

SANDIA REPORT
SAND2003-0962
Unlimited Release
Printed April 2003

Sandia National Laboratories
ASCI Applications
Software Quality Engineering Practices

Version 2.0

John Zepper and Kathy Aragon – Production Computing/SIERRA Atchitecture, Molly Ellis -
Information Systems Development, Kathleen Byle – Carlsbad Program Group, Donna
Eaton – Information Technology and Data Modeling

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia
Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors, subcontractors,
or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
0
a

SAND2003-0962
Unlimited Release
Printed April 2003

Sandia National Laboratories
ASCI Applications

Software Quality Engineering
Practices

Version 2.0

John Zepper and Kathy Aragon
Production ComputingBIERR.4 Architecture
Molly Ellis, Information Systems Development

Kathleen Byle, Carlsbad Program Group
Donna Eaton, Information Technology and Data Modeling

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0826

Abstract

This document provides a guide to the deployment of the software verification
activities, software engineering practices, and project management principles that
guide the' development of Accelerated Strategic Computing Initiative (ASCI)
applications software at Sandia National Laboratories (Sandia). The goal of this
document is to identify practices and activities that will foster the development of
reliable and trusted products produced by the ASCI Applications program.
Document contents include an explanation of the structure and purpose of the
ASCI Quality Management Council, an overview of the software development
lifecycle, an outline of the practices and activities that should be followed, and an
assessment tool. These sections map practices and activities at Sandia to the

, ASCI Software Quality Engineering: Goals, Principles, and Guidelines, a
Department of Energy document.

3

a

Acknowledgements

The authors would like to thank the following individuals for their reviews, comments, and
contributions in preparing this document: Henry Abeyta, Dan Carroll, Edward Cull, David
Cuyler, Carter Edwards, Joe Femandez, Christi Forsythe, Gary Froehlich, Ann Hodges, Scott
Hutchinson, Stephen Lott, Mike McGlaun, David Peercy, James Peery, Martin Pilch, Harold
Radloff, Rhonda Reinert, Alex Treadway, Janice Washington, William Moffatt, David Womble,
and all code team members and managers who reviewed this document.

a
a
a
a
e
a
a
a
a
a
a
a
a
a
a
0
a
a
a
a
a
a
a
0
a
a
a
a
a
a
a
a
0
a
a
a
a
a
a
a

a
4

.

.

a

Table of Contents

Executive Summary .. 7
Executive Summary .. 7
1 Introduction ... 9'

1.1 Background ... 9
1.2 Purpose ... 9
1.3 Scope 10
1.4 Graded Approach .. 12
ASCI Management Responsibilities ... 13
Software Quality Engineering Practices ... 14
3.1 Document Organizatlon .. 15
3.2 Software Verification ... 17
3.3 Software Engineering ... 19

3.3.1 Requirements Phase .. 20
3.3.2 Development Phase ... 23

3.3.2.1 Design Subphase .. 24
3.3.2.2 Implementation Subphase .. 26
3.3.2.3 Test Subphase ... 28

3.3.2.3.1 Test Requirements .. 29
3.3.3 Release Phase .. 32

3.4 Project Management ... 35

2
3 . .

3.4.1 Project Planning .. 35
3.4.2 Tracking and Oversight ... 36
3.4.3 Risk Management .. 36

3.5 Support Elements .. 38
3.5.1 Requirements Management ... 39
3.5.2 Configuration Management ... 39

Third Party Software ... 40
3.5.4 Training ... 41

Assessment Tool & Gap Analysis .. 42

Appendix B: Mapping and Tailoring Methods ... 55
Appendix C: Assessment Checklist .. 72

3.5.3

4
References 51
Appendix A: Glossary and Acronyms .. 52

...

Appendix D: Summary of Changes .. 78

List of Figures
Figure 1 . Context .of practices document ... 10
Figure 2 . Requirements flow pyramid ... 11
Figure 3 . ASCI software program organization ... 14

List of Tables
Table 1 .
Table 2 .
Table 3 . Software Verification Summary 17

Sandia ASCI Applications ... 11
Class Identification Tool .. 12

..

a

a
a 5

Table 4.
Table 5. Development Phase Summary ... 23
Table 6. Design Subphase Summary .. 24
Table 7.
Table 8. Test Subphase Summary .. 28
Table 9. Release Phase Summary .. 32
Table 10. Project Management Summary .. 35

Table 12. Mapping of Key Elements to Practices .. 55
Table 13. Mapping of Deployment Practices to Key Elements of Software

Verification .. 56
Table 14. Mapping of Deployment Practices to Key Elements of Software

Table 15. Mapping of Deployment Practices to Key Elements of Project

Table 16. Mapping of Deployment Practices to DOE/AL's QC-1 60

Requirements Phase Summary ... 20

Implementation Subphase Summary .. 26

Table 11. Support Elements Summary ... 38

Engineering .. 5 8

Management. .. 58

6

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e
e
e
e

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e *
a
e
e

a
a
a
a
a
a
a
a
a
a
a
0
a
0
0
a
e
a
a
a

a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
0

e

Executive Summary

This document is the Sandia National Laboratories (Sandia) Applications program deployment of
the Department of Energy (DOE) document ASCI Software Quality Engineering: Goals,
Principles, and Guidelines (GP&G). The GP&G specifies the Accelerated Strategc Computing
Initiative (ASCI) program's requirements for software quality engineering at each laboratory.
This document and the GP&G both map to Quality Criteria (QC-1)' a document produced by the
Department of Energy/Albuquerque Office (DOE/&). Both Sandia's document and the GP&G
recognize the significance of following the QC-1 standard in the development of nuclear weapons
software codes.

This document builds on the GP&G foundation to specify tangible practices and activities that
will establish confidence in our codes and credibility in our results. The document includes the
following:

0 tailored GP&G requirements to fit the software development process of the applications
program

0 a description of management involvement in the software quality improvement process
0 a description of the software quality improvement process

This document establishes the application code teams' commitment to improving their software
products by applying cost-effective software engineering quality practices. These practices
comprise an important part of the ASCI Verification and Validation Program. Individuals
interested in validation issues should contact the Verification and Validation program, which is
responsible for validation of the models. Those interested in the overall structure of the ASCI
program and the interplay of its parts should consult the ASCI Program Plan or ASCI
Implementation Plans.

This document is organized into four sections. Section 1 describes how Sandia has integrated the
GP&G requirements into the "SA (National Nuclear Security Agency) ASCI program. Section
2 discusses the ASCI Quality Management Council (AQMC). The council's purpose is to set
policies and develop strategies to sustain and improve software process and products throughout
the defined lifecycle. Section 3 enumerates the main practices that compose the development of
Sandia ASCI application software. Section 4 presents an assessment tool that was developed
based on the practices in this document. This tool provides application code teams a method for
performing a self-assessment and gap analysis. Information produced by using the tool will
enable application code teams and management to perform path-forward analysis for software
process improvement. Appendix A defines special terms and acronyms. Appendix B illustrates
how this document maps and aligns with the GP&G as well as to QC-1. Appendix C consists of
a blank assessment tool.

7

Lommirmenr

The Sandia ASCI Applications program will follow the processes, practices, and activities
outlined in this document. Thus, the project teams will provide accountability to "SA in
demonstrating consistent SQE results. The goal of this document is to foster organizational
consistency by defining common practices and by facilitating the use of common tools and
processes where feasible. These practices and activities will be modified and improved as the
code development process matures. Our intent is to provide tangible evidence demonstrating high
confidence in ASCI simulations at Sandia.

Approved By
n

%andia ASCI Applications Manager

Concurred By

/i

Bickel,
Sandia Director,
Engineering Sciences Center

Michael VahIe,-
Sandia ASCI Program Manager

Deputy Diredtor for System Engineering,
Sandia/NM

I " ,
J i W)
Deputy Director W80 and Weapon Components,
SandidCA

I Dke

Date

3/11 03

Date

a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
e

a
e
a
a
a

a

a
a

a
a
a
a
a
a
a
a
a

e
a

a

e

e

a
a
e
a
a
a
a
e
e
a
a
a
e
e
a
a
e
e
0
0
a
a
a
a
e
a

a
a
e
a
e
a
a
e
a

e
0
0
0
a

e

1 Introduction

1.1 Background
The National Nuclear Security Agency ("SA) has created the Stockpile Stewardship Program
(SSP) to provide and ensure confidence in the safety, performance, and reliability of the U.S.
nuclear stockpile in the absence of underground testing. To this end, "SA has enabled the
Accelerated Strategic Computing Initiative (ASCI) to support the SSP in transitioning from test-
based to computational modeling and simulation-based methods. The ASCI program will adhere
to the specifications for software quality assurance defined in the document Quality Criteria (QC-
I) produced by the Department of Energy/Albuquerque Office (DOE/&).

The ASCI program involves coordination among the three nuclear weapon laboratories, all of
which have contributed to the development of a set of guiding principles. The ASCI SofhYare
Quality Engineering: Goals, Principles, and Guidelines (GP&G) provides direction for all ASCI
software projects. The GP&G specifies that each laboratory will select and tailor their best
practices to achieve the stated goals of 1) establishing confidence in codes and 2) establishing
credibility in results.

The GP&G organizes the ASCI guidelines into three major areas: 1) software engineering,
2) software verification, and 3) project management. The GP&G requires that each site develop
its own specific practices to appropriately implement the guidelines. Taking direction from the
GP&G, this document includes an assessment tool that provides a method of identifying the
current state of site-specific practices for applications at Sandia National Laboratories (Sandia).
This document also provides a mechanism for facilitating improvement of those practices.

1.2 Purpose
The purpose of this document is to describe practices that will maintain a high level of confidence
in ASCI-developed software at Sandia. The document is organized to provide a straightforward
guide to the deployment of the software engineering practices, verification activities, and project
planning and oversight practices that guide the development of ASCI applications software at
Sandia.

This document explains the purpose of the ASCI Quality Management Council (AQMC) in
setting policy and developing strategy for quality improvement. The document provides an
overview of the Sandia ASCI applications software-development lifecycle. This lifecycle
specifies the practices that should be followed in developing robust, effective, and efficiently
written applications. A checklist of recommended practices is provided in the assessment tool,
and a mapping mechanism is included (in Appendix B) that traces these practices to the GP&G to
satisfy the goals of that document. The practices identified herein require that individual
application code teams be responsible for implementing and producing evidence that
demonstrates adherence to requirements of this document. The documents and their owners are
illustrated in Figure 1 .

9

DOCUMENT OWNER

Figure 1. Context of practices document.

The following entities are responsible for direction and implementation of the documents in
Figure 1:

Entity Responsibilitv
"SA

AQMC

ASCI management

ASCI Apps mgmt.

ASCI V&V

ASCI Code Teams

Provides guidance to the ASCI Tri-labs in developing GP&G

Sets policy and develop strategy

Implement GP&G and AQMC policy and strategy

Implement GP&G and AQMC policy and strategy in Apps program

Provides independent assessment verification and validation (V&V)
of application code teams in applying GP&G
Cornpiledmaintains objective evidence

1.3 Scope
The provisions of this document pertain to the development and support of software within the
Sandia ASCI Applications program. The practices that are outlined are especially intended to
target ASCI application codes.

Figure 2 illustrates the context of the ASCI application codes in relationship to stockpile-driven
applications.

10

REQUIREMENTS EXAMPLES

Figure 2. Requirements flow pyramid.

This document is part of an existing and planned suite of guidance and requirements documents
that are intended to institutionalize traceable credibility to stockpile computing activities. These
other documents are

Guidelines for V&V Plans: Guidelines for Sandia ASCI Verijkation and Validation
Plans: Version 2.0, SAND2000-3 10 1, January 200 1
Peer Review: Peer Review Process for the Sandia ASCI V& V Program: Version 1.0,
SAND2000-3099, Jan~ary 2001

Examples of current code team applications to which this document applies are illustrated in
Table 1.

Table 1. Sandia ASCI Applications

Sel

Thermal, Fluid

Structural and Solid Mechanics

Electrical Device and Circuit HPEMS(e.g.XYCE)

ElectroQuasiStatics ALEGRA

CALORE, FUEGO, PREMO, ARIA

SALINAS, PRESTO, ADAGIO, ANDANTE

Shock Physics ALEGRA

Libraries and Algorithms I Trilinos, Petra, Dakota, Verde, Zoltan, ACME
I

Particle Transport I ITS, CEPTRE, NuGET
I

Electromagnetics EMPHASIS, CABANA

Mesh Generation CUBIT
3ection 3.5.3 for additional detail on third party s o h a r e that is used by any of the

applications.

1.4 Graded Approach
Sandia ASCI applications software project teams will use a graded approach in applying the
practices described in this document. A graded approach means that projects will apply a level of
formality and rigor appropriate to their application. The following guidelines for determining an
appropriate class apply:

A

B

Class A codes will include applications intended for weapon design or qualification. All of
the ASCI-funded codes listed in Table 1 , plus future codes that come under the Sandia ASCI
applications umbrella that are intended for weapon manufacture, design or qualification, are
Class A projects. All of the practices identified in the assessment tool will be required for
Class A s o h a r e development.

Used in weapon design Or All required
qualification
Not used in weapon design or Not all practices required, only:

Class B codes are not intended for use in weapon design or qualification. Examples include
ASCI-funded research codes or prototype software that has not been incorporated into a
production code. Class B projects are not required to address all of the practices in the
assessment tool. They are, however, expected to demonstrate good project management
practices, a clear understanding of what is expected of the software requirements, and a
method of determining whether the code meets the requirements through tests and test plans.

C

Class C codes may be used for weapon design and qualification but are not listed in Table 1 .
These legacy codes, not supported by ASCI, have possibly been in existence for some time
and may be in a redevelopment state (being rewritten to one of the applications listed in Table
1).

R&D code prototype system
Existing legacy application
not being developed under appropriate
ASCI program auspices

Test Subphase: 4a, 4b, 4c, 4d, 4e, 4f
Not bound by practices; should apply as

By considering impact in the ASCI production environment (column 2 of Table 2), projects can
identify the class for their activities. Project leads are responsible for self-assessing their class.
This class must be reviewed and approved by ASCI Applications management.

Table 2. Class Identincation Tool

qualification I Project management: 6a, 7a, 7b, 7c, 8a I Requirements Phase: la, lb, IC, Id, le, If, Ig

12

2 ASCI Management Responsibilities

a
a
a
a

a
a
a
e

e

0
0

Q
0
0
e
a
a
a
a
a

a
a
e

Implementation of the GP&G recommendations requires the commitment, support, and oversight
of the organizations performing the work to ensure that software engineering process
improvements are applied consistently and effectively. To fiilfill the requirements of QC-1, the
Sandia ASCI program director has established the AQMC (ASCI Quality Management Council).
The AQMC is an oversight group that is responsible for setting policy and developing strategy for
implementing quality systems, including software engineering processes and software process
improvements, for all ASCI software projects. The ASCI program and project management will
ensure consistent and cost effective implementation of the GP&G guidelines and the AQMC’s
policies and strategies.

The AQMC reports to the ASCI program director and is composed of the program element
managers who have software development sind maintenance activities within their program
element, the V&V program element manager, and the ASCI program manager. The AQMC will
meet at least twice a year to review and update the policies and strategies, and will publish an
annual report on the state of SQE within ASCI.

Responsibilities of the AQMC include
0 establishing software quality policy

reviewing priorities
developing strategies
authorizing modifications to policies and strategies

0 reviewing and assessing quality initiatives in the ASCI program
0 reviewing the results of independent and external assessments

convening working groups to support development of policies and strategies

Responsibilities of the ASCI management include

leading and managing the ASCI program
implementing the policies and strategies of the AQMC
communicating best practices among the software development teams
monitoring and documenting compliance with guidelines set forth in this document
maintaining this document and any other documents under its purview

settingpriorities
0

0

0

0

The AQMC will establish the software engineering policies and strategies that the ASCI
management will implement throughout the ASCI program. The ASCI management will use a
phased approach in establishing requirements commensurate with the stage in the lifecycle of
software development efforts. The assessment tool, discussed in Section 4, will be updated and
published annually as a mechanism for communicating the requirements baseline. The Sandia
ASCI Applications program element manager is responsible for implementing this report’s
practices in the Sandia ASCI Applications program.

