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Abstract 

In this paper, by systematically treating the integrals involved in the piezoelectric 
inclusion problem, explicit results were obtained for the piezoelectric Eshelby tensors for 
a spheroidal inclusion aligned along the axis of the anisotropy in a transversely isotropic 
piezoelectric material. This problem was first treated by Dunn and Wienecke (1 996) 
using a Green's function approach, which closely follows Withers' approach (1989) for 
an ellipsoidal inclusion problem in a transversely isotropic elastic medium. The same 
problem was recently treated by Michelitsch and Levin (2000) also using a Green's 
function approach. In this paper, a different method was used to obtain the explicit 
results for the piezoelectric Eshelby tensors for a spheroidal inclusion. The method is a 
direct extension of a more unified approach, which has been recently developed by 
Mikata (2000), which is based on Deeg's results (1980) on a piezoelectric inclusion 
problem. The main advantage of this method is that it is more straightforward and 
simpler than Dunn and Wienecke (1996), or Michelitsch and Levin (2000), and the 
results are a little bit more explicit than their solutions. The key step of this paper is an 
analytical closed form evaluation of several integrals, which was made possible after a 
careful treatment of a certain bi-cubic equation. 
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Abstract 

In this paper, by systematically treating the integrals involved in the piezoelectric 
inclusion problem, explicit results were for the piezoelectric Eshelby tensors for a 
spheroidal inclusion aligned along the axis of the anisotropy in a transversely isotropic 
piezoelectric material. This problem was first treated by Dunn and Wienecke (1 996) by 
using a Green's function approach, which closely follows Withers' approach (1 989) for 
an ellipsoidal inclusion problem in a transversely isotropic elastic medium. The same 
problem was recently treated by Michelitsch and Levin (2000) by also using a Green's 
function approach. In this paper, a different method was used to obtain the explicit 
results for the piezoelectric Eshelby tensors for a spheroidal inclusion. The method is a 
direct extension of a more unified approach, which has been recently developed by 
Mikata (2000), which is based on Deeg's results (1980) on a piezoelectric inclusion 
problem. The main advantage of this method is that it is more straightfoward and 
simpler than Dunn and Wienecke (1996), or Michelitsch and Levin (2000), and the 
results are a little bit more explicit than their solutions. The key step of this paper is an 
analytical closed form evaluation of several integrals, which were made possible after a 
careful treatment of a certain bi-cubic equation. 
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1. Introduction 

The importance of piezoelectric composites has been well documented in recent years 
in relation to smart materials and smart structures as well as electronic packaging 
(Taya, 1995). For production and application of the piezoelectric composites, the 
characterization of piezoelectric composites becomes very important. In the 
characterization of the linear elastic composite materials, Eshelby tensor has played a 
dominant role (Mura, 1987, Mori and Tanaka, 1973). Similarly, the central issue in the 
characterization of piezoelectric composites is determination of the piezoelectric 
Eshelby tensors (Mikata, 2000). 

This paper treats the explicit determination of the piezoelectric Eshelby tensors for a 
spheroidal inclusion aligned along the axis of the anisotropy in a transversely isotropic 
piezoelectric material. This problem was first treated by Dunn and Wienecke (1 996), 
and recently by Michelitsch and Levin (2000). There have been a number of studies on 
piezoelectric inclusion problems as well as piezoelectric composites (Deeg, 1980, 
Benveniste, 1992, Wang, 1992, Dunn and Taya, 1993 a & b, Dunn, 1994, Huang and 
Yu, 1994, Dunn and Wienecke, 1996, Huang, 1996, Michelitsch and Levin, 2000, 
Mikata, 2000). However, only three (Huang and Yu, 1994, Dunn and Wienecke, 1996, 
Michelitsch and Levin, 2000) of the above studies have considered the piezoelectric 
Eshelby tensors for a spheroidal inclusion in more details. In particular, Dunn and 
Wienecke (1996) have obtained the piezoelectric Eshelby tensors for a spheroidal 
inclusion explicitly using a Green's function approach, which closely follows Withers' 
approach (1 989) for an ellipsoidal inclusion problem in a transversely isotropic elastic 
medium. Michelitsch and Levin (2000) also recently obtained piezoelectric Eshelby 
tensors for a spheroidal inclusion explicitly by deriving Green's functions for 
transversely isotropic piezoelectric materials. In this paper, we also obtain the 
piezoelectric Eshelby tensors for a spheroidal inclusion explicitly, but using a different 
approach. The method is a direct extension of a more unified approach, which has 
been recently developed by Mikata (2000). The main advantage of this method is that 
it is more straightforward and simpler than Dunn and Wienecke (1996), or Michelitsch 
and Levin (2000), and the results are a little bit more explicit than their solutions. 

