bzA+cz2+d=0,

or
(B-1)
ﬁ+hﬁ+9ﬂ+d 0
a a
Let us set
_ ¢_1(b
D= Gl
(B-2)
3

Then the roots of (B-1) are given as follows.

2+ 4 53<0
(a)whenq 27p
Z4, Zp = % qi, Z3, 24 = £ Bi, Z5, Zg = i (B-3) -
where
=/\/—b—-2 ¥r cos &
3a 3
B='\/l’—-2 ¥r cos (& + 2m)
3a 3 3
: (B-4)
= -2¥rcos@-2n
A ER R
3
r=a/-2 cosp=-1 sin @ = L ,\/ (q2+ 4
27, 2r,
2+ip3>0
(b) when 27
24,22 = £ 8, z3, 4 = & £ 1, 5,2 = - (§ £ i) (B-5)

where

2C




2 27 (B-6)

2= VS2 +'\3/t2 - V§+3L (VE+ V?)'*‘é(]‘;‘)z
a
.1 b
cos O =- %[E(V_s_+ VY)‘FQ]

sino=13 5 - ¥o)
2r

When the coefficients a, b, ¢ and d satisfy the conditions discussed in Section 5 (see
Mikata, 2000), a, B, v, and & are all real and positive. & and n are always real and
positive.
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Appendix C Expansion coefficients E; (i=1~3), F; (i=1~6), G; (i=1~6), H; (i=1~6), K;
(i=1~3), L; (i=1~6), M; (i=1~6), N; (i=1~6)

E,=—-Ag’+Be?-Ce2+D
(a2 - e)(B° - e2)(y2- €?)

F= -AgS+Ba4-Ca2+D
(€2 - 02)(B® - 02)(y?- 0?)

G, = -AB®+BB*-Cp*+D
(€2 - (a2 - B7)(¥2- B)

-Ay®+By4-Cy2+D

(€2 - v2)(02 - y2)(B* - v2)

K= -Ag6+Be4-Ce2+D
(82 - €2)(e* - ge2 +h)

H1 =

L,=-A8°+B&*-C82+D
(e2- 5%)(8* - g8*+h)

M, = ?1- [A{h? + (g2 - h)8%e2 - gh(8% + €2)} + B{- g 562 + h(5% + €2)}

-hC +D(g - 5% - e2+3%¢2)]

N = glg [A{ghd%? - h’(8% + €2)} + B(h’ - h&%e2) + C{h(8° + &?) -gh}

+D{5%2 - g(5° + £2) +g2 - h}]
g2(Agb - Be*+ Cg?2-D)

(02 - e2)(B” - e)(y2 - €?)
a2(Aab - Bat + Ca? - D)

(€2 - 0?)(B* - a?)(v2- o?)

G, = Bz(AB6'BB4+CB2-D) 26
(e2- BA)(a2 - BA)(y2- B

E2=

F2=




_ Y%(Ay®-By*+Cy2-D)

(2 - y)(a2 - y2)(B*-v2?)
_g%(Ae®-Be*+Ce?2-D)
(82 - €2)(e* - ge2 +h)

H

K,

_ 8%(A8°-B&*+C8%-D)
(e2- 8%)(8* - g8% +h)

L,

Mz = L [A{(Geh - g)8%2 + (¢ - (67 + &) - h’)

+B{(&2 - h)8%2 - gh(82 + £2) + h?} + C{h(8* + £2) - g&%€2}
+D(5%2 - h)]

N, = % [A{(h? - g2h)5%€2 + gh?(5% + €2) - h®} + B{ghd%2 - h*(8% + £2)}

+ C(h% - h8%e2) + D{h(82 + €2) - gh}]

E; = Aeg*-Bg?2+C

(02 - e)(B* - e2)(y2- &?)
F;= Ag*-Boa?2+C

(e2- 0?)(B”- ad)(y2- a?)
Gy=__ AB-BR*+C

(e2- B2 - BA)(y2- BP)
H, = Ay4-By?2+C

(e2- y)(o2- y)(B* - v?)
K; = Ag4-Beg?2+C

(82 - €2)(e* - ge2 +h)

L = A8*-B32+C
(€2 - 8%)(8*- g8% +h)
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—f' 2)}]
+ + h) + C = ( 82 + €
6282} B(6282 )

h(52 € | }
M3= 1 [A{ ( 2 82)

= = 2 h6282) B{ g
N A(h” - + h 6 + h

3 é[ (

?+€2) + g2 -h}]
+C{8%2-g(8

2+C
4_Ba -

(0.4
F4:(§-a2xv2- o?)

AB4-BB2+C2

- B2 B)
Ay4-By2Z+ C2)

i (a2- y)(P*-y

Ad4-B8%2+C
L4=

Gy

§4-g8%+h
5%+ B&%-C
_A(h-f oo
M, = . y
2A+hB +C(8%- ¢
== ‘.g8%+h
Ny s )
2+
4-Bao
a?(Aa
F5=-

(B*- ad)(y2- o)
BAB*-BR2+ f))

o P p
2(Ay*-By2+ (23))

' y(ot2 Y-y

2+C)
4_.BS
SZ(A‘? g82+h

B} -

H5=

L5=
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M; = Al(g2- )82 - gh} + B(h - g 8% + §°C
8*-g8%+h

N; = A(ghd? - h’) - h3°B +hC
8%-g82+h

F¢ = Aot -Bag?
(B*- ad)(y?- o?)
AB*-Bp?
(a2- BH(y2- B

_ Ay4 - By?2
(02- y2)(B*- y?)

5*-g82+h

Ge =

M, = Al - 28%) + BS?
§%-g8%+h

N = hC A2 +B)
§*-g82+h

where

Y =(8%-gd% +h)(e*- ge2 + h)




Figure captions and figures

Fig. 1 Eigenstrain - eigen electric field Z* in a region Q in an infinite piezoelectric

medium

Fig. 1
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