13

3 Software Quality Engineering Practices
The Sandia ASCI Applications SQE program is described in this section. This program has been
developed following the organization of the GP&G: Software Verification, Software Engineering,
and Project Management. A fourth concept has been added-Support Elements. Support
Elements capture aspects common to all three of the guidelines, such as training, or those that
have overarching implications for the success of the software program, such as configuration
management. See Figure 3 for a pictorial representation of the program organization.

The organization represented in Figure 3 encompasses the main principles that guide the
development of Sandia ASCI application software. The heart of this figure is the software
lifecycle phases - Requirements, Development, and Release - that include the core practices of
Software Engineering. Overlying the lifecycle is Project Management and underlying it is
Software Verification. Project Management provides the planning practices, while Software
Verification provides the assurance practices throughout the lifecycle. Applying to every product
activity are the Support Elements, which include such disciplines as requirements management,
configuration management, third party software management, and training. The software lifecycle
phases and associated practices will be the focus of discussion in this section; however, the other
guideline areas will be explained and their significance will be briefly explored.

This document requires no strict chronology of events, provided the requirements of all the
phases are satisfied, nor does it preclude the implementation of any specific development
methodologes.

Figure 3. ASCI software program organization.

e
e
0
e
e
e
e
e
e

e
e
e
0
e
e
e

a

a
e
e
e
e
e

0
e
e

*
e
0
0

e

a
0
e

e
e

14

0
0
e
0
e
a
e
a
a
e
0
a
a
e
e
a
a
a
U
a
a
e ..
e
0
0
e
a
0
e
e
e
a
a
0
e
e
e
a
e
a
0

3.1 Document Organization
Following the program organization, this document has been constructed along the guidelines of
the GP&G, tailored to the Sandia site-specific environment. The main areas generally begin with
a short introduction, which is followed by a summary table. When needed, additional detail
follows the table. After the areas of Software Verification, Software Engineering, Project
Management, and Support Elements are described, an assessment tool based on the areas is
provided. Appendices list terms used in this document, a mapping from this document to the
GP&G, as well as a mapping to QC-1.

Tables in the following sections share common headings-inputs, practices, outputs, and metrics.
Phases are significant in Section 3.3 (Software Engineering) as they relate to the code
development lifecycle. However, for consistency, the tables that summarize Software
Verification, Project Management, and Support Elements also include the same headings, which
are described below. The examples provided in the discussion of Inputs and Outputs pertain
primarily to the Software Engineering phases.

Inputs
Suggested inputs provide guidance for the artifacts that are needed to complete the practices or to
create suggested outputs for the given area or phase. There are two types of suggested inputs:
1) outputs fiom the previous phase and 2) an artifact that is outside or external to the lifecycle.
For example, in the Design Subphase of the Development Phase, one of the suggested inputs is
“Outputs from the Requirements Phase.” The reader should examine the outputs fiom the
Requirements Phase to determine the inputs to the Design Subphase.

Practices
Each area of the ASCI software program organization (see Figure 3) and each phase of the code
development process (Software Engineering) consists of practices that must be accomplished in
order to complete the given area or phase. These practices are reflected in the Assessment
Checklist (Section 4 and Appendix C).

outputs
Outputs provide guidance for the artifacts that are required to complete the practices for the given
area or phase. There are certain suggested outputs at each phase that will be generated by the
various practices: 1) feedback, 2) artifacts that are to be configuration controlled, and 3) issues
that are created during the lifecycle.

Metrics
The GP&G defines metrics as “. . . the activity of collecting information for the characterization,
understanding, and evaluation of processes and products.” The GP&G states that “only metrics
that can be demonstrated to assist in meeting project and/or the V&V program’s goals should be
chosen.” In alignment with the intent that the design, collection, and analysis of metrics
contribute to project success and productivity, an authoritative source in Software Metrics, Kan
(1997), states:

Metrics and measurements must progress and mature with the development process of the
organization. If the development process is still in the initial stage of the maturity
spectrum, a heavy focus on metrics may be counter productive. . . . In general, the starting
metrics ought to be closely related to the final product deliverable.

15

It is strongly recommended that those who are subject matter experts in the final product be
involved in specifying metrics designed to increase product quality and process productivity.
Strong customer involvement is also recommended. Metrics are provided for each of the software
lifecycle development phases. These metrics can be tailored based on the requirements of the
final product.

Named reviews, for which metrics are collected, need to be included in each phase/subphase.
These metrics provide the required evidence that the review occurred. Suggested beginning
metrics include the following:

type ofreview
0 date of review

who performed review
0 artifactts) reviewed

number of person hours spent
0 number of problems/issues found
0 number of problems/issues not resolved.

Issues are an expected output of all phases of the development lifecycle. Statistics metrics should
be reviewed by project leaders to determine status and to target areas for improvement. Suggested
metrics include the following:

issue ID
issue submitter
issue date

0 issue severity
0 number of issues

number of open issues
0 number of closed issues
0 number of deferred issues

average time issue is open.

16

a
e
e
e
e
e
e
e
a
e
0
e
e
e
e
0
e
e
e
a
0
e
a
e * *
e
a
a
0

e
e
e

e
e
e
a

e

a

e

e
a

0

a
a
e
a
e
a
a
e
a
a
e
e
a
a
a
e

a
a

a
0

e
a
a
a

a
a
e
e
a

3.2 Software Verification

Software verification is achieved through the practices of reviews and testing throughout the
software lifecycle. The activities of testing and review ensure that evidence is produced which
demonstrates that verification is occurring as needed. Training, education, and experience enable
staff to have the ability to carry out necessary.software verification practices. Training is
described in Section 3.5.4.

Table 3. Software Verification Summary

Dverview:
rhe purpose of Software Verification is to ensure that the released software product

0 Software requirements
0 Existing code

4 Reviews: of artifacts, including algorithms, numerical methods, requirements trace,
design, test plans.

4 Produce lifecycle artifacts that demonstrate transformation of requirements into

0 Lifecycle artifacts that demonstrate transformation of requirements into product

0 Code Coverage
0 Review statistics

Testing
Testing is a critical component of software verification. The goals of testing are 1) to identify
errors that need to be corrected and 2) to contribute to user confidence in the code. There are
several categories of testing methods:

0 general
0 unithtegration
0 regression
0- system software verification
0 installation

These tests range from focusing on the internal structural correctness of the software (white box)
to the demonstration of high-level requirements that the software is to satisfy (black box).

17

e
e

Specific requirements for testing are provided in section 3.3.2.3. A general discussion of the test
categories is provided below.

General testing covers tests that need to be conducted on all software products to meet specific
requirements: code coverage, memory testing, and static compiler tests.

Unit/integration testing covers low-level structural testing of modules and integrated modules
prior to full software product testing.

Regression testing can consist of a combination of white box and black box tests and is required
after a change has been made to previously tested code. The focus is typically on adequate
coverage of the code, ensuring defects are not introduced by the changes and that the changes
function properly.

System software verification testing is conducted to demonstrate that specific modeling
capabilities function properly without the use of experimental or real data for comparison of
results. Tests include analytic solutions, semi-analytic solutions, and idealized solutions. The
manufactured solution testing approach may be used to demonstrate specific algorithm
implementations.

Installation testing is conducted to confirm that the software installation on the target platform
occurred correctly. Installation tests are typically delivered with the software for execution by the
end user. These tests may form the basis of customer acceptance tests.

Successful testing of an application code is dependent on the knowledge and expertise of those
designing test cases, the knowledge and expertise of those who review test case design, and the
results of test execution.

Reviews
Reviews are an important aspect of software verification. Reviews are defined for each lifecycle
phase and are divided into three types: technical, quality, and management. The three types of
reviews provide verification evidence that technical, quality, and management commitment
requirements have been met.

Each phase of the code development process requires one or more reviews. Reviewers may be
external or internal to the application team, depending on the type and purpose of the review.
Evidence from a review is required, including such attributes as the date, review type, and review
results (e.g., defects found, effort expended, issues identified, actions, responsibilities, target
dates for resolution of actions). Code development teams are responsible for generating and
submitting review evidence and any associated document artifacts.

Produce Lifecycle Artifacts
During the course of following this procedure, the production of artifacts, or objective evidence,
is needed. Artifacts provide documentation that is useful in further development of the code,
verification of technical soundness, and code maintenance. The guidelines for producing a
particular artifact are given in the phase associated with the production of the artifact. Artifacts
may be separate entities or combined into single documents as needed. For example, the
documentation of requirements and the test plan could be placed in a single document. All
artifacts are subject to review (technical, quality, and management). Review evidence is a type of
artifact.

18

a
a

3.3 Software Engineering

There are three main phases in the Software Engineering Development Lifecycle: Requirements,
Development, and Release (see previous Figure 3). The Development Phase also includes three
subphases-Design, Implementation, and Test. Subsequent discussions in this document may use
the termphase to mean either phase or subphase because both include common areas: inputs,
practices, outputs, and metrics.

a
a
@
a
a
a

e
a
a
a
e
e
a
a *
a
e
0
e
a
0
e
0

e

Each phase includes a summary table followed by additional detail on what the suggested
practices actually involve. The practices are listed again in the assessment tool in Section 4 where
a recommended number follows. This number corresponds to the organizational goal level
currently specified by the ASCI management as applied to Class A code teams:

3 = should be fully implementing the practice
2 = should be partially implementing the practice
1 = should be planning to implement the practice

Feedback is an important part of the iterative lifecycle. Feedback occurs when the application
team discovers that the current phase impacts a previous phase and the impact must be addressed
before the current phase can be completed or the next phase addressed. Feedback may result in
revisiting a previous phase, through multiple iterations, to rework or reissue a particular
deliverable.

The code development process, shown previously in figure 3, consists of phases whose practices
and artifacts embody the software application being developed at a point in time. The phases are
concerned with actually doing the work of building a software application and not specifically
concerned with managing the work. The practices that contribute to these phases are the core
practices of Software Engineering. The execution of a phase may cause portions of a previous
phase(s) to be modified. In that case, changes to previous outputs/artifacts shall be modified and
verified to the same level of rigor as the original.

The Software Engineering phases are discussed next.

19

3.3.1 Requirements Phase

Table 4. Requirements Phase Summary

Overview:
The purpose of the Requirements Phase is to develop, capture, baseline, and
communicate the software product requirements. These requirements are restated,
refined, or derived fiom the system requirements, e.g., requirements from stockpile
drivers.

0

0

0 Numerical algorithm solvers

Requirements: e.g., customer, quality, functional, product, stockpile driver
Expert computational physics and mechanics knowledge, e.g., theory manual,
published papers

1 a. Gather user requirements.
lb. Derive software requirements.
IC. Document software requirements.
1 d. Assess feasibility, if applicable, and generate estimates for budget, resources, etc.
1 e. Establish acceptance criteria based on requirements.*
1 f. Determine necessary links to other layers of requirements, code, and tests.
1 g. Ensure requirements traceability throughout the subsequent software phases.

0

0 Traceability links
Evidence of reviews

0 Configuration-controlled artifacts

Requirements (suitable for translation into design and implementation) that have
been derived, documented, reviewed, and approved

Issues statistics
0 Requirements change statistics, e.g., number of requirements (at any given time

period), number (or %) requirements changed (added, deleted, modified) over
specified time period

* acceptance criteria based on testing methodologies selected; will be descnied in test plan.

Gather User Requirements (la)
The Requirements Phase of the lifecycle begm with the input of requirements fiom any of
several sources. These inputs may start out as a stockpile driver, a programmatic requirement, a
physical or functional requirement, a modeling or simulation requirement, or an issue submitted

20

a
a

a
e
e
0
Q
0 *
4
e
e
e
a
0
e *
0
c
e
e
0
a
e
e

e

a
e

e
e ..
e
e
a
e
e
e
e
e
e

0

0
e
0

against a previous version of derived software requirements. The project team uses these inputs
to begin the process of gathering the complete set of user requirements that will determine what
the entire system will consist of. This may be an iterative process and involve modeling,
facilitating, interviewing, workshops or other activities that the team finds effective. Eventually
the team will establish a baseline of user requirements that will form the input for deriving the
software requirements that the project team will be responsible for developing.

Derive Software Requirements (lb)
Once user requirements are gathered and the system requirements have been documented, it is the
task of the software project team to take these user requirements, analyze and understand them,
and then derive the software requirements that will be used as the basis for designing and coding
the resultant software application.

Document Software Requirements (IC)
As the software requirements are derived, they must be documented. Documenting requirements
may be accomplished by capturing them in a word processing document, a spreadsheet, or in a
more sophisticated tool. Capturing the derived requirements facilitates the prioritization of the
requirements. It also leads to developing a specification of how the requirements will be
implemented.

Assess Feasibility (Id)
The documented, derived requirements are then assessed for their feasibility of being
implemented in the next, or upcoming, release of the software application. Whether they will be
implemented depends on numerous factors, particularly the perceived priority by the customer or
sponsoring organization, the staffing and schedule demands available, and the dependence or
effect each requirement has on other parts of the software system. In some cases, assessing the
feasibility will result in contacting the originator of the requirement for further clarification or
more information, reanalysis of the requirement, or reprioritization of how and when the
requirement will be implemented.

Establish Acceptance Criteria (le)
Once requirements are accepted for inclusion into the next release of the application code, it is
important to begin the process of establishing acceptance criteria for verifying that the
implementation of a given requirement complies with and satisfies the specification of the
requirement. Thus, once the application has been prototyped or more formally developed, the
acceptance criteria outlined in this Requirements Phase will be incorporated into the test plan
completed in the Test Subphase.

Determine Necessary Links (If) Ensure Requirements Traceability (lg)
An important aspect of the Requirements Phase is establishing and maintaining a traceability
between a derived requirement and its source or origin. In many cases, requirements for ASCI
software applications may extend back through several layers or sources. In general, the
traceability between layers requires that for any what requirement in a particular layer, there must
be some why requirements in the previous layer and some how requirements in the subsequent
layer, assuming that these layers exist. For instance, from an ASCI software project's viewpoint,
this means that for any what requirement for the software, there must be some why requirements
in the modeling/simulation and some how requirements in the project's application design. As
requirements are added or changed, it is important to maintain traceability so that requirements
sources are known.

Review and Approve Requirement Artifacts (lh)

21

Finally, before moving into the Development Phase, it is important to ensure that the requirement
artifacts (e.g., documented requirements, requirements specification, traceability matrix,
acceptance criteria) have been adequately reviewed and approved at the appropriate peer andor
management level. The approved requirements should be base-lined and placed under
configuration control so that the design and implementation teams can develop a firm
development plan.

22

0
0
a
(I
0
0
0
0
0

0

0
0
a
e
0
0

a
0
(I)

a
a
a
a
a
a
a
a
a
a
a
e
e
a
a
e
e
a

a

a

a

a

e

a
a
a
e

3.3.2 Development Phase

a

a
e
a
a
a

Table 5. Development Phase Summary

Overview:
The purpose of the Development Phase is to take the output fiom the Requirements
Phase and iteratively perform Design, Implementation, and Test Subphase practices that
result in outputs and exit criteria that are sufficient for moving the application code into

0

Outputs from Requirements Phase
Expert scientific software development knowledge

Existing codes, including third party software that may be internal or external to

0 Design Subphase outputs
0 Implementation Subphase outputs
0 Test Subphase outputs
0 Test cases and results
0 Evidence of reviews

Feedback
0 Configuration-controlled artifacts
0 Issues

See subphases of the Development Phase

The three subphases of Development take place somewhat iteratively without a strict order to the
practices involved. For instance, prototyping activities to establish the feasibility of a design
concept may commence before the entire design is complete or documented. Unit testing may be
designed into the prototype and test results presented to the design team so that the design can be
refined prior to formal implementation. The following subphases (Design, Implementation, and
Test) illustrate the typical inputs, practices, and outputs that can be expected to occur in this all-
important Development Phase.

a
23

3.3.2.1 Design Subphase

Table 6. Design Subphase Summary

The purpose of the Design Subphase is to describe components in a manner that can be
implemented in sofbvare. Examples include control flow, embodied mathematical
models, data structures, class definitions, and prescribed ranges for data inputs and
OUtDUtS.