The general strategy of this paper largely follows the one employed in the recent 
publication by the present author (Mikata, 2000), where Deeg's results (1980) on a 
piezoelectric inclusion problem were used. The key step of this paper is an analytical 
evaluation of several integrals, which were made possible after a careful treatment of a 
certain bi-cubic equation. 
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2. Governing equations of piezoelectricity 

The governing equations of piezoelectricity are given by 

where aij, Em,, 
respectively, Di, Ei, P, and 4 are electric displacement, electric field, electric charge 
density and electric potential, respectively, and Cijmn, Kin and enij are elastic moduli, 
permittivity and piezoelectric constants, respectively. Eqs. (1) - (3) describe the 
elasticity of the material, whereas Eqs. (4) - (6) describe the electrostatics of the 
material. The coupling between elasticity and electrostatics, Le., piezoelectricity, is 
provided by the piezoelectric constants enij. It should be noted here that the 
electrostatic part (Eqs. (4) - (6)) is written in the rationalized MKSA system (see 
Jackson, 1975). 

and fj are stress, strain, displacement field and body force, 

Following Barnett and Lothe (1975) and Deeg (1980), we will rewrite the above 
governing equations by defining the following variables. 

/ Um for M (= m) = 1,2,3 
'"=\e f o r M = 4  

Zm = I gmn for M (= m) = 1,2,3 
\ - E n  f o r M = 4  

f j  forJ (=j )=  1,2,3 
pJ = \ - p  f o r J = 4  



Cijm for J, M = 1,2,3 
%ij for J = 1,2,3 ; M = 4 
e h  for J = 4 ; M = 1,2,3 
- ~ h  f o r J = M = 4  

where UM, ZM,, CiJ, PJ and F~JM" are displacement - electric potential, strain - electric 
field, stress - electric displacement, body force - electric charge density and 
piezoelectric moduli, respectively. With the help of (7) - (1 I), the governing equations 
of piezoelectricity, i.e., Eqs. (1) - (6), can be compactly rewritten as (see Mikata, 2000) 
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3. Piezoelectric inclusion problem 

Let us consider a piezoelectric inclusion problem where a region R in an infinite domain 
R3 has a constant eigenstrain - eigen electric field Z*, which is both stress free and 
electric displacement free (see Fig. 1). There are no body force and no charge density 
for this problem. Mathematically, the problem is defined as follows: 

where the eigenstrain - eigen electric field z k  (X) is given by 

{ z k  X € Q  z k  (x) = 
I \ O  x € R 3 - Q  

Substituting (14) and (1 5) into (1 3), we obtain 

F i N n  UM,ni = F i M  a i  Z L  (X) 7) 

where 

FiJMn ai &XI (XI acts as a body force - electric charge density. Deeg (1980) has 
obtained a fairly general result for this problem in an integral form. The case when the 
shape of the inclusion R is an ellipsoid, however, is the most interesting. In this case, 
the strain - electric field Z in R resulting from Z* can be sometimes determined explicitly 
by evaluating the integral analytically. Deeg (1980) did not do this explicit evaluation in 
his dissertation. The result obtained by Deeg (1980) for the ellipsoidal case can be 
recast into the following form. 

denotes the partial differentiation with respect to Xi. It is seen from (17) that 

where SMnAb is a piezoelectric analog of Eshelby tensor, and is given by 

-FiJAb 1 (IinmJ 4- IimnJ) when M = 1,2,3 1 :I ' l F i J A b I i n 4 J  when M = 4  



