Development of a combustion technology for ultra-low emission (< 5 ppm nox) industrial burner

PDF Version Also Available for Download.

Description

A combustion concept to achieve ultra-low emissions (NO{sub x} {le} 2 ppm and CO {le} 20 ppm) was tested on an 18 kW low swirl burner (LSB). It is based on lean premixed combustion combined with flue gas recirculation (FGR) and partially reformed natural gas (PRNG). Flame stability and emissions were assessed as a function of {phi}, FGR, and PRNG. The results show that PRNG improves flame stability and reduces CO, with no impact on NO{sub x} at {phi} = 0.8. A 1D flame simulation satisfactorily predicted prompt NO{sub x} at lean conditions with high FGR. Two catalysts were tested ... continued below

Physical Description

18 pages

Creation Information

Littlejohn, D.; Majeski, A.J.; Cheng, R.K. & Castaldini, C. November 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A combustion concept to achieve ultra-low emissions (NO{sub x} {le} 2 ppm and CO {le} 20 ppm) was tested on an 18 kW low swirl burner (LSB). It is based on lean premixed combustion combined with flue gas recirculation (FGR) and partially reformed natural gas (PRNG). Flame stability and emissions were assessed as a function of {phi}, FGR, and PRNG. The results show that PRNG improves flame stability and reduces CO, with no impact on NO{sub x} at {phi} = 0.8. A 1D flame simulation satisfactorily predicted prompt NO{sub x} at lean conditions with high FGR. Two catalysts were tested in a prototype steam reformer, and the results were used to estimate reactor volume and steam requirements in a practical system. An advanced Sud Chemie catalyst displayed good conversion efficiency at relatively low temperatures and high space velocities, which indicates that the reformer can be small and will track load changes. Tests conducted on the LSB with FGR and 0.05 PRNG shows that boilers using a LSB with PRNG and high FGR and {phi} close to stoichiometry can operate with low emissions and high efficiency.

Physical Description

18 pages

Notes

OSTI as DE00810477

"This work was supported by the U.S. Department of Energy, Office of Industrial Technology and by the California Institute of Energy Efficiency through the U.S. Department of Energy..."

Source

  • 29th International Symposium on Combustion, Sapporo (JP), 07/21/2002--07/26/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--48881
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 810477
  • Archival Resource Key: ark:/67531/metadc737056

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 12:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 19

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Littlejohn, D.; Majeski, A.J.; Cheng, R.K. & Castaldini, C. Development of a combustion technology for ultra-low emission (< 5 ppm nox) industrial burner, article, November 1, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc737056/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.