Outputs fiom Requirements Phase
Existing codes, including third ~ a r t v software

Y Y

Practices:
2a. Derive the design.
2b. Communicate the design to the team.
2c. Document the design.
2d. Evaluate impact to requirements (may generate issues).
2e. Plan for testing: initiate development of test plan.

uutp
Derived, documented, reviewed, and approved design document
Test plan (draft)

0 Evidence of reviews
0 Feedback generated fiom Design Subphase

Configuration-controlled artifacts
Issues

Metn
0 Issues statistics

e
a
0
e
e
a
e
e

The Development Phase begins once requirements have been satisfactorily derived, documented,
reviewed, and approved. At this point, the project team will begin the all-important practices
associated with designing the aspects of the software system. These design aspects include such
activities as determining the structure of the software system (its design entities and
dependencies) and designing the content of the system inputs and outputs and the user and system
interface(s). The team will also want to consider any necessary security controls, data structures,
new or additional numerical algorithms, and system architecture issues. One or more team
members may initiate a prototype of key requirements or functionality that they will bring back to
the design team to factor in results or numerical estimates before the design is complete. Another
important activity in the Design Subphase is to begin planning for various testing activities that
will be required to ultimately verify that requirements have been correctly implemented.

24

a
a
a
a
0
0
a
e
a
a
e
0
e
a
e
a
a
a
e *
a
e

a
0
a
a
a
a
a
e
a

e

e

e

a
a

a
a
a

a
a
a
a
a
e
a
a
a
e
e
a
a
a
e
a
a
a
a
a
a
a
a
a

a

Derive the Design (2a)
With requirements from the previous phase in hand or refactored from a previous phase, the
development team will work on identifying and specifylng the various components and
subsystems of the proposed application. The design may take the form of notes from engineering
notebooks prepared by various members of the team working independently or it may derive from
project meetings where ideas are shared, discussed, and analyzed. The practice of deriving the
design will likely be an iterative process based on many discussions and prototypes of various
aspects that come out of these discussions.

Communicate the Design to the Team (2b)
At some point before moving into a full-fledged implementation subphase, all members of the
project team need to be made aware of the design. The project lead or the individual who has
been responsible for gathering design notes, reviews, and other design artifacts will be
responsible for communicating the design t o the entire team. This communication may take the
form of a published report, a presentation of design notes, or some combination thereof. Project
team design reviews that include customer or sponsor representatives should also be
communicated to affected members of the design team.

Document the Design (2c)
In communicating the design, some form of documentation is usually produced. However, as the
development process matures, the design should necessarily be turned into a document that can
be reviewed, approved, and included as a product artifact. The design document should be
configuration controlled.

Evaluate Impact to Requirements (2d)
As the design is derived and communicated, some issues may arise that need to be refactored into
the previously identified requirements. These may be feasibility issues related to practicality or
resources necessary for accomplishing the implementation of the desired product. Such impacts
must be documented and communicated to those involved with project planning and tracking
activities.

Plan for Testing (2e)
One of the most important aspects of the Design Subphase is to initiate the development of a test
plan(s) that will be used throughout the remaining phases of development. Although the
completed test plan is not due until the Test Subphase is completed, it is crucial that the design
team begin identifying the types of general, integration, regression, software verification, and
software validation tests that will be necessary to guarantee the correctness and validity of the
application. The nature of the test plan is described in more detail in Section 3.3.2.3, which also
includes a discussion of various types of tests.

Review and Approve Design Artifacts (20
Finally, before moving into the Implementation Subphase, it is important to ensure that the design
artifacts (e.g., documented design, draft test plan) have been adequately reviewed and approved at
the appropriate peer and/or management level. The approved design artifacts should be base-lined
and placed under configuration control so that the implementation and test teams can inherit a
well thought-out and documented design plan.

25

a

3.3.2.2 Implementation Subphase

Table 7. Implementation Subphase Summary

The purpose of the Implementation Subphase is to transform the s o h a r e design into
code.
Inputs:

0

0 Outputs fi-om Design Subphase
0

0 Equations/numerical model/algorithms
0 Implementation strategies (i.e. language)
0 Data strategy and model

Expert scientific software development knowledge

Existing codes including third party software

3a. Evaluate impact of implementation to design and requirements.
3b. Translate design into code and other software product artifacts.
3c. Communicate issues with requirementddesign team and developers.

0

Evidence of reviews
0 Feedback
0 Configuration-controlled artifacts

Written, reviewed and approved code source andor executables

0 Issues

0 Issues statistics

Evaluate Impact of Implementation to Design and Requirements (3a)
As the implementation proceeds fi-om the simple to the complex, the team will continually
evaluate the impact of the implementation to the design. The team will meet frequently to discuss
restructuring and integration issues. When necessary, the design will be modified or the
requirements will be renegotiated with the stockpile dnvers; requirements tracing is extremely
important to ensure this.

Translate Design into Code and Other Software Product Artifacts (3b)
Design, implementation, and testing are overlapping areas in the Sandia ASCI development
environment. Implementation may take place concurrently with design. As code team members
identify distinct components or modules of the product, they may spend a few days or weeks
translating some aspect of that design into code (prototyping a concept) to determine its

1

e
e
e
a
e
e
e
e
a
e
0
e
e
e
e
e
e
e
e
e
0
e
e
e
e
e
e
e
e
0
a
e
0
e
0
e
e
e
e

e
e
e

26

implementation feasibility. Once the code team members have achieved some results, they will
then present these to the design team for consideration. As the cycle continues, the
implementation team will generate other product artifacts in addition to code. In most cases,
theory manuals, user documentation, unit test cases and results, interface specifications, and other
outgrowths of implementation will be generated.

Communicate Issues with RequirementsDesign Team and Developers (3c)
Implementation issues will occw that must be communicated to the design team. Occasionally,
significant design changes will result and then these changes must be communicated to all
developers who are involved in coding and implementing vai-ious components of the system.

Review and Approve Implementation Artifacts (3d)
As implementation artifacts are developed and completed, they must be reviewed for
completeness and correctness. Test case results must be reviewed to determine that acceptance
criteria are met. If not, then anothei iteration of issues and coding will be necessary. As
documentation is prepared, it too must be reviewed. The application team must determine an
approval process that goes hand-in-hand with testing and review prior to moving the artifacts out
of the Development Phase and into the Release Phase where they will be base-lined and prepared
for distribution.

r

3.3.2.3 Test Subphase

Table 8. Test Subphase Summary

The purpose of the Test Subphase is to identify defects in the software product and to - -

demonstrate that the software Droduct meets its software reauirements.
Inputs:

0 Outputs fiom Implementation Subphase

4a. Finalize test plan.
4b. Execute test cases found in test plan.
4c. Review test case output using acceptance criteria defined in test plan.
4d. Document test case results.
4e. Retest updated software if acceptance criteria are not satisfied.

0

0

0 Evidence of reviews
0 Feedback
0 Configuration-controlled artifacts

Developed, executed, reviewed, and approved test plan
Developed, executed, reviewed, and approved test results

Issues

0 Issues statistics
0 Code coverage statistics

Finalize Test Plan (4a)
Test plan development is initiated in the Design Subphase, and some testing is carried out in the
Implementation Subphase. Each test plan must identify the class of the software application based
on the guidelines described in Section 1.4. The plan must also identify the types of tests that will
be conducted based on the class, as well as any additional tests that are needed to provide
confidence that the software product does not contain any defects and to demonstrate that
requirements are met. Every test that will be conducted in the Test Subphase must be described
along with acceptance criteria that will be used in the review of test results. Each test must have a
specification that contains information to identify the test, test environment, test procedure, and
expected test results with acceptance criteria. The test plan must address basic areas of testing:
unit, integration, regression, system software verification, installation, and acceptance. Unit

28

e
e
a
e
e
e
e
e
e
e
e
e

a

e
0
0

e
e
0
e
e
e
e
e
e
e
e

e
e

e
e
e
e
e
0
e
a
e
0

e

e
e
e
e
e
e
0
e
0
e
e
e
e
e
e
e
e
e
0
e
e
e
e
a

e
e
a
e
e
e
e
e
e
e
e
e
e
a
e
e
e
e

testing is usually conducted during the implementation subphase, but the unit test plan and its
results are required by the end of the Test Subphase. See Testing Requirements (below) for a
complete discussion of what the test plan should include relative to each of the testing types.

Execute Test Cases (4b)
It is expected that some testing is done in the Implementation Subphase. Such outputs will be
carried forward to this subphase. For testing that has been identified in the test plan and not
performed up until now, a test subteam is responsible for executing and documenting all such test
cases.

Review Test Case Output Using Acceptance Criteria Defined in Test Plan (4c)
Results fi-om test cases must be reviewed. In cases where unsatisfactory results are obtained,
further analysis may be required and, oftentimes, issues may be submitted that will result in the
code being reworked to correct the deficiency or oversight. This practice relies on knowledgeable
test reviewers and well-defined acceptance criteria so that objectivity can be applied in
determining whether or not the code passes the test case criteria.

Document Test Case Results (4d)
The results from all test cases should be documented and added as artifacts to the project's
configuration repository. Such test results will form the basis for subsequent reviews or concerns
that may arise regarding verification of the software product.

Retest Updated Software if Acceptance Criteria is not Satisfied (4e)
In cases where the software code fails to meet acceptance criteria and must be reworked or sent
back to the Design andor Implementation Subphases, it will need to be retested with subsequent
reviews against acceptance criteria. New test results will then be documented and added to the
project artifacts.

Review And Approve Test Subphase Outputs (40
Once the software has been successfully tested according to a prepared test plan and all
acceptance criteria satisfied, the product is ready to enter the next phase of the lifecycle, Release.
Before this phase is initiated, however, it is very important that someone on the project team
review and approve all Test Subphase outputs, as many of these will be part of the distribution
package.

3.3.2.3.1 Test Requirements

The Test Subphase practices center on completing, conducting, analyzing, reconducting (as
necessary), and approving the tests that are appropriate for the size, scope, and maturity of the
project. The key to meaningful and successful test cases is highly dependent on the knowledge
and expertise of the personnel who design the test cases as well as those individuals who review
output from the test cases. In the ASCI software development environment, the testing criteria
discussed below should be applied. These testing categories are identified in Section 3.2 Software
Verification under Testing. The following discussion adds more specifics to the testing categories
introduced in that section.

General Testing
80% Code Statement Coverage
Evidence must be provided demonstrating that at least 80% of the software source statements
have been executed through testing. Applying an automated tool that uses a specified set of
tests (such as the regression tests) typically provides this evidence.

29

Memory Testing
Memory testing is conducted prior to check-in to the configuration control system. It is a
white-box testing methodology used to determine that the program is properly using memory.
Memory testing is programming-language dependent; some languages do not support
memory testing. Memory validity and usage checks can provide useful information. A
memory leak can lead to a program prematurely running out of memory or incorrectly
overwriting information.

Static Compiler Testing
Static testing provided by the compiler (for all applicable platforms) is required prior to
check-in to the configuration control system. No compiler errors are allowed. Acceptable
compiler warnings should be documented as part of the test plan.

Unit /Integration Testing
Unit module testing is conducted prior to check-in to the configuration control system. It is the
process of testing the individual units or modules of a program before they are integrated into the
software product. Integration testing involves testing part or all of the system to evaluate the
interactions among components. Specifications for the test cases must be provided, acceptance
criteria must be established, and the source code must be available.

Regression Testing
Regression testing is conducted prior to check-in to the configuration control system. It is
conducted after making a change to software (adding functionality, fixing a bug, etc.) to
demonstrate that previously tested functionality has not changed and to determine if the change
has impacted other aspects of the code. Regression tests are typically a subset of the test cases
used to demonstrate software verification.

System Sofnvare Verification Testing
This testing consists of using a method or combination of methods to ensure that required
functional features satisfy specified requirements. One or more of the following options, as
appropriate, should be included in test plans:

Manufactured Solution Testing
In the Method of Manufactured Solutions, an analytical expression, usually as simple as
possible, is substituted in the governing partial differential equations (PDEs) and the resulting
terms gathered to form a source term. This source term is then used in the code that
represents the numerical implementation of the PDEs. An array of source term storage is
needed for every gnd block or element in the domain. If this array is not available, the code
must be modified accordingly. Having to modify the code being tested would be a drawback
to the method. The numerical solution is then compared with the analytical expression. By
doing a grid refinement, one can verify the expected order of the numerical method. This
comparison and verification helps to determine programming errors and numerical errors
[Roache, 19981.

0 Analytical Solution Testing
This technique compares the code with an analytical solution of the mathematical equations
instantiated in the code. Analytical solutions represent simplified solutions to complex
problems. Many approximations are usually required to obtain a formulation that can be
solved analytically. However, these approximations do permit the testing of the time-
dependent evolution of physical phenomena, e.g., shocks and discontinuous behavior. If the
solution does not exist in the literature, it can be resource intensive to develop. Although the

30

e
0

a
e
a
e
e
e
a
e
a
e *
e
e
e
e
e
e
e
0
e
e
e
e
0
e
e
e
e
e

e
a
e
0
a
a
e
e
e
e
a

a
a
a
e
e
e
e
e
e
e

a

a
a
a
e
e

e
a

a

a
a
a

a

a
a

e
e
e
e

e
e

solution is analytical, the solution must be translated into a numerical representation that can
introduce coding errors.

Because analytical solutions are “exact,” the discretization error of the code can be quantified
and studied. However, to obtain an analytical solution, simple geometry, boundary
conditions, initial conditions, and material models are required, and hence have limited
coverage of the code’s capability. Even for relatively simple problems, in many cases few
analytical solutions are available for 3D geometry. Analytical solutions are “exact” in that
they exactly satisfy the mathematical equations, but the form of the analytical solution is in
terms of mathematical functions that must be carefully evaluated to get accurate numerical
values. Without careful evaluation, inaccurate numerical values can corrupt the comparison
with a code.

Code Comparison Testing
Agreement between a new code and a widely used code can contribute to confidence in the
results. It is not required that the two codes being compared be identical, but that they have
functionality in common. The basis for this methodology is the assumption that if two
independent codes produce the same result, either both codes are correct, or both codes are
incorrect in exactly the same way. If possible, code comparison testing needs to be combined
with other testing techniques that address typical mistakes with the methodology. When used
in this manner, code comparison can greatly contribute to code verification.

Installation Testing
Installation testing is required for released software on all required target platforms. This testing
seeks to confirm that the software installation on the target platform occurred correctly.
Installation tests are useful as installation routines are typically the most heavily modified part of
the product.

A subset of test cases previously developed can be used with additional tests designed specifically
for the process of installation. This type of testing typically occurs during the Release Phase,
although the installation tests can be designed, reviewed, and approved during the Test Subphase.
Typically, installation tests are delivered with the software for the end user to execute and
compare to expected results.

Installation tests must address:
that the variety of options and combinations of options selected by the user were acceptable
that the installation was performed on an approved hardware configuration
that required interconnections to other programs were properly established

31

3.3.3 Release Phase

The Release Phase of the software engineering lifecycle covers practices and activities that must
be addressed when a product release is eligble for distribution and support. These activities
commence when a new software release is envisioned or when a new version of the release is
requested.

Table 9. Release Phase Summary

Overview:
The purpose of the Release Phase is to manage a production version of the software
Product that is distributed to customers. -

0 Outputs fi-om Test Subphase
0 Request for release
0 Release distribution process (defined at organization level and tailored by each

application software team)

5b. Plan and develop release.
5c. Review and approve release.
5d. Create and distribute release.