2 2  2 2  p = ./a: x: + a2 x2 + a3 x3 

where ai is the length of the semi-axis of the ellipsoid in the xi-direction. In light of the 
fact that SMnAb consists of 4 different tensors, in this paper, it shall be called 
piezoelectric Eshelby tensors (cf., Mikata, 2000). 1x1 = 1 is the surface of the unit 
sphere and K& is the,inverse of 4x4 matrix KMJ, which is defined by (22). The shape 
of the ellipsoid will affect the piezoelectric Eshelby tensors SMnAb through p in the 
integrand. It should be mentioned here that the coordinate axes are chosen such that 
they coincide with the axes of the ellipsoid. 



4. Piezoelectric Eshelby tensors 

The piezoelectric Eshelby tensors are defined by Eqs. (19) through (22). The key part 
of the definition is the integral IinMJ. Using the results of our previous paper (Mikata, 
2000), we have 

where yl ,  y2, and y3 are given by 

and 

Let us now specifically consider a transversely isotropic piezoelectric material. 
The constitutive equations for the transversely isotropic piezoelectric material are given 
by 

c11 c12 c13 0 0 0 

c12 c11 c13 0 0 0 

c13 c13 c33 0 0 0 

0 0 0 c 4 4  0 0 

0 0 0 0 c 4 4  0 

0 0 0 0 0 L(C11- (212) 
2 
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It should be noted here that the anisotropy axis is along the x3-axis. By using the 
definition (1 1) of FiJMn, KMJ of (22) is given by (see Mikata, 2000) 

1 - 

c11 XT + c 4 4  1 
+%l - Cl2) x; 2 

- (c11 c.12) x1 x2 (c13 c44)  x3 x1 (el5 e31) x3 x1 

2 

The inverse matrix Kkr is calculated as (see Huang and Yu, 1994, Mikata, 2000) 
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K& = 1 
D 

bll b12 b13 b14 

b21 b22 b23 b24 

b31 b32 b33 b34 

b41 b42 b43 b44 

where 



b41 = b14 

b42 = b24 

b43 = b34 

b44 = p [r441 z2 r442 z x$+ r443 $1 
qi (i = 1 - 4) in (30) and Gjk in (31) are functions of piezoelectric material parameters, 

and are given in Appendix A. Since K&J in (25) is a symmetric matrix, we have 

The piezoelectric Eshelby tensors SMnAb defined by (1 9) have already been obtained in 
terms of IinMJ for an arbitrary ellipsoid in a transversely isotropic material whose axes 
coincide with the axes of the anisotropy (see Mikata, 2000). 



5. Spheroidal inclusion along the x3-axis 

The spheroidal inclusion along the xg-axis can be represented by 

a1 =a ,  

Substituting (33) into (23), we obtain 

(33) 

The second equality in (34) follows from the fact that GinMJ (x) is a homogeneous 
function of order zero. Substituting (25) into (34), we obtain the non-zero components 
of IinMJ as 



Let us parametrize the unit sphere as follows. 

yl = sine cos$, y2 = sine sin$y3 = cos0 

The area element is given by 

dS = sine de d+ (37) 

It can be easily seen from (30) and (36) that D(y1, y2, py3) does not depend on 6. 
Substituting (36) and (37) into (359, and performing the integration with respect to $, and 
further changing the variables from 8 to t by 

t = cose, dt = - sine de,' sin% = 1 - t2 (38) 

we finally obtain 



2 2  
13344 = - 4np2 [r441 (1 - t2)2 + p2 1-442 (1 - t ) t + p4 1-443 t4] dt 

2 2  
13334 = - 4np2 [r341 (1 - t2)2 + p2 1-342 (1 - t ) t + p4 1-343 t4] dt 

- t2)2 [r121 (1 - t2)2 + p2 1-122 (1 - t 2 2  ) t + p4 1-123 t4] dt 

where 



D = - P Q  

P = ( C 1 1  - C12)(1 - t2) + 2 c 4 4  P2 t2 

2 2  2 2 4  Q =  9 1  (1 - t2)3 + P2 9 2  (1 - t ) t + P4 q 3  (1 - t ) t + P6 9 4  t6 