0

0 Operational documentation (may include)
Software product includes code and other designated artifacts

0 Release contents:
D User documentation, training material, theory manuals
o Service-level (maintenance) agreement
D Test cases

Installation procedures
Feedback

0 Evidence of reviews
0 Configuration-controlled artifacts

Metria:
0 Release statistics (types of releases: primary, patch, major, minor, etc.)

Releases may be preplanned, where the features are identified in the Requirements Phase, carried
through the Development Phase, and the release is planned for and scheduled as part of the
overall product strategy. On the other hand, once an application is in production, it will be
refined, fixed, and enhanced. In this situation, new versions of the product will become eligible

32

a

a
e
e
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a

*
a

*
e

*
a -*
a
a

a *
e
a

e

a
a
a
a
a

for release and distribution. Depending on the situation, a release may take on all elements of the
product or it may include only a subset of the product elements and components. In any case,
there are several practices that must be considered and applied as the software product moves
from its development environment to the supported production environment. Project teams should
tailor and follow a release and distribution management process that is based upon an
organizational standard. Such a process should address elements described in the practice
descriptions that follow.

Receive and Evaluate Release Request (sa)
A product release request may be submitted to the project team as a natural by-product of the
Development and Design Phases. In this case, the request will include information that specifies
the version, features, platforms and operating systems, and a target release date that coincides
with the completion of the Implementation and Test Subphases. The request will also likely
include a list of customers or institutions that have been identified to receive the distribution of
the product release. A product release request may also be submitted by a new customer who
wishes to receive a distribution of an existing or planned release.

Each project team must have some method of receiving and evaluating each release request. The
process will include determining what gets released and when; what elements and/or components
of the product will be part of the resulting release distribution; how a distribution of the product
will be tested and certified for release; and finally, who will be responsible for interfacing with
the customer(s) and handling issues that may be submitted against the released product.

Plan and Develop Release (5b)
Once the release request has been evaluated and a determination made to proceed with the
request, the project team is responsible for planning the activities that must occur prior to base-
lining the necessary code and other artifacts that will be distributed. This practice will include
planning exactly what will go into the release, what resources are needed to accomplish the
distribution of the release, what the schedule will be for accomplishing the release, and what
other milestones should be identified for accomplishing the release. Such milestones can include
additional installation testing, user documentation, installation instructions, or suggested reviews
that should occur. Planning the release may take place early on in the lifecycle, but details and
modifications to the original plan are completed in this Release Phase.

Review and Approve Release (5c)
When the project team has finished all development activities and created all artifacts necessary
for the release, the team will create a baseline that will be moved into a staging area in
preparation for distribution. Further code development is deferred to the next scheduled (or
nonscheduled) release at this point. Once base-lined, a product undergoes the final steps before
being distributed and supported.

Create and Distribute Release (5d)
Once approved for release, a software product is eligible for distribution. At this point, the release
will be created in an appropriate medium. All included artifacts in the distribution baseline will be
identified, and the release will be electronically distributed or packaged for distribution and
shipped to authorized customers or requestors. Requestors may be internal customers in the same
location and on the same network or they may be external customers, located at remote sites, for
who specialized distribution techniques have been identified.

Each distributed release will contain detailed release notes that provide an overall description of
the product and a running history of other releases associated with the project. In addition to code
that identifies the application, the distributed release package may include operational
documentation in the form of user documentation, training material, and theory manuals. The
package will also likely include installation procedure notes and test cases that the customer can
optionally run and compare to; in most instances, a service-level agreement will also be part of
the package.

Support Release (5e)
The service-level agreement specifies 1) the period of time of support and 2) the responsible party
in the event of a malfunction or if questions arise on any aspect of the release. This agreement
also identifies a point of contact and explains how to submit trouble tickets or issues that may
need to be filed against the application code. The project team will track who has requested and
received releases and what version of the code each customer has received and installed. That
way, in case a release needs to be withdrawn at some point in time, the project team knows
exactly who should be contacted and advised.

34

e
e
e
e
e
e
e
0
0
0
0
0
0
0
a
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

a

e
e

e
e
e
e
e
e
e

e
e
e
e
e
e
e
e
e
a
e
e
e
e

3.4 Project Management
Project management occurs throughout the entire software development lifecycle. The practices
of project management are intended to ensure that adequate funding and resources are available to
allow successful completion of deliverables and required software practices. Monitoring of
projects provides early warning signs of cost or performance issues that need to be addressed if
project milestones are .to be completed successfully. The involvement of management in the
ASCI software quality program is implemented via the AQMC (ASCI Quality Management
Council) and the ASCI management chain.

Table 10. Project Management Summary

Overview:
The purpose of Project Management is to ensure that adequate funding and resources are -
available to allow &ccessful completion of deliverables i d required software practices.

Implementation Plans (IPS)
Baseline Change Proposals (BCPs)

Project Planning

Tracking and Oversight
6a. Submit P addressing project tasks annually.

7a. Review milestone status quarterly.
7b. Issue BCPs, if needed.
7c. Prepare performance reporting on a quarterly basis.

Sa. Incorporate risk identification and risk mitigation into project execution using the
Risk Management

0 UpdatedPs
Updated BCPs

0 Cost variance by month
Schedule variance by quarter

0 Completion of milestones and mileposts

3.4.1 Project Planning

Project planning includes preparing a plan that describes how the project will be performed and
managed. It typically includes a statement of work, constraints and goals, project deliverables, a
project timeline, an assessment of resources that will be needed, and the availability of identified
resources.

35

Submit IP Addressing Project Tasks Annually (6a)
Project planning begins with the ASCI Program Plan, which is updated periodically by “SA
with input from the Tri-labs. Sandia then develops implementation plans (IPS) that are written
annually. An IP describes individual projects and identified milestones and related tasks, an
associated schedule, funding, issues, constraints, and assumptions. In formulating the IP, the
principal investigator (PI) identifies the work to be performed and prepares a cost estimate, based
on available resources, funding, and hisher experience in projecting such estimates.
Implementation Plans are approved by DOE-HQ (DP-IO).

3.4.2 Tracking and Oversight

Tracking and oversight involves the tracking and reviewing of projected accomplishments and
results with respect to how they are described in the project plan. It also implies taking corrective
action as necessary based upon actual accomplishments and results. To that end, selected contents
of the IPS are documented and maintained in a Web-based system that

0 archives the Work Breakdown Structure (WBS)
automates data collection for reporting purposes
provides reporting capabilities

0 issues monthly budget updates regarding cost expenditures to PIS

Review Milestone Status Quarterly (7a)
Milestones are reviewed and modified on a quarterly basis via a Web-based system that identifies
the milestones and their associated due dates.

Issue Baseline Change Proposals (BCPs), If Needed (7b)
Whenever changes to the project scope, cost, or schedule are anticipated, the PI, using the Web-
based system, must submit a Baseline Change Proposal (BCP). The BCP includes a change
description, scope impact, schedule impact, cost impact, justification for the change, and impact
of nonapproval. The ASCI Applications program element lead as well as the line manager
responsible for the execution of the work must approve the BCP.

Prepare Performance Reports on a Quarterly Basis (7c)
For every WBS element, there is at least one milestone that has been identified. Performance
reports are prepared on a quarterly basis via a Web-based system that describes the work
performed during the quarter relative to meeting the milestone(s). In addition to the brief
description of the work performed, the PI also can include supporting documents that were
prepared during the quarter. Performance reporting is not, however, limited to this system. Project
managers perform informal reviews during the year, which can include one-on-one sessions with
the PIS or review sessions in group settings. In addition to these performance reportshessions, a
limited number of external reviews (one or two per year) are conducted on a major milepost
and/or major milestone. This forum also provides an opportunity to assign status to the work that
has been performed.

3.4.3 Risk Management

Risk management involves identifying, addressing, and mitigating sources of risk before they
become threats to the successful completion of a project.

Incorporate Risk Identification and Risk Mitigation into Project Execution (Sa)
Risk management is incorporated into the IP and the quarterly report. h sks are identified and
described in the “Issues and Concerns” section of the quarterly report. Any item that is identified

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a

a
36

a
0
a
a
a
a
a
a
a
a
0
a
0
a
0
a
0
0
a
a
0
a
a
e
a
a
0
a
a
a
e
a
0
a
a
a
a
a
a
a
0
0
a

in this section of the quarterly report is flagged for further review by management to determine
the impact on milestone completion. Coupled with the quarterly reporting Web-site is a BCP. The
BCP allows mitigating actions to be taken before risks become a threat to successful completion
of a project.

37

3.5 Support Elements

- Table 11. Support Elements Summary

Dverview:
f i e purpose of Support Elements is to help monitor and correct project plans against
)erformance, conduct reviews of artifact content, train software developers, and
locument and meserve the results of the txoiect.

0 Software requirements
0 Project planning artifacts
0 Code artifacts. including those relevant to third ~ a r t v software

Y

Prach
Requirements Management

9a. Conduct requirements tracing.
9b. Determine requirement ownership and status tracking.

1 Oa. Conduct issue tracking of software product artifacts, including requirements.
1 Ob. Perform version control of software product artifacts, including requirements.
1 Oc. Perform release and distribution management.
1 Od. Engage in ASCI records management.

1 la. Accept third party software and libraries into the application code domain.
1 lb. Install, integrate, and control the accepted third party software.

Evaluate training needs on activities necessary for producing software artifacts, use
of software tools, needs for understanding of software processes, needs for software
verification process and techniques.
12a. Train appropriate project members in use of project management and project
tracking and oversight processes.
12b. Train staff on activities necessary for producing software artifacts.
12c. Train staff on how to use software tools.
12d. Train staff on software processes and their implementation.
12e. Train staff on software verification Drocess and techniaues.

Configuration Management

Third Party Software

I'raining (need-based)

0 Configuration-controlled artifacts
0 Issues

Issues statistics

Support elements of the software development Iifecycle include requirements management,
configuration management, third party software management, and training. These practices are
intended for managing the work of building a software system. They help monitor and correct

38

e
e
e
e
e
e
e
e
9
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a
a

e

project plans against performance, conduct review of artifact content, train software engineers,
and document and preserve the results of the project, which are its artifacts.

3.5.1 Requirements Management

Requirements engineering consists of two significant areas:
0 requirements gathering and derivation, which is part of the software engineering lifecycle

(Section 3.3.1).
requirements management. This document treats the requirements management practices
as Support Elements.

Requirement management includes practices for requirements tracing, requirements ownership
and status tracking, requirements version control, and requirements change control. Version
control and change control of requirements are treated as configuration management of
requirements (discussed in Section 3.5.2).

Conduct Requirements Tracing (9a)
Requirements tracing is keeping track of the original driver for a particular requirement, as well
as the corresponding specifications, design issues, and implementation artifacts that reflect that
requirement. Tracing is important because when a change to a particular requirement is effected,
it is essential that the change be applied against all other product artifacts that reflect any part or
all of the requirement.

Determine Requirements Ownership and Status Tracking (9b)
Requirements ownership and status tracking imply a knowledge of where a particular requirement
originated, who or what component is responsible for implementing it, and who is responsible for
managing any associated changes against that requirement over the lifetime of the software
product. As individuals come and go from the project and as modules are added, deleted, or
rearranged, it is extremely important to ensure that requirements are not overlooked or
abandoned. It is also very important to h o w where and when the requirement was implemented
in the code and how it was verified.

The process for managing requirements is critical to ensure that ASCI codes share a common
understanding Erom the various viewpoints at any point in time. Requirements management will
also ensure that projects are managed to customer requirements.

3.5.2 Configuration Management

Configuration management includes identifying the configuration items in a system, controlling
the change and release of those items throughout the lifecycle, recording and reporting the status
of the items and associated changes, and managing the completeness and traceability of the items.
In short, a configuration management system should provide a stable environment for iterative
development and production activities. Required configuration management practices for
controlling and managing software artifacts are

issue trachng
version control
release and distribution management
records management

39

Conduct Issue Tracking of Software Product Artifacts (loa)
Issue traclung is the process of recording and traclung all changes that occur to any product
artifacts throughout their lifetime. Issue tracking allows the submittal of enhancement requests,
problem and defect reports, and inquiries. Most issue tracking systems provide a capability of
tying the requested change to a particular code module (or modules) and controlling who can
work on the change request at particular status points in a module’s existence.

Perform Version Control of Software Product Artifacts (lob)
Version control of software product artifacts implies the availability of a controlled, shared
project repository (library) where artifacts are stored and accessed. Each project needs to follow a
documented process describing how to identify project artifacts that will be kept in the repository,
how to access and version those artifacts, how to identify when product baselines will be created
and how they can be changed and by whom, ,and when software is ready to be released and
distributed to internal or external customers.

Perform Release and Distribution Management (1Oc)
Release and distribution management involves determining what will go into a release, when it is
ready to be distributed (and to whom), and how a given release will be supported and tracked
throughout its lifetime. Section 3.3.3 describes the entire release and distribution management
practices in more detail. Configuration management is used to control how project artifacts will
be base-lined and preserved, to identify to whom and when releases are distributed, and to be able
to recreate or distribute a given release.

Engage in ASCI Records Management (10d)
Records management is a corporate requirement. It involves the planning, organizing, training,
and other managerial activities related to the creation, maintenance, use, and disposition of
records. The Sandia ASCI Records Management Program strives to meet its records management
needs by fostering an understanding of the importance of recorded information generated or
received by Sandia. This program also strives to teach Sandians their responsibility in the
creation, use, maintenance, and disposition of records; to provide training and support for the
implementation of best business practices with regards to Sandia ASCI records; and to
incorporate federal requirements into standardized tools for information management at Sandia.

3.5.3 Third Party Software

Third party software is an application or library used or required by a Sandia ASCI code
application; however, ASCI application teams do not normally maintain this particular software.
Many of these third party software sets are developed at Sandia, while other sets are developed by
other government labs, by commercial vendors, and by university partners.

Place Accepted Third Party Software into Application Code Domain (l l a)
Third party software might serve as an input into several of the Software Engineering phases
described in Section 3.3. Sandia manages the ongoing development and maintenance of third
party software once it enters the application code domain. These third party software packages
are required to pass a quality assurance procedure and then are configuration-controlled. If third
party software is modified by the ASCI application team, then either the team assumes primary
responsibility for these changes (in which case it is no longer third party), or such changes are
coordinated with the third-party supplying organization for inclusion in future updates and
releases. Third party software must be evaluated on a case-by-case basis to determine its
appropriate class (Table 2, Section 1.4)

40

e
e
e

a
a

e
a
e
e
a

a
e
e

e
a

a
e
e

e
a
a

e

e

e
e
e
e
a
a

a

a

a
Q

a

a

a
a

a

a

a

a

a

e

0
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a

e
a
a
a
a
a
a

a
a
e
a

a
a
a
a
a

0

a

a

a

0

a
a

e
e
a

a 41

Install, Integrate, and Control the Accepted Third Party Software (l lb)
Besides hrnishing artifacts that veri6 the integrity of the supplied third party code, the supplying
organization is expected to include instructions, code, test cases, and user information that allows
the Sandia developer to successfully install, integrate, and appropriately control the code. Each
code team should have a plan in place that describes the criteria for accepting third party software
into its domain. Such software and its associated artifacts, once accepted, should be managed
according to a common software configuration management process.

3.5.4 Training

Training addresses the importance of the “human asset” in the ASCI application code
development process. The staff involved in the practices of this document must be highly trained
and educated in scientific software development, algorithms, andor computer science. Specific
project and tool training related to software development, software verification, and project
management will be planned and tailored in an individualized, need-based implementation.
Training in the following areas will be conducted as project needs dictate:

a. project management and project tracking and oversight processes (12a)
b. activities necessary for producing software artifacts (12b)
c. use of software tools (12c)
d. software processes and their implementation (1 2d)
e. software verification process and techniques (12e)

As training needs evolve, the code teams will follow a graded approach in determining the
specific types of training classes or opportunities that are needed for their environments. For
example, self-directed learning exercises using Web-based tools can be a method for providing
training. Vendors offer extensive classes in the use of support tools. Corporate Training offers
many classes in classroom format or video downloads, covering current software engineering
practices.

4 Assessment Tool & Gap Analysis

This section includes an assessment tool based on the practices and suggested outputs of this
document. Periodically, the ASCI management will review this assessment tool and modify it as
necessary. The assessment tool will list practices and the current organizational goal level for
each of the practices. The assessment tool is a process improvement mechanism that is used to

0

0

0

set measurable goals for software engineering practices and outputs
evaluate the current state of software engineering practices
compare the current state of software engmeering practices to a desired state (perfom a
gap analysis)
gather information on an application code team’s interpretation of compliance
compile an overall consistent organizational evaluation of software engineering practices

The results of the assessment should aid management in resource allocation, risk identification,
and priority identification.

0

The assessment tool organizes practices as they are introduced and discussed in Section 3.
Software Verification is not included as a stand-alone category in the tool because the primary
components of software verification, reviews and testing, are folded into various practices under
the phases of Software Engineering. Support Elements are addressed by practices of requirements
management, configuration management, and various training activities pertaining to lifecycle
support.

The assessment tool will be deployed with the following strategy:
0

0

0

0

0

The ASCI management will initially set the values in the tool based on the consensus of
the managers.
Code teams will do a self-assessment and gap analysis, which establishes implementation
priorities for the individual teams.
An independent assessment of the code teams will follow the self-assessments.
Results of the self-assessment and independent-assessment will be published and
presented to the AQMC.
The ASCI management will revise the values in the tool approximately one year after the
assessment report is accepted.

The assessment tool includes a column for evaluation of the application code team’s practices by
an assessment team. This team will be appointed, as needed, by the ASCI management for
calibration of evaluation results at the Sandia ASCI-organizational level. An assessment team
will want to consider following an approved assessment process such as AASP 13-1.

The ASCI management will direct application code teams to use this tool periodically to compare
their current practices to the Sandia ASCI Code Development Practices. This will help the teams
to determine those areas in which they are making good progress or, alternatively, in which they
may need to focus improvement efforts. In addition to identifying areas that are appropriate for
increased improvement efforts, the application code teams can observe how they are improving
over time by comparing previous assessments to current assessments.

The assessment tool will provide the AQMC and ASCI management with a
mechanism for identifying best practices that can be communicated and leveraged
among application code teams. For instance, if a software development team chooses
to prototype a practice, the team can do so without adding it to the assessment tool.

42

@
a
a

a
a
a
a
a
a
a

a
a
a

a
a
e
a
a
a

a
a
a
a

a
a

e

e

e
e

e

e
0
e
0
a
a
a

a
a

@

e

e
e
e
e

Instructions for Completing Assessment Checklist

a
e
a
e
e
a
a
0
a
0
a

e
e
a
0
0
0
a
a
a
0

The details of the activities that compose each practice are not listed separately in the Assessment
Checklist. Listing all of the required test types that should be included in the test plan and then
subsequently executed would result in a checklist that is unwieldy. However, if the ASCI
management recommendation for a particular practice, such as “Finalize test plan,” is three, then
the expectation is that all activities addressed in the description of that practice will be camed out
in order for a code team to achieve a value of 3 in its self-assessment.

Definitions of the columns in the Assessment Checklist are provided below. Following the
definitions is an example of an Assessment Checklist that has been filled in for demonstration
purposes only. A blank checklist is provided in Appendix C.

(1) Application Name/CIass/Assessment Date
This column includes the name of the ASCI application code, the designated class of the
code, and the date of the assessment.

(2) ASCI Management Requires
The ASCI management determines the values in this column. A value of three indicates that
management requires that application code teams follow this practice by fully implementing
it.

In general, management will raise the bar (higher value) for a particular practice when it
reaches consensus with application code teams that the practice adds value to the process
and is cost effective. Management will remove the practice or lower the bar (lesser value) for
a practice if it deems that the practice is not cost effective and/or it adds little or no value.

(3) (Application) Code Team Evaluation
This is the column the code evaluation team fills in to determine where they are in terms of
performing or implementing all recommended practices. A code team will select a value of
zero-3 or NA based on the criteria specified below.

3 The application code team has fully implemented this practice. This is the most
difficult value to achieve. This value indicates that the practice is at the
maintenance stage. Evidence exists that the practice is integrated into the code
development process. Concurrence by the assessment team is needed for the
practice to be officially recognized as fully implemented. To be at the fully
implemented level, a documented process for the practice needs to be in place,
and the team needs to be following this documented process.

2 The application code team has partially implemented this practice. Some
evidence exists that the practice has started. Resources for the fulfillment of this
practice have been identified, but the implementation is not complete. For
example, a draft of the process for conducting the practice exists, or a completed
documented process exists with most of the team (but not all) complying with the
process. Additional resources most likely will be needed to raise this practice to
fully implemented.

1 The application code team has proposed the implementation of this practice but
has little or no evidence yet to support implementation. At this level, it is typical

43

that resources have not yet been identified and allocated for fulfillment of the
practice. Activities and resources for this practice are being planned.

0 The application code team has not yet addressed the implementation of this
practice.

NA The application code team determines this practice is not applicable to its code
development environment. A value of NA must be accompanied by an
explanation from the code team describing why the practice will not be followed.

Note: Specific guidelines for selecting assessment values will be provided by the ASCI
management for each entry in the Assessment Checklist.

Assessment Team Evaluation
As needed, the ASCI management will appoint a core assessment team to review the current
state of practices performed by each team. The core assessment team will use the same scale
as the application code team (see (3) above).

CommentsDhidence
This column is intended to record comments about an application code team’s particular
implementation of a given practice or why that practice is not applicable. The column will
also be used to record evidence of implementation of that practice, especially to show full or
partial implementation. Either the application code team or the assessment team may enter
information in this column. The author of the comment should be clearly identifiable.

Completed By
This line indicates the person (code team, assessment team) who completed the assessment
checklist. The person who signs this section should print their name, date the checklist, and
add their signature.

a
a
a
a
a
a
a
e

e

a

@

e

e
e
e
e
e
a
e
e
e

e
e
e
e
a
a

a

a
a
a

a

44 a
a

a
e
e
a

e
e

@
e

Application code teams should use this tool annually to determine how closely they are adhering
to the Sandia ASCI Code Development Practices. In addition to highlighting areas that are
appropriate for increased improvement efforts, the application code teams can observe how they
are improving by comparing the scores of various practices from one assessment period to the
next.

Note: This tool is designed to identify current status and provide management with information to allocate
resources and is not intended as a goodness evaluation, certification, or verification exercise.

a
a
a
a
0
a
a
0
a
a
a
a
a
a
a
a
a
e
e
a
a
e
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a

e

Sample Assessment Checklist for ASCI Apps Software
Development Areas

for example
1 I onty)

nstrate evidence f o r other
responses as needed. I addressed I N A - not

addressed
N A - not

3 3 1 a. Gather user requirements 3

~t lb. Derive software requirements.

IC. Document software 2
requirements.

Section 3.3. I

Id. Assess feasibility, if applicable, 1
and generate estimates for
budget, resources, etc.

3

1

Section 3.3.1

le. Establish acceptance criteria 1 2
based on requirements.

Section 3.3. I

If. Determine necessary llnks to 1 2
other layers of requirements,
code, and tests.

Section 3.3.1

45

System requirements are
gathered according to a
documented procedure and
evidence indicates they are

implemented in software are
derived based on stockpile
drivers fiom the user-
supplied system

I requirements
3 I Requirements for released

version 1 .O are documented in
requirement’s document
v 1 .o.

in this practice; however,
schedule does not always
permit analysis at
Requirements Phase. Often
defer this until

2 A process for establishing
acceptance criteria exists;
criteria are identified, but
not all areas of process are
being addressed.
This practice is part of the
documented MADRE RM

1 Team recognizes the value

2

process V1.5.

to other product artifacts
throughout subsequent software
phases.

Section 3.3.1
1 h. Review and approve 1

requirements artifacts. I

2a. Derive the design. 2
Section 3.3.2.1

2b. Communicate the design to the 3
team.

Section 3.3.2.1
2c. Document the design.

Section 3.3.2.1
2

I

2d. Evaluate impact to requirements.
‘

1

Section 3.3.2.1

2e. Plan for testing: initiate
development of test plan.

Section 3.3.2.1
2f. Review and approve design

artifacts.
Section 3.3.2.1

3. Development: Implementation

3a. Evaluate impact of
implementation to design and
requirements.

Subphase

Section 3.3.2.2

1

1

1

1

1 1

0 0

46

This practice is part of the
documented MADRE RM
process V1.5.

Evidence of techcal,
quality, and management
reviews does not exist.

Not formally done at this
time due to schedule
constraints.
Periodic meetings held;
email sent out on regular
basis.
Documented design exists
but is in draft form and has
not been formallv released
Not planning to evaluate
impact; if management says
“do,” code team will design
and implement. A-team -
need to evaluate if design
impacts derived
requirements (not based on
stockpile driver). Thts
practice is needed to keep
consistency between
requirements and design.
Testing is informally
dscussed.

Reviews are performed
when design artifacts are
created; however, creation
of artifacts sporadic.

Feedback of issues into
previous phases not yet
formalized.

a
a
a
a
a

a
a
a
a
a

a
a

a

a

e

e

e
a

e
a
a
a
a

a
e
e
a

a

a
a
0
a
a

a
a
e

a
a
a
e
a

a
a
e
a
a

a

a
a

a
a
a
a

e
a

a
a
e
a
a
e
0
a
a
a

a
a

a
a
a
a
a

a

0

e
a
e

€valuation : Team
Evaluation : Assessment Team

Code is being produced;
however, there is little
evidence that
implementation represents
design.
Team communicates via
periodic meetings, group
email, etc.

3b. Translate design into code and
other software product artifacts.

Section 3.3.2.2

3c. Communicate issues with
requirementsldesign team and
developers.

Section 3.3.2.2
3d. Review and approve

I implementation artifacts.

3

No evidence that review of
implementation artifacts
was occurring.

General, unit, and
regression testing are
included in test plan. Unit
testing not being done at
this time. Installation plan is
not complete.
All required test cases not
always executed prior to
check-in to configuration
system.
Not done in all cases.

I

Section 3.3.2.2

I 4a. Finalize test plan. 2
Section 3.3.2.3

2 4b. Execute test cases found in test
plan.

Section 3.3.2.3

3 4c. Review test case output using
acceptance criteria defined in test

Section 3.3.2.3

Section 3.3.2.3

plan.

4d. Document test case results. 1 Team sees value in test
cases being a controlled
artifact; however, resources
to do thls not available.
Retesting is not consistently
carried out. I 2 4e. Retest updated software if

acceptance criteria are not
satisfied.

Section 3.3.2.3
4f. Review and approve Test

Subphase outputs.
Informal reviews occurring. 2 2 1

Section 3.3.2.3

5a. Receive and evaluate release Process in place-not
consistently followed.

2 2 a

a

a
a

e

e
a

2

I request.
Section 3.3.3

5b. Plan and develop release. 2 Process not consistently
followed. I Section 3.3.3

47

(1) Application Name:

MADRE
Mgmt.
Requires:
(values are
for example September 27,2001

5c. Review and approve release.
Section 3.3.3

3

I
5d. Create and distribute release. 3

Section 3.3.3

5e. Support release, as agreed with 1
customer.

Section 3.3.3

3 I 6a. Submit IP addressing project
tasks annually.

7a. Review milestone status 3
quarterly.

Section 3.4.2
7b. Issue Baseline Change Proposals 3

(BCPs), if needed.
Section 3.4.2

7c. Prepare performance reports on a 3
quarterly basis.

, I
. ...I

Section 3 4.2
8. ‘Risk Management . ’ , >

2 Sa. Incorporate risk identification
and risk mitigation into project
execution using the BCP.

1 9a. Conduct requirements tracing.
Section 3.5.1

9b. Determine requirements
ownership and status tracking.

Section 3.5. I

1

I

10. Configuration Management I

~~

idence for
Evaluation:

2

2

NIA

Team
Evaluation:

1

2

NIA

3

m

Found evidence that
products have been released
without approval.
Releases that are
successhlly created are
distributed. Some releases
not distributed to all
specified customers.
No agreement to support
release in place.

3 IP for FYOl submitted and
current.

42-

3 2 Need for BCP exists;
however, changes have not
been implemented.
Quarterly performaqce
reports exist and are I I complete.

2 I 2 I BCP indicates dependence
on another project that is 2
months behind schedule.

2 2 The Req. Mgmt. Process is
written and is ready to be
implemented using the

I I DOORS tool.

written and is ready to be
implemented using the

2 2 I The Req. Mgmt. Process is

48

a
e
e
a
‘e

e
e

e
e

a
e
a
a
e
a
e
e
a
e
e

e

a

a
e
a
e
a

a

a
e
a
e
a

a
a

e

e
a
e
a

e

a
a

e
0
0
e
e
0
e
0
e
0
e
e
0
e
e
0
0
e
0
e
e
0
e
e
e
0
0
0

e
e
e
e
0
e
e
e
0
e
e
e
e

e

e

Code Team
Evaluation :

Assessment
Team
Evaluation:

September 27,2001

10a. Conduct issue tracking of 3 3 2
software product artifacts,
including requirements.

Section 3.5.2

lob. Perform version control of 3 2 2
software product artifacts,
including requirements.

Section 3.5.2

1Oc. Perform release and distribution 3 2 2
management.

Section 3.5.2
10d. Engage in ASCI records 2 1 1

management.

1 la. Accept h r d party software and
libraries into the application
code domain.

processes.

12b. Train staff on activities necessary 1
for producing software artifacts.

tools.
Section 3.5.4

2

Assessment Team

An issues tracking tool is in
place; however, it is not
being consistently used by
team members to capture
issues.
Codeanduser
documentation is version
controlled but other product
artifacts are not stored in
repository as defmed by
code team implementation
plan.
The process for this is
written but has not yet been
completely implemented.
Still in planning stage.

Thud party software plan is
implemented and followed.

Third party software plan is
implemented and followed.

Project management is in
111 compliance with
organization requirements
and has necessary skills.
Training not needed at this
time.
Team recognizes value of
ths practice; however,
funding and resources not
available for providing team
with tools to produce
artifacts consistently or to
train members on use of
tools.
Some staff not using issue
tracking tool; may be a need
for training.

49

12d. Train staff on software processes
and their implementation. I

Section 3.5.4

verification process and
techniques.

Section 3.5.4 i ti Insufficient resources to
complete.
Team is very cognizant of
venfication methods for
their application. Training
not needed at h s time.

50

a
a
a
e
a
a
a
a
a
a
e
a
e
a
a
a
a
a
0
a
e
a
a
a
a
e
a
a
e
0
a
a
e
a
e
a
a
a
a
a
a
a
a

a
a
a
a
a
a

a

a
e
a
e
a
a
a
a
a
a
a
a
a

e
a
a
a
a
a
a

e
a
e
e
a
a
a
a
a
a
a
a
a
a

a

a

References
Since this document is an extension to the ASCI Program Software Quality Engineering: Goals,
Principles, and Guidelines, the authors are assuming the references cited in the GP&G are also
valid for this document. Only when referenced directly is a work denoted in the list that follows.

Required. The following are upper-tier documents that specify quality requirements for this site-
specific deployment document:

Hodges, A., G. Froelich, D. Peercy, M. Pilch, J. Men , M. Peterson, J. LaGrange, L. Cox, K.
Koch, N. Storch, C. Nitta, and E. Dube, Department of Energy, ASCI Program Software Quality
Engineering: Goals, Principles, and Guidelines, DOE/DP/ASC-SQE-2000PFDRFT-VERS2,
Albuquerque, NM, February 200 1.

Department of Energy, DOE/AL Qzsality Criteria (QC-I), Revision 9, February 5, 1998.
Available at http://prp. Ian1 .aov: 8686/.

Guidance. The following are documents that provide additional information that is useful in
developing and implementing Sandia ASCI V&V practices:

ByIe, K., M. Ellis, and D. Eaton, Sandia National Laboratories ASCI Applications Software
Assessment Practices ASCI Sandia Procedure (ASP) 13-1, Version I , December 2001, Available
at https://wfsprod0 1 .sandia.gov/groups/sm-uscitizens/documents/documen~wfsO43564.pdf.