In (39), the equalities 1111-1 = 12222, 11122 = 12211~ 13311 = 13322, 11313 = 12323, 11314 = 
12324, are obtained from the relations among qjk given in Appendix A. It should be 

noted that IinMJ in (39) coincide with G M J ~  in (20) of Huang and Yu (1994) with the 
following notational correspondence 

- 

- 
6 4 J h  = IinMJ 

P ' P  

except that there are a few misprints in their paper regarding the coefficients of the 
polynomials in the integrands which are given in Appendix A of their paper. 

By using the equation (46) of our previous paper (Mikata, 2000) and (39) above, the 
piezoelectric Eshelby tensors SMnAb for a spheroidal inclusion along the x-axis can be 
obtained in terms Of IinMJ as 

s l l l l  = s2222 = [ell 11111 + c 1 2  I1212 + c 1 3  I1313 e31 113141 4n: 

s1122= s2211 = [ c 1 2  I l l 1 1  c 1 1  I1212 4- c 1 3  I1313 e31 113141 
4n: 

s1212 = s1221 = $112 = s2121 = (C11 - C12)I?1122 + I12121 
8n: 

s1313 = s1331 = s3113 = s3131 = s2323 = s2332 = s3223 = s3232 

s1341 = s3141 = $342 = s3242 



s4113 = s4131 = s4223 = s4232 = [ c44  (I1134 11314) e15 111441 
4n 

s4311 = s4322 = [ell I1314 c 1 2  I2324 c 1 3  I3334 $- e31 133441 
47L 

otherwise 

It will be shown in the following that we can proceed further, and in fact we can 
evaluate the integrals in (39) analytically in an exact closed form. To this end, let us 
rewrite (39) as 



where 

and 

1 

(1 - t2)[At6 + Bt4(1 - t2) + ct2(1 - t2f + D(1 - t2f] dt =i, [et2 + f( 1 - t2)][at6 + bt4( 1 - t2) + ct2( 1 - t2f + d( 1 - t2)3] 
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I dt - - t2[At6 + Bt4(1 - t2) + Ct2(1 - t2>2 + D(l - t2$] 

[et2 + f(l - t2)][at6 + bt4(1 - t2) + ct2(1 - t2>2 + d(l  - t2)3] 
0 

1 

(1 - t2>2[At4 + Bt2(1 - t2) + C(l - t2f] dt =[ [et2 + f(l - t2)][at6 + bt4(1 - t2) + ct2(1 - t2>2 + d(l  - t2$] 

(1 - t2)[At4 + Bt2(1 - t2) + c ( 1  - t2>2] dt 
at6 + bt4(l - t2) + ct2(1 - t2f + d(l  - t2)3 

I4 (a,b,c,d; A,B,C) = 

I5 (a,b,c,d; A,B,C) = dt t2[At4 +Bt2(1 - t2) + c ( 1  - t2f] I, at6+bt4(1 - t2>+ct2(1- t2>2+d(l - t2f 

dt I6 (a,b,c,d; A,B) = 
t2(1 - t2)[At2 + B(l - t2)] 

at6 + bt4(1 - t2) + ct2(1 - t2f + d(l  - t2$ lo 
For the real piezoelectric material parameters, the above integrals are expected to be 
finite. In fact, this condition will impose additional constraints on the piezoelectric 
material parameters, which was discussed in our previous paper (Mikata, 2000), where 
the integrals treated were different from the above integrals. However, exactly the 
same constraints will be obtained from the consideratioi of the above integrals. 

The analytical evaluations of the above integrals 
First, let us set 

- 16 are given in the following. 