Kan, S. H. Metries and Models in Software Quality Engineering. Reading, MA: Addison-Wesley
Longman, Inc., 1997.

Myers, Glenford J. The Art of Software Testing. New York: John Wiley and Sons, 1979.

Roache, Patrick J. Verification and Validation in Computational Science and Engineering.
Albuquerque: Hermosa Publishers, 1998.

Pilch, M., T. Trucano, J. Moya, G. Froehlich, A. Hodges, and D. Peercy. Guidelines for Sandia
ASCI Verijication and Validation Plans - Content and Format: Version 2.0, SAND2000-3101.
Albuquerque: Sandia National Laboratories, January 200 1.

Pilch, M., T. Trucano, D. Peercy, A. Hodges, E. Young, and J. Moya. Peer Review Process for
the Sandia ASCI V& V Program: Version 1.0, SAND2000-3099, Albuquerque: Sandia National
Laboratories, January 200 1.

Hams, R., D. Cuyler, J. Abbot, et al. SPE Process Definition, Established by the Software
Product Engineering Technical Working Group Organization 9500, Draft. Albuquerque Sandia
National Laboratories, March 2001. Available at http://wfsprod0 1 .sandia.gov/, then search by
title = “SPE Process”, or use Advanced search and Document ID = WFS00355 1.
Williamson, C. Michael, H. Ogden, and K. Byle, 2002 SNL ASCIApplications Software
Engineering Assessment Report, SAND2002-2064.
Albuquerque: Sandia National Laboratories, July 2002.

51

http://prp
https://wfsprod0
http://wfsprod0
http://sandia.gov

Appendix A: Glossary and Acronyms

Glossary

acceptance criteria The defined value, or range of values (usually quantitative), expected from
a test case execution to demonstrate fulfillment of software requirements.

artifact A deliverable or work product that is the output of some phase of the software
development lifecycle. A configuration-controlled artifact is an artifact that is stored in a
corporate repository (library) and changes to it are controlled via reported issues.

best practices Those activities that have proven to be of high value, have improved quality, have
improved productivity, or have enhanced customer satisfaction. Typically, these practices are
measured activities or have metrics to show their value and are leveraged across an organization.

configuration control An element of configuration management, consisting of the evaluation,
coordination, approval or disapproval, and implementation of changes to configuration artifacts.

derived requirements Those code requirements that result from analyzing and refining the
software requirements and determining what will actually be coded.

feedback Information from one phase of the software lifecycle that is fed back to one or more
previous phases. The purpose of feedback is to provide an iterative loop from one phase or sub-
phase to another and to establish a mechanism for continuous improvement.

issue A point of concern, a problem, or a comment that is raised in regard to a practice of a
software lifecycle phase. The issue is a form of feedback and will usually be specific to an artifact
suggesting rework, improvement, or enhancement.

lifecycle development A model for software development that consists of phases and ensures
documentation of technical adequacy throughout the lifetime of software from conceptualization
through retirement.

release A snapshot in time of a software product available for distribution. Typically includes
software as source or executable.

reviewer An independent person (someone who did not produce the work or item being
reviewed) qualified to perform a review.

review A quality assurance activity that establishes confidence in codes and ensures software
verification. Types of reviews are as follows:

management - An evaluation performed to verify that commitments (for the current
phase) have been satisfied.
quality - An evaluation performed to verify compliance withprocess and artifact
requirements.
technical - An evaluation to determine if the content of the item submitted for review
conforms to technical requirements.

0

52

0

0
0
0
0
0
0

0
e
0
e
e
0
e
e

a

a

a

a
a

a
a
a

a
a
a
a

a
a

a

e

e

0

0
e
e
0
e

0
a

a
a
a

e
0
e
e
a
0
e
e
0

0
e
e
e
0
0
e
0
e
e
0
0
e
e
e
0
a
e
0
0
0
0
e
0
a
e
0
0
e
e
0
0

software engineering The activities that an organization consistently employs to ensure that it
produces correct and consistent software products effectively and efficiently.

software process A set of activities, methods, and practices for developing and maintaining a
software product and its associated artifacts.

software process management The activities of monitoring, evaluating, and improving the
software process or processes.

software product One or more artifacts, usually including code, given to the customer.

software quality The development and description of software quality policies, goals, metrics,
assessment means, and assurance plans.

software quality management The software quality definition activities, followed by the
appraisal of current quality practices against the organization’s quality assurance plan, plus the
development of organizational support for software quality improvement plans.

software requirements The subset of the system requirements specifically designated to be
implemented in software.

software verification The process of determining whether the released software product
complies with specified requirements (software requirements).

support elements The practices that the organization performs aimed more at managing the
work of building a software system rather than the actual building of the system.

system requirements The conditions or capabilities that must be met or possessed by a system or
system component to satisfL a condition or capability needed by a user to solve a problem.

validation The process of evaluating the mathematical formulation to ensure that it adequately
describes the problem of interest, i.e., that the computer simulation adequately represents the real
world. [Outside the scope of this deployment document.]

verification The process of determining whether or not the mathematical formulation is solved
correctly, Le., whether the computer simulation correctly represents the conceptual model and its
solution. When the numerical model forms the basis for the software requirements, verification is
equivalent to software validation.

53

Acronyms

AL
AQMC
ASCI
BCP
DOE
DP
DSW
GP&G
HQ
IP
"SA
PDE
PI
QC-1
R&D
Sandia
SQE
V&V
WBS

Albuquerque Office (of DOE)
ASCI Quality Management Council
Accelerated Strategc Computing Initiative
Baseline Change Proposal
Department of Energy
Defense Programs
Directed Stockpile Work
ASCI Sofmare Quality Engineering: Goals, Principles, and Guidelines
Headquarters
Implementation Plan
National Nuclear Security Agency
partial differential equation
principal investigator
DOE/AL Quality Criteria (QC-1)
research and development
Sandia National Laboratories
software quality engineering
Verification and Validation
Work Breakdown Structure

54

a
a

a
a
a
a
a
a
a
a

a
a

a
a
a
a

a
a
a
a
a
a

e
e
e

e

e
a

e
a

e
e

e

a

e
e
e
* a

a
a
a

Appendix B: Mapping and Tailoring Methods
The tables in this appendix provide the evidence of compliance of this document with the GP&G.
Documents that were consulted for the compilation of the GP&G (Software Standards, Modeling
and Simulation Standards, Nuclear Facilities Standards, Customer Expectations Standards, etc.)
are not mapped directly from this document, but are mapped from this document through the
GP&G. The GP&G is the mechanism that passes along appropriate requirements from these
various standards to this deployment document.

Table 12 provides the mapping from the figure on page 4 of the GP&G (column 1) to the
corresponding practices in this deployment document (column 2). This table summarizes the site-
specific tailoring and grading performed for this deployment document.

Table 12. Mapping of Key Elements to Practices

Goals, Principles, and
Guidelines (Figure Pg. 4)

Guidelines
Software Verification

Unit Testing

Regression Testing

Analytic Comparisons

Code Comparisons
User Acceptance Testing

Training

Software Engineering
Lifecycle Management

Configuration
Management
Measurement Metrics
ReviewslAssessments
Process Improvement
Training

Project Management
Risk Management

Reauirements Management
Project Planning

Activities
Mapping I Tailoring Comments

Type of white-box testing. Section 3.2 and Section 3.3.2.3.

The GP&G defines this as the “activity of regularly building the code.. .”
Section 3.3.2.2, Implementation Subphase. It . .. and executing a series of
tests designed to verify that the code works as expected for all
computational platforms supported.” Demonstrating that code works as
expected or complies with requirements and acceptance criteria is the
purpose of software verification. Software verification is achieved through
the fulfillment of the lifecycle. Section 3.2.
Acceptable method for comparing results of test case execution. Section
3.3.2.3.1.
Accomplished by code reviews. Section 3.2 and Section 3.3.2.3.1.
Demonstrating that the application software meets user needs. User needs
are captured in the Requirements Phase (Table 4) and carried through
subsequent phases (Development and Release). Requirements are tested in
Test Subphase.
Software verification training is a component of Training Support. Section
3.5.4.

Lifecycle Management is a component of Project Management, Section
3.4, Table 10 and associated practice discussion.
Section 3.5, Table 11 and associated practices discussion.

Section 3.4, Table 10 and associated practices discussion.
Section 3.4, Table 10 and associated practices discussion.
Glossary “software process management” and Section 2, AQMC.
Software engineering training is a component of Training Support, Section
3.5.4.

Mapping / Tailoring Comments
Risk Management is a component of Project Management. Section 3.4,
Table 10 and associated practice discussion in Section 3.4.3.
Section 3.5, Table 11 and associated practices discussion.
Section 3.4, Table 10 and associated practices discussion.

55

Goals, Principles, and Sandia National Laboratories

Training

Tracking and Oversight
Process Manaeement

I Section 3.4, Table 10 and associated practices discussion
I Glossarv “software Drocess management’ and Section 2. AOMC.

Project Management training is a component of Training Support, Section
3.5.4.

Tables 13, 14, and 15 provide a mapping from the GP&G-for Software Verification, Software
Engineering, and Project Management-as represented by Key Elements to this deployment
document.

Table 13. Mapping of Deployment Practices to Key Elements of Software Verification

Guideline I Activities Key Elements
Area I I

Software
Verificati

Technical Reviews

Unit Testing
Regression Testing

Comparison
Techniques

Technical Soundness
Static Analvsis

Traceable, repeatable
component test

Building the Code

Executing tests

Feature-based test
suite for multiple
platforms

Analytic solutions
Other codes results

nal Laboratories ASCI

Practices

Techcal review, Glossary and Section,
3.2 (under Reviews)
White-box testing technique, Section
3.2, and Table 8.

Section 3.3.2.3, Table 8, Test Subphase
outputs. All artifacts identified for
configuration control, such as test cases,
will be “repeatable.” Traceability is
maintained throughout entire lifecycle,
including test subphase.

Section 3.3.2.2, Table 7, Implementation
Subphase.

Section 3.3.2.3, Table 8, Test Subphase.

This is an example of a black-box
requirement-based test. The purpose of
the Test Subphase is to develop and
execute test cases that demonstrate that a
given software product meets software
requirements. This is application
dependent; application codes with
requirements to run on multiple
platforms will have tests associated with
this requirement.
Acceptable methods for evaluation of
test results. Test Subphase Table 8 and
associated discussion, Section 3.3.2.3.1.

e
e
e
e
e
e

e
e

e

0

a

e

a
a
e
e
a
e
e
e
e
e
e

e

e

e
e
a

a
e
e
e
e

a
0

e

0
a

0
a

a
56

a
a
a
a
a
a
a
e
a
0
e
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
e
a
a
e
a *
a
a
a
e
0
a

e

User Acceptance
Testing

Training

Applicability
Evaluation

Usability Evaluation

Code Confidence
Results Credibility

Verification methods
and techmques

57

The GP&G defmes User Acceptance.
testing as “ the activity of determining if
the work products satisfy the needs of
the intended user’s’’. The demonstration
that any type of requirement has been
met is an output of the Development
Phase and the purpose of Software
Verification. Section 3.2, Figure 2 and
Table 3. Software requirements include
“user” requirements-the requirements
the software is to satisfy. These will then
be “evaluated” by review of test cases
execution.

Any “usability” requirements will be
captured as appropriate in software
requirements. These will then be
“evaluated” by review of test cases
execution. The fulfillment of any type of
requirement. Section 3.2, Software
Verification.

Code confidence and results credibility
are goals, whch map to principles, then
guidelines. This deployment document
meets goals by mapping principles to
guidelines .
Section 3.5.4, Training.

Table 14. Mapping of Deployment Practices to Key Elements of Software Engineering

Project
Management

Guideline I Activities
Area

Mapping
Comments

Software
Engineering

Management

Life-Cycle
Management

Risk Control

Configuration
Management

Requirements
Management

Project Planning

Measurements
and Metrics
Reviews and
Assessments

u

Gathering, documenting, Section 3.5.1, Requirements
verifying, managing change Management and
to requirements

Statement of Work
Constraints and Goals
Implementation Plan
Resource Assessment

Section 3.3.1, Requirements Phase.

Section 3.4.1, Project Planning.

Process
Improvements

Training

Key Elements

Time-based work flow

Requirements, design,
construction, test, support
activities

Version Management
Issue Trackmg

Release Management
Software Products
Software Process
Management Reviews
Techmcal Reviews
Engineering Process
Baseline
Identified Improvements
Improvement
Implementation

Software practice methods
and techmques

Sandia National Laboratories ASCI
Applications Software Quality

Engineering Practices
Practices

Mapping
Comments

Glossary, Figure 3 and associated
discussion. Section 3.3, Tables 4-9.

Figure 3, Section 3.3.1, Requirements
Phase, Section 3.3.2.1, Design
Subphase; Section 3.3.2.2,
Implementation Subphase; Section
3.3.2.3, Test Subphase, and Section 3.5,
Support Elements.
Section 3.5.2, Configuration
Management and Section 3.3, Software
Engineering (introductory discussion).
Section 3.3.3. Release Phase
Section 4, Assessment Tool.

Glossary and Section 3.3, each
lifecycle phase.
Section 4, Assessment Tool.
Section 3.5.2, Configuration
Management.
Section 3.5.2, Issue Tracking practice.

Section 3.5.4, Training.

Table 15. Mapping of Deployment Practices to Key Elements of Project Management

I Risk I Risk Assessment I The GP&G defmes risk management as
“The activity of identifying, addressing,
and mitigating sources of risk before
they become threats to successful
completion of a project.” Section 3.4.3,
Risk Management.

58

a
a
a
a
a
a
a
e
a
e
e
a
a
a
e
a
a
a
a
a
e

a
a
a
a
a
a
a
a

a
a
a
a
a
e
a
a

a

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
a
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

Table 4, Assess feasibility.

59

Table 16 provides a mapping from the Sandia ASCI software quality program (this deployment
document and the GP&G) to QC-1. Although QC-1 was evaluated, and appropriate items passed
along to this document via the GP&G, this additional mapping is provided to emphasize the
importance of the standard to nuclear weapon work.

Table 16. Mapping of Deployment Practices to DOE/AL's QC-1

11. BASIC REQUIREMENTS
1.0 FUNDAMENTALS OF QUALITY

Quality is conformance to customer requirements and
expectations.

MANAGEMENT

Quality is enhanced by manufacturable, robust designs
supplemented by a process of continuous improvement
which focuses on the prevention of errors and reduction of
variability in processes, products, and services.

Quality is measured by the use of appropriate metrics to
assess its effectiveness in reducing operating costs,
increasing productivity, and keeping the total quality cost to
a minimum.

2.0 ORGANIZATION
The contractor shall establish and maintain a documented
quality system as a means of ensuring that product
conforms to specified requirements.

Management shall issue quality policy and delegate
administration and oversight of the quality system to a
responsible, independent, and authoritative element of the
organization with clear access to top management.

3.0 QUALITY MANAGEMENT
The quality system shall be documented and maintained,
with adequate provisions for internal checks and balances
and management involvement.

The system shall promote an environment that provides for
individual responsibility and accountability for quality.

The system shall be capable of objectively evaluating
quality effectiveness and implementing needed
improvements.

60

Customer requirements for software are
defined in the GP&G. See mapping from
the GP&G to this deployment document.

For software, the quality system is defined
in the GP&G and this deployment
document. Management oversight of the
software quality system is the responsibility
of the AQMC and ASCI management as
described in Section 2.0.

The description of the organization
management system, as it applies to criteria
other than software, is outside the scope of
the software dedovment document.
Internal checks of the software quality
system via the assessment tool are described
in Section 4. Management involvement in
the software quality system is described in
Section 2 .

Section 3.5.3, Engage in Record's
Management, " . . . Sandians their
responsibility in the creation, use,
maintenance, and disposition of records, to
provide training and support for the
implementation of best business practices
with regards to Sandia ASCI records."

Quality Management of program other then
software is outside the scope of this

e
0
e
e
e
e
e
e
e
e
e
e
e
e
a
e
e

e
e
e
e
0
e
e
e
e
e
e
e
e
e
e
0
e
e
e
0
0
0
e
e
e

e
e
e
e
e
e
e
e
e
e

e
e

e

e
e

e

e

a

a

3.1 CONTINUOUS IMPROVEMENT PROCESS
A quality improvement process which focuses on the
prevention of errors and the reduction of variability shall be
an integral part of the quality system.

This process should be tailored to fit site specific
operations.

3.2 PREVENTION VS. DETECTION
The quality system shall focus on the prevention of errors
and nonconformance and promote building quality into
products and processes.

Fundamental methods, such as design of experiments,
protowing, process capability studies, Pareto analyses, and
statistical process controls are examples of methods useful
to:
a. characterize processes;
b.
c.

d.

e.

continually reduce product and process variability;
identify and minimize unstable or error-prone
processes; and
provide early feedback of engineering and
manufacturing data to determine
the need for product or process changes.

3.3 QUALITY COSTS
The cost of nonconformance plus the cost o f conformance
and/or other appropriate metrics shall be utilized for
perfonnance measurement, problem identification, and
problem prevention.

4.0 TRAINING
A formal training and education program shall be
established for all personnel involved in assembly,
production, manufacturing, inspection, test, repair,
disassembly and adrmnistrative support activities. These
personnel shall be reevaluated at intervals not to exceed
three years. In addition, personnel performing special
processes shall require certification based on written
qualification/ certification procedures.

Appropriate records of training, qualification, certification
and reevaluation shall be maintained.

5.0 EARLY INVOLVEMENT
The organization responsible for design shall ensure that
production and quality requirements are incorporated in the
design Drocess as earlv as feasible. The desim Drocess shall

~ ~ ~~~

deployment document.

The lifecycle process (Figure 3 and Section
3) with reviews at each lifecycle phase,
establish a methodology to prevent software
errors.

Continuous process improvement as applied
to elements other then software is outside
the scope o f this deployment document.

Statistical process control is outside the
scope of this deployment document.

The description of the system to address the
definition, requirements, and control of
Quality costs is outside the scope of this
deployment document.

Training within the scope of software issues
is need based, as described in Section 3.5.4.
Other training is outside the scope of this
deployment document.

The description of the record system is
outside the scope of the software
deployment document. Software training
records maintained as part of ASCI records
program.
For software, design is subject to three
reviews: technical, quality, and
management. These reviews ensure that
reauirements are translated into the design.

61

ision 9
provide for the timely identification and evaluation of key
elements that are critical to program success and shall
provide an objective means to measure design, product,
process maturity, and production readiness.
6.0 ESTABLISHING AND VALIDATING

REQUIREMENTS
The following shall be applied to assure that the initiation
of research and development activities includes plans to
identify customer requirements and methods to meet those
requirements.

6.1 CUSTOMER REQUIREMENTS
There shall be a process for identifying both internal and
external customers and documenting their requirements,
including changes to requirements, and or verifying that
process outputs meet the established requirements.

6.2 PLANNING
A documented decision process shall be used to determine
which activities require formal plans, and shall include
quality plans applied to projects, functions, products, or
organizational entities.

Plans shall be kept current and shall include requirements,
milestones, responsibilities for performing the work,
identification of risks together with the means for
addressing them, and controls to be applied.

6.3 METRICS
Metrics to assess conformance to customer requirements
shall be developed and used to assure needed corrective
actions and improvement measures are taken at the proper
time.

111. PRODUCT QUALITY REQUIREMENTS
1.0 DESIGN DEFINITION
The design agency shall be responsible for design definition
of items under its responsibility.

Design documents shall incorporate performance
requirements and critical characteristics required for the
function, reliability, interchangeability, life, and safety of
the item.

The design and production agencies shall jointly assure that
design definition provides all necessary information that
requirements are clear, unambiguous, and conform to
standard engineering practices.

A system for qualifying, approving, and issuing design
documents. including changes. shall be established and

Management review, at each phase of the
lifecycle, ensures that commitments
(including customer requirements) have
been satisfied.

Outputs of any phase, including
Requirements Phase, are verified for
conformance to established reauirements.
Section 3.3.1 requires that all requirements
be identified, including customer
requirements (external) and derived
requirements (internal).

Project management is responsible for
planning, as described in Section 3.4.

Software metrics described in Section 3.1.4:
“It is strongly recommended that those who
are subject matter experts in the final
product be involved in specifying metrics
designed to increase product quality and
process productivity.”
Software design requirements are described
in Section 3.3.2.1. The descriptions of
other program design elements are outside
the scope of this deployment document.

Traceability from design back to
requirements is required. All requirements
must be translated into the design
document. All software artifacts, including
design, are reviewed for conformance to
commitments. All software artifacts,
including design documents, are subject to
change control.

a
a
a
a
a
0
a
a
a
a
a

62

followed.

Design documents shall be maintained in a manner that
assures items are procured, manufactured, inspected, tested,
and disassembled to the applicable design agency
requirements.

Procedures and responsibilities shall be established and
maintained to control, verify and provide for change to the
design of the product to assure that all requirements are
met.

Complete, current, and accurate records of product
d e f ~ t i o n shall be maintained.

2.0 INSTRUCTIONS AND PROCEDURES
A system whch provides and controls documented work
instructions for manufacturing, inspection, production and
acceptance testing, maintenance,
repair, assembly and disassembly shall be established.
These instructions shall be available to and followed by the
personnel performing the work.

The system shall assure that instructions and procedures are
adequate, accurate, current, and consistent with design
requirements.

3.0 DOCUMENT CONTROL
A documented system shall be established and maintained
to control all documents and data that relate to the
requirements of QC-1.

The system shall define responsibility for preparing,
reviewing, approving, and issuing documents which are
adequate, complete and correct.

The system shall assure that the latest applicable design
documents and change information are released,
implemented in a timely manner and specify effectively.

In research and development, instructions and procedures
may consist of dated and signed notes in a laboratory
manual.

4.0 PROCUREMENT
4.1 GENERAL
The procurement system shall ensure that purchased
product conforms to all specified requirements and that all
necessary documentation to establish conformance is
provided.

63

Sandia National Laboratories

Mapping I Tailoring Comments

Instructions for use ofcode may be required
as part of release. These instructions are
subject to review (technical, quality,
management). See Section 3.3.3. All
artifacts produced are reviewed for
consistency with requirements.

Other types of instructions are outside the
scope of this deployment document.

Document control is outside the scope of
this deployment document.

Procurement is outside the scope of this
deployment document.

DOE reserves the right to perform quality assurance
surveys and verification inspections at vendor and supplier
locations where production materials or services destined
for production application are rendered under a contractor's
purchase order (contract).

4.2 PROCUREMENT PLANNING
Procurement activities shall be planned and documented to
assure a systematic approach to the procurement process.

Procurement methods and organizational responsibilities
shall be defined.

The procurement system shall, as a minimum, address:
a.

b. selection of procurement sources;
c. bid evaluation and award;
d. assessment activities by purchaser;
e. control of nonconformance;
f.
g.
h. supplier's calibration program;
i. quality records;
j.

k. quality system.

procurement document preparation, review, and
control;

root cause and corrective action;
acceptance of items or services;

process for controlling and returning defective or
nonconforming material to the supplier; and

4.3 SUPPLIER ASSESSMENT
The purchaser shall select suppliers on the basis of
assessment of ability to meet requirements, including
quality requirements. The selection of suppliers shall be
based on t echca l reviews performed by the procuring
agency or upon evaluation of historical evidence. Suppliers
shall be monitored and evaluated with regard to the
effectiveness of their quality system and the quality of their
product. The nature and extent of control exercised by the
purchaser over the supplier shall depend upon the type of
product and the supplier's demonstrated performance.

4.4 PROCUREMENT DOCUMENTATION
Procurement documents shall require the supplier to have
an effective quality program. Procurement documents, at all
tiers, shall identify documentation, records to be submitted
or maintained, and specific retention times.
Procurement documents shall provide for access to the
supplier's facility and inspection records by the DOE and/or
the procuring agency.

4.5 RAW AND COMMERCIAL MATERIAL
Raw and commercial materials to be used in processing or
manufacturing of product shall be tested to determine

64

The description of the procurement
planning process is outside the scope of this
deployment document.

The description of how suppliers are
assessed (supplier assessment) is outside the
scope of th~s deployment document.

Procurement documentation is outside the
scope of this deployment document.

Raw and commercial material is outside the
scope of this deployment document.

0
a
a
a
a
a
0
a
i
a
a
a
c
a
a
a
0
e
a
a
a
a
a
0
a
a
c
a
a
a
0
e
a
0
a
0
a
a
a
0
a
a

e
e
a
e
e
a
e
e
e
e
e
a
e
e
a
e
e
a
e
a
a
e
e
e
a
e
e
a
e
e
e
e
a
a
a
e
e
e
e
a
a
e
a

A certificate of conformance is required for all weapons
and weapon related materials and hardware destined for
production activities, with the exception of raw and
commercial materials.

conformance to applicable specifications

scope of this deployment document.

5.0 IDENTIFICATION, CONTROL, AND STATUS OF

Methods shall be established for controlling the
identification and status of product throughout the product
life cycle until sanitization occurs.

ITEMS

The certificate of conformance must include the following:
a.

b.

c.

The certificate shall identify the procurement
requirements met by the supplier.
The certificate shall be signed or otherwise
authenticated by a person who
is responsible for th~s function and whose function and
position are described in the supplier's quality
assurance program.

The certification system, including the procedures to be
followed in filling out a certificate and the administrative
procedures for review and approval of the certificates, shall
be described in the supplier's quality assurance program.

Identification, control, and status of items
are outside the scope of this deployment
document.

Such certifications shall be periodically and independently
verified by at least one of the following methods, as
appropriate:
a. independent testing;
b. auditing;
c. testing to typical properties, if verifiable.

65

QC-1, Revision 9

Status shall be identified by using markings, authorized
stamps, tags, labels, routing cards, physical location or
other suitable means.

Unique tooling and fixtures shall be identified and
controlled.

Limited life materials/components shall be identified and
controlled to preclude use of expired items and provide for
efficient recall, if necessary.

Controls shall be established for materials designated for
destructive testing or special evaluation to prevent
inadvertent use/shipment.

Instructions for marking and labeling items shall be
established as necessary to adequately identify, maintain,
and preserve the items, including indication of the presence
of special environments or the need for special controls.

Software used to maintain material control during
automated production, inspection, or disassembly
operations shall demonstrate and assure control of
materials and material status.

6.0 CONTROL OF PROCESSES
Processes shall be characterized, documented, and
maintained under controlled conditions to minimize
productlprocess variability and to prevent nonconformance.

Proposed product and process changes throughout the
product life cycle shall be evaluated for their potential
impact on quality, producibility and maintainability prior to
incorporation.

Processes, including inspection, test, and acceptance
processes, shall be qualified jointly by design and
production agencies prior to their use for production and
acceptance unless the design agency exempts this
requirement.