When the condition discussed above is satisfied (see Mikata, 2000), we have the 
following results. Here we have assumed that all of the poles of each integrand are a 



simple pole. If they are not, then we would have different expressions, which are not 
listed in the following. 

q2 + Qp3 5 0 
(a) When 27 

with 

g = - 2( t2 - q 2 )  



where a, p, y, 6 , 5 ,  q, p and q are defined in Appendix B, and the coefficients 

are given in Appendix C. Finally the functions J, and J2 are defined as follows. 
Ei (i=1~3), Fi (i=1-6), Gi (i=1-6), Hi (i=1-6), Ki ( i = 1 ~ 3 ) ~  Li (i=1-6), Mi (i=1-6), Ni (i=1-6) 

1 - t2 dt I' (1 - k ) t 2 + k  
Jl(k) = 

(1 - t2)[Mt2 + N(l - t2)] dt i: t4 + gt2(1 - t2) + h(l  - t2f 
J2(g,h; M,N) = 

when k =  1 

(50) 

- - N - M  + [B log  (1 + PI2+ r2 
l - g + h  ( 1 - g + h ) 2  2 ( l - ~ ) ~ + t ; ~  

where 

u = -  g - 2 h  V =  d 4 h -  g2 - - 25rl 
2(1 - g + h) 2 ( 1 - g + h )  l - g + h  

cos0 = sin 0 = 
r =  m, w1 w, 
p = J E - C O S Q  4 = 6 sin Q 

2,  2 ,  

2" 



and 

T = (h - l)M - (g - 2)N U = h M - ( g -  l)N 

R = I [ T + L ]  
4P P2 + r2 , (53) 

By using the results of (43), (47) and (48) into (42), we obtain the piezoelectric Eshelby 
tensors for the spheroidal inclusion along the xg-axis. It should be emphasized that 
these are exact closed form expressions for the piezoelectric Eshelby tensors. 

6. Conclusion 

In this paper, by systematically treating the integrals involved in the piezoelectric 
inclusion problem, explicit results have been obtained for the piezoelectric Eshelby 
tensors for a spheroidal inclusion aligned along the axis of the anisotropy in a 
transversely isotropic piezoelectric material. The method employed is a direct 
extension of a fairly unified approach, which has been recently developed by Mikata 
(2000), where Deeg's results (1980) on a piezoelectric inclusion problem were used. 
The key step of this paper is an analytical evaluation of several integrals, which were 
made possible after a careful treatment of a certain bi-cubic equation, whose details are 
given in Appendix B. 
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9 1  
c 1 1  - c 1 2  

c 1 1  
rill = - 

r112 = - 2 q 1  

r121 = q1 C 1 1 f  c 1 2  

c 1 1  

r131 = ( c 1 3  c 4 4 )  K11 e15 (e15 + e311 

r142 = - c 3 3  (e15 e31) + e33 ( c 1 3  c 4 4 )  

2 4  



r221 = - 2q1 = r112 

r333 = - c44 K33 

r341 = - c11 e15 
r342 = c13 (e15 + e31) -k c44 e31 - c11 e33 
r343 = - c44 e33 
r441 = c11 c44 

r442 c11 c33 - c?3 - 2c13 c44 
r443 = c33 c44 



Appendix B Roots of the bi-cubic equation 

The key to the evaluation of the integrals I1 - l6 is the following bi-cubic equation. 

a z 6 + b  # + c  z 2 + d = 0 ,  

Let us set 

3 q =  L ( h )  - k + d  
27 a 3a2 a 

Then the roots of (B-I) are given as follows. 

q 2 + 4 - p 3 I O  
(a) when 27 

z l ,  22 = f ai, 

where 

z3, z4 = f pi, 

3a 3 3  

3a 3 3  

or 

25, z6 = f yi 

sin e = 1 d v  
2r 

q2 + 4 p 3  > 0 
(b) when 27 

z1, 22 = f 6i, 

where 

(B-5) 



~ = E c o s Q  
2,  

q = E sin Q 
2 

27 

t = ' ( - q -  q - )  
2 

When the coefficients a, b, c and d satisfy the conditions discussed in Section 5 (see 
Mikata, 2000), a, p, y, and 6 are all real and positive. 5 and 
positive. 