The requirement for production process qualification and
characterization may be exempted if production quantities
are such that the process will not be repeated, or if
inspection and/or testing, including inspection and tests
performed on subsequent assemblies, provide adequate
assurance of quality.

~~~ ~ 

6.1 PROCESS CONTROL 
When production quantities allow, statistical techniques, 
such as statistical process control, process capability 

66 

Sandia National Laboratories 
ASCI Software Quality Program 

Mapping / Tailoring Comments 

Control of processes is outside the scope of 
tlxs deployment document. 

Process control is outside the scope of this 
deployment document. 

a 
e 
0 
e 
e 
e 
a 
a 
a 
a 
e 
e 
e 
a 
a 
e 
e 
0 
e 
a 
a 

a 

a 
a 
a 
a 
a 

e 

e 

* 
e 
e 
a 
a 
a 

a 

a 
a 
e 

e 
0 

e 



e 
e 
e 
e 
e 
e 
e 
e 
e 

e 
e 
e 
e 

e 
e 
e 
e 
e 
e 
0 
e 
e 
e 
e 
e 

e 
e 
e 
a 
e 
e 
e 
e 
e * 
e 
e 
e 

a 

e 

a 

a 

processes, and controls implemented to assure a high level 
of confidence in the control of product variability and to 
minimize nonconformances. 

QC-1 I Sandia National Laboratories 

7.0 INSPECTION, TEST, AND ACCEPTANCE 
Physical examination, inspection, measurement, or testing 
of material shall be accomplished under controlled 
conditions. Measurement uncertainty of the inspection 

Ma ailorin 

Inspection, test, and acceptance as it applies 
to non-software program elements, are 
outside the scope of t h s  depIoyment 
document. 

studies, and other preventative measures, shall be utilized to 
assure continuous control over production processes and to 
identify and continually reduce variability. 

Criteria for workmanshp shall be stipulated, to the extent 
practical, in written standards or by means of representative 
standards. 

Methods shall be established to assure conformance to 
requirements through qualification and control of 
equipment, procedures, and/or personnel training. 
Evidence of certifications/qualifications of personnel, 
procedures, and equipment shall be maintained. 

When automated manufacturing systems are used as the 
method of acceptance, they shall be designed, validated, 
qualified, controlled, and monitored sufficiently to protect 
product quality such that the completion of the automated 
operation may be accepted as objective evidence of 
conformance to requirements. 

When fixtures, molds, and other such tooling are used as 
the method of acceptance, they shall be certified prior to 
release for use. 

These devices shall be controlled and recertified at 
established intervals. 

Product acceptance activities shall be performed to assure 
compliance to applicable drawings and specifications. 
When material requires modification, repair, or replacement 
after product acceptance, there shall be witnessing or 
verification of the modification, repair, or replacement and 
reverification of any affected characteristics prior to 
reacceptance. 

67 



3thenvise approved by the design agency and shall afford a 
sound statistical basis to ensure product quality. 

rest plans for research and development testing programs 
shall be developed and documented for major activities. 
The methodologies used to establish test plans shall be 
adequate to provide confidence in the results. 

8.0 CONTROL OF MEASURING AND TEST 

A standards and calibration program shall be maintained for 
the purpose of comparing measuring and test equipment 
with calibration standards of suitable range and accuracy. 
Standards and measurement devices shall be certified for 
use in compliance with the requirements of the AL 
Appendix 56XJ3, Development and Production Manual, 
Chapter 8.4. 

9.0 HANDLING, STORAGE, PACKAGING AND 

Procedures, controls, and facilities shall be maintained to 
assure that handling, storage, packaging, and shipping 
operations comply with requirements and prevent damage, 
deterioration, loss, or substitution. 

EQUIPMENT 

DELIVERY 

9.1 GOVERNMENT FURNISHED MATERIAL 
Material shipped interproject from one contractor's 
responsibility to another will be provided as Government 
Furnished Material. Such DOE accepted material 
is inspected only for shipping and handling damage by the 
receiving contractor unless there are valid reasons for 
requiring additional tests or inspections. Discrepancies 
noted during assembly or normal handling will be given 
proper evaluation and disposition. Discrepancies will be 
reported to the responsible contractor through the DOE. 

~ ~~~ 

9.2 DOE ACCEPTED MATERIAL 
Once material is accepted by the DOE, it is considered to be 
property of the DOE and under its management control. 
DOE shall be notified when accepted material is issued 
from stores for purposes different from the original intent. 
DOE shall also be notified when accepted material is issued 
to perform additional evaluation, inspection, or rework. 

The agency shall describe the need for the material and the 
methods that will be used for processing. Any speciaI 
handling, storage, processing or evaluation of DOE 
accepted material must be approved by DOE prior to 

Control of measuring and test equipment is 
outside the scope of this deployment 
document. 

Handling, storage, packaging and delivery 
are outside the scope of this deployment 
document. 

Government furnished material is outside 
the scope of this deployment document. 

DOE accepted material is outside the scope 
of this deployment document. 

68 



e 
e 
a 
e 
e 
e 
a 
e 
e 
e 
0 
e 
e 
0 
e 
e 
e 
e 
e 

e 
a 
e 
m 
e 
a 

e 
e 
e 
e 
a 

e 
e 
0 

a 
e 
e 

e 

a 

a 

e 

a 

12.0 RECORDS 
Documented procedures shall be established and 
maintained for identification, collection, organization, 

Qc-1 . Sandia National Laboratories 
ASCI Software Quality Program 

Mapping / Tailoring Comments QC-1, Revision 9 

The description of the record system is 
outside the scope of this deployment 
document. Software records, as 

10.0 CONTROL OF NONCONFORMING ITEMS 
Procedures shall be established and maintained to ensure 
that material, which does not conform to requirements, is 
prevented from inadvertent use, shpment or installation. 
Control of nonconforming items shall provide for 
identification, documentation, evaluation, preservation, 
segregation, and disposition, as well as notification to the 
organization concerned. 

There shall be timely disposition of nonconforming 
material with corrective action and root cause reporting to 
evaluate possible product or process improvement and any 
impact on previously produced product and to minimize the 
probability of recurrence. 

This activity shall be commensurate with the 
complexity and the risk associated with failure of the 
product to meet established requirements. 

The responsibility for review and the authority for 
disposition of nonconforming material shall be defined and 
documented. Nonconforming material may be authorized 
for "use as is" by the responsible design agency. Repair, 
rework, or evaluation of nonconforming items shall be 
performed in accordance with documented procedures 
approved by the design agency. 

11.0 CORRECTIVE ACTION 
Procedures for production related activities shall be 
established, documented and maintained to: 
a. 

b. 

determine the root cause of nonconforming product and 
the corrective action needed to prevent recurrence; 
analyze all processes, work operations, quality records, 
and reports to detect and eliminate potential causes of 
nonconformance; 

c. initiate preventative actions to deal with problems at a 
level corresponding to the risk encountered; 

d. apply controls to ensure corrective actions are taken 
and that they are effective; 

e. implement and record changes to procedures resulting 
from corrective action. 

Any previously produced product with the same conditions 
shall be identified and disposition shall be provided. 
Corrective action for research and development operations 
may be included as noted changes to experiments 
documented in a laboratory manual consistent with 
requirements in paragraph 3.0, Section 111. 

control of nonconforming items is outside 
the scope of this deployment document. 

Corrective action is outside the scope of this 
deployment document. 

69 



iling, storage, maintenance, retrieval, distribution, retention 
md retirement of records that furnish objective evidence of 
pality . 
iecords shall be complete, identifiable, and shall be 
rppropriately stamped, initialed, signed and dated by 
iuthorized personnel, or otherwise authenticated in order to 
)e considered valid. Authentication may include a 
;tatement which clearly identifies the responsible person or 
xganization. 

Records may be original, copies or electronic. Quality 
records shall be maintained to demonstrate achievement of 
$e quality requirements and effective operation of the 
quality system. Pertinent supplier quality records shall be 
m element of these quality records. 

All quality records shall be legible and stored such that they 
3re readily retrievable in facilities that provide a suitable 
:nvironment to minimize deterioration or damage and to 
prevent loss. Retention shall comply with DOE 
Order 1324.5B, Records Management Program. 

Procurement, production, inspection, acceptance testing, 
repair and disassembly documentation that provides 
traceability to identify product and its origin shall be 
maintained. Such records are required to: 
a. 

b. 

c. 

certify material quality and provide substantiating 
evidence; 
identify materials and components contained in the 
final product; 
provide identification of production and inspection 
operations performed on product to help preclude 
improper processing or use; 
provide for timely recall of suspect product; 
provide data with which to analyze perfonnance 
problems and take timely corrective action; 
provide identification of disassembly performed to help 
preclude improper processing or disposition. 

d. 
e. 

f. 

13.0 AUDITS 
An assessment program shall be established and 
documented to independently determine compliance with 
requirements and verify the effectiveness of the quality 
system. Assessments shall be performed in accordance with 
written procedures or checklists. 

Assessments shall be scheduled on the basis of the status, 
quality history and importance ofthe activity and shall be 
planned to provide coverage and coordination with ongoing 
quality program activities. 

Assessment results shall be documented and brought to the 

70 

tional Laboratories 

appropriate, will be subject to record system 
requirements as described in Section 3.5.2, 
Configuration Management. 

Software assessments are described in 
Section 4. The description of other types of 
program assessments are outside the scope 
of this deployment document. 



a 
a 
a 

a 
a 
a 
a 
a 
a 

a 
a 
a 
e 
a 

e 
e 

e 
0 
0 

e 
e 

0 
0 
0 
e 
a 
a 
e 
0 
0 
0 
0 
e 
0 
0 
0 
a 
a 
a 
e 
a 
e 
e 

attention of personnel having responsibility for the 
aredprocess assessed. Deficiencies and noncompliance’ s 
identified shall have root cause determination and 
:orrection. 

This activity shall be commensurate with the complexity 
and the risk associated with failure of the product to meet 
established requirements. 

Technical reviews for research and development shall 
employ design reviews, peer reviews, objective “second 
L o o ~ s ” ,  or other equivalent methods. These reviews shall be 
formal, periodic, and utilized as independent assessments. 
These processes shall be documented. 

14.0 SOFTWARE QUALITY ASSURANCE 
A software quality assurance program shall be established 
that provides assurance that software is consistent with 
applicable specifications. 

&&r preventionand software engineering principles shall 
be applied to software acquisition, development, use, and 
maintenance. 

Software quality assurance activities shall be commensurate 
with the complexity and the risk associated with failure of 
the software to meet established requirements. 

The program shall include weapon or weapon-related 
software that: 
9 

8 

8 

8 

8 

controls the function of weapon and weapon-related 
components; 
controls design or design verification; 
controls production processes or equipment; 
controls testing or inspection processes or equipment; 
controls calibration of standards and measurement 
devices; or 
provides analysis capability to determine product 
acceptability. 

8 

The program shall address all elements of QC-1 as they 
apply to the software component 

Sandia National Laboratories 
ASCI Software Quality Program 

Mapping I Tailoring Comments 

A definition of Software Verification is in 
this deployment document. 

The lifecycle approach applies to all 
software falling within the scope of this 
deployment document. 

The scope of the GP&G and this 
deployment document. Graded approach. 
Software verification testing demonstrates 
compliance with established requirements. 
The scope of the GP&G and this 
deployment document. 

The ASCIsoftware V&V program consists 
of a number of interrelated documents that 
implement the elements of QC-1 as applied 
to software. This deployment document 
implements a subsection of those elements 
of QC- 1 that apply to software per the scope 
section and tailoring described in the 
GP&G. 

71 



Appendix C: Assessment Checklist 
A blank checklist begins on the next page. 

72 

e 
a 
a 

a 

a 
a 
a 
a 

a 
a 
e 
0 

e 
e 
e 
e 
e 
0 

0 

e 
e 

a 

a 

a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 

a 
a 

0 

0 

e 
e 

a 
e 



e 
e 
e 
e 
e 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
0 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 

e 
e 

a 

e 

e 

Assessment Checklist for ASCI Apps Software 
Development Areas 

(1) Application Name: 

Application Class: 
Assessment Date: 

(2) 
A S C I  
Management 
Requires: 

Practice 

1 3=Fully 
Z=Partially 
1-Plan to 

Section 3.3.1 
lb. Derive software requirements. 

Section 3.3. I 
IC. Document software 

requirements. 
Section 3.3.1 

Id. Assess feasibility, if applicable, 
and generate estimates for 
budget, resources, etc. 

Section 3.3.1 
le. Establish acceptance criteria 

based on requirements. 
Section 3.3.1 

(3) 
Code 
Team 
Evaluation 

3-Fully 
Z=Partially 
l=Plan to 
O=Not 
addressed 
NA - not 
applicable 

If. Determine necessary links to 
other layers of requirements, 
code, and tests. 

Section 3.3. I 
1 g. Ensure requirements traceability 

to other product artifacts 
throughout subsequent software 
phases. 

Section 3.3.1 
1 h. Review and approve 

requirements artifacts. 
Section 3.3. I 

2. Development: Design Subphase 
2a. Derive the design. 

Section 3.3.2.1 

73 

(4) 
Assessment 
Team 
Evaluation: 

3=Fully 
E-Part ially 
l=Plan t o  
O=Not 
addressed 
NA - not 
applicable 

(5) 
CommentsEvidence for  
Code Team or 
Assessment Team 

Use this area to explain why N A  
is selected as a response to 
columns (3) or  (4) and to 
demonstrate evidence for other 
responses as needed. 



~~ ~ 

(1) Application Name: 

Application Class: 
Assessment Date: 

2b. Communicate the design to the 
team. 

Section 3.3.2.1 
2c. Document the design. 

Section 3.3.2.1 
2d. Evaluate impact to requirements. 

Section 3.3.2.1 
2e. Plan for testing: initiate 

development of test plan. 
Section 3.3.2.1 

2f. Review and approve design 
artifacts. 

Section 3.3.2.1 
3. Development: Implementation 

3a. Evaluate impact of 
implementation to design and 
requirements. 

Subphase 

Section 3.3.2.2 
3b. Translate design into code and 

other software product artifacts. 
Section 3.3.2.2 

3c. Communicate issues with 
requirementsldesign team and 
developers. 

Section 3.3.2.2 
3d. Review and approve 

implementation artifacts. 

4. Development: Test Subphase 
4a. Finalize test plan. 

4b. Execute test cases found in test 
plan. 

Section 3.3.2.2 

Section 3.3.2.3 

Section 3.3.2.3 

acceptance criteria defined in test 
plan. 

Section 3.3.2.3 

Section 3.3.2.3 

4c. Review test case output using 

4d. Document test case results. 

(2) 
ASCI 
Management 
Requires : 

(3) 
Code 
Team 
Evaluation 

(4) 
Assessment 
Team 
Evaluation: 

(5) 
Comments/Evidence for  
Code Team or 
Assessment Team 

74 



e 
e 
e 
e 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

e 
e 
e 
e 

e 
e 
e 
e 
a 
e 
e 
e 
e 
e 
a 

e 
e 
e 
e 
e 

e 

a 

e 

e 

a 

a 

a 

(1) Application Name: (2) (3) (4) 
A S C I  Code Assessment 

Application Class: 
Assessment Date: 

Management Team 
Requires: Evaluation Evaluation: I I Team 

le. Retest updated software if 
acceptance criteria are not 
satisfied. 

Section 3.3.2.3 
lf. Review and approve Test 

Subphase outputs. 
Section 3.3.2.3 

5. Release Phase 
5a. Receive and evaluate release 

request. 
Section 3.3.3 

Section 3.3.3 

Section 3.3.3 

Section 3.3.3 

5b. Plan and develop release. 

5c. Review and approve release. 

5d. Create and distribute release. 

5e. Support release, as agreed wth  I I I customer. 

75 



(1) Application Name: 

Application Class: 
Assessment Date: 

9. Requirements Management 
9a. Conduct requirements tracing. 

9b. Determine requirements 
Section 3.5. I 

ownership and status tracking. 

10. Configuration Management 
loa. Conduct issue tracking of 

software product artifacts, 
including requlrements. 

lob. Perform version control of 
software product artifacts, 
including requirements. 

Section 3.5. I 

Section 3.5.2 

Section 3.5.2 
1Oc. Perform release and distribution 

Section 3.5.2 
management. 

10d. Engage in ASCI records 
management. 

Section 3.5.2 
11. Third Party Software 
1 la. Accept third party software and 

libraries into the application 
code domain. 

Section 3.5.3 
1 lb. Install, integrate, & control the 

accepted third party software. 
Section 3.5.3 

12. Training 
12a. Train appropriate project members 

in use of project management and 
project traclung and oversight 
processes. 

Section 3.5.4 

(2) 
ASCI 
Management 
Requires: 

(3) 
Code 
Team 
Evaluation 

12b. Train staff on activities necessary 
for producing software artifacts. 

Section 3.5.4 
12c. Train staff on use of software 

tools. 
Section 3.5.4 

76 

(4) 
Assessment 
Team 
Evaluation : 

(5) 
Comments/Evidence for 
Code Team or 
Assessment Team 

a 
e 
e 
e 
e 
a 
a 
e 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
0 
e 
e 
e 
e 
a 
e 
e 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 
a 
e 
e 



a 
a 

a 
a 
a 

a 

a 
e 

e 
a 
e 
e 
a 
e 

a 
a 
e 
e 

a 

a 
a 
a 

a 
a 

a 

a 

e 
e 

e 

e 
a 

e 
e 
e 
e 
a 
a 
a 
a 

a 

e 
e 

(1) Application Name: 

Application Class: 
Assessment Date: 

12d. Train staff on software processes 
and their implementation. 

Section 3.5.4 
12e. Train staff on software 

verification process and 
techniques. 

Section 3.5.4 

(2) 
ASCI 
Management 
Requires: 

12 
47 

(3) 
Code 
Team 
Evaluation 

(4) 
Assessment 
Team 
Evaluation: 

~ ~~ 

(5) 
Comments/Evidence for 
Code Team or 
Assessment Team 

77 



Appendix D: Summary of Changes 
This summarizes the changes from Version 1 to Version 2 of this document. 

Section 1.2: Clarify the purpose of the AQMC and the responsibilities of ASCI 
management. 

Table 1 : Renamed ALEGRA framework to NEVADA. Removed the VIPAR code. 

Table 2: Clarified list of practices for class ‘A’ codes. 

Section 2: Revised and clarified AQMC and ASCI management responsibilities. The 
AQMC is a policy and strategy body rather than a ‘hands-on’ management body. The 
ASCI management implements the policy and strategy. 

Section 3.3.1 : Table 4: The ‘Derive software requirements’ practice is split into two 
practices, ‘Gather user requirements’ and ‘Derive software requirements’. Update body 
of this section to reflect changes in practices. 

Section 3.3.2.2: Change the two practices ‘Translate design into code and other software 
product artifacts’, and ‘Evaluate impact of implementation to design and requirements’ to 
‘Evaluate impact of implementation to design and requirements’ and ‘Translate design 
into code and other software product artifacts.’ Change the body of this section to reflect 
changes in the practices. 

Section 4: Change the text to reflect that the ASCI management rather than the AQMC 
will update the assessment tool. 

Checklist: Column 2 header is changed from ‘AQMC Requires’ to ‘ASCI Management 
Requires’. The ‘Derive software requirements’ practice is split into two practices, ‘Gather 
user requirements’ and ‘Derive software requirements’. 

References: Added ASP 13-1, Version 1 and SAND2002-2064. 

Appendix A: Added definition for ‘best practices’ and ‘system requirements’ 

Appendix C: Column 2 header is changed from ‘AQMC Requires’ to ‘ASCI 
Management Requires’. The ‘Derive software requirements’ practice is split into two 
practices, ‘Gather user requirements’ and ‘Derive software requirements’. 

78 

e 
a 
e 
e 
e 

e 
e 
e 
e 
e 
a 
e 
e 
e 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 
e 
e 
a 
e 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

e 

e 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 
a 
e 
e 

e 

e 
e 
e 
e 
e 
a 
e 
e 
e 
a 

e 
e 

a 

a 

a 

a 

a 
a 
a 

a 

a 
a 
a 

Distribution: 

MS 0612 
MS 9018 
MS 0899 Technical Library (2) 

Review and Approval (1) 
Central Technical Files (1) 

79 




	030962.pdf
	Abstract
	Acknowledgements
	Table of Contents
	Executive Summary
	Commitment
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Scope
	1.4 Graded Approach

	2 ASCI Management Responsibilities
	3 Software Quality Engineering Practices
	3.1 Document Organization
	3.2 Software Verification
	3.3 Software Engineering
	3.4 Project Management
	3.5 Support Elements

	4 Assessment Tool & Gap Analysis
	References
	Appendix A: Glossary and Acronyms
	Appendix B: Mapping and Tailoring Methods
	Appendix C: Assessment Checklist
	Appendix D: Summary of Changes