are always real and 



- Aa6+ Ba4 - Ca2 + D F1= 
(E2 - a2)(P2 - a2) (y2  - a2) 

- Ay6 + By4 - Cy2 + D Hi = 
(e2 - Y 2>(a2 - Y 2>(P2 - Y 2> 

+ B64 - C6 2 + D  L1= - 
( E ~  - S2)(S4 - gtj2 + h) 

M 1 = l [ A { h 2 + ( g 2 - h ) 6 2 ~ 2 - g h ( 6 2 +  E ~ ) }  + B { - g 6 2 ~ 2 + h ( 6 2 +  s2)} 
Y 

- hC + D(g - 62 - +62~2)]  

N1= 1 [A{gh62c2 - h2(S2 + c2)} + B(h2 - hS2E2) + C{h(S2 + E ~ )  -gh} 
Y 

+ D( ti2c2 - g( 62 + E ~ )  +g2 - h}] 

E ~ ( A E ~  -  BE^ + Cc2 - D) 
E2 = 

(a2 - &2)(P2 - &2)(Y2 - &2) 

a2(Aa6 - Ba4  + Ca2 - D) F2 = 
(&2 - a2>(P2 - a 2 ) ( y 2  - a2) 



E ~ ( A E ~  -  BE^ + C E ~  - D) K2 = 
(S2 - E ~ ) ( E ~  - gs2 + h) 

S2(AS6 - B64 + CS2 - D) 
( E ~  - S2)(S4 - gS2 + h) 

L2 = 

M2 = 1 [A{(2gh - g3)62~2 + ( g2h - h2)(S2 + E ~ )  - gh2} 
Y 

+ B{(g2 - h)S2E2 - gh(S2 + E ~ )  + h2} + C{h(62 + E ~ )  - gS2E2} 

+ D(S2tz2 - h)] 

N2 = 1 [A{(h2 - g2h)6 E 2 + gh2(&2 + ~ 2 )  - h3} + B{ghS2E2 - h2(S2 + E2)} 
Y 

+ C(h2 - htj2E2) + D{h( + ~ 2 )  - gh}] 

A84 -  BE^ + C 
(S2 - E ~ ) ( E ~  - gE2 + h) 

K3 = 

A64 - BS 2 + C  L3 = 
( E ~  - S2)(S4 - gS2 + h) 



M3 = 1 [A{h(S2 + E ~ )  - gtj2E2) + B ( 6 2 ~ 2  - h) + C{g - ( 62 + E ~ ) ) ]  
Y 

N3 = 1 [A(h2 - h62E2) + B{h(62 + E ~ )  - gh) 
Y 

+ C { 6 2 ~ 2  - g(?j2 + E ~ )  + g2 -h}] 

Ap4 - Bp2 + C GA = 

L4 = A64 - B62 + C 
64 - gtj2 + h 

A(h - gtj2) + B62 - C 
64 - g62 + h 

m= 

- htj2A + hE3 + C( 62 - g) 
64 - g2j2 + h 

N4 = 

a2(Aa4 - Ba2  + C) 
(p2 - a2)(y2 - a21 

F5 = - 

p2(Ap4 - B p2 + C) G < = -  

y2(Ay4 - By2 + C) 
H5 = - 

(a2 - Y 2>(P2 - Y 2> 



A{(g2 - h)S2 - gh} + B(h - g S2) + tj2C 
64 - g S 2 + h  

Ms = 

A(gh62 - h2) - hS2B + hC 
S4 - gl i2+ h 

N5 = 

Ay4 - By2 H 6 =  
(a2 - Y 2>(P2 - Y 2> 

L6 = AS4 - BS2 
S4 - gS2 + h  

A(h - gS2) + BS2 
S4 - gS2 + h 

m= 

h(- A62 + B) 
S4 - gS2 + h 

N6 = 

where 

Y = ( S 4  - gS2 + h)(s4 - gs2 + h) 



Figure captions and figures 

Fig. 1 Eigenstrain - eigen electric field Z* in a region R in an infinite piezoelectric 
medium 
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