Constraining hydrologic models using thermal analysis

PDF Version Also Available for Download.

Description

Starting with regional geographic, geologic, hydrologic, geophysical, and meteorological data for the Tono area in Gifu, Japan, we develop a numerical model to simulate subsurface flow and transport in a 4 km by 6 km by 3 km thick fractured granite rock mass overlain by sedimentary layers. Individual fractures are not modeled explicitly. Rather, continuum permeability and porosity distributions are assigned stochastically, based on well-test data and fracture density measurements. The primary goal of the study is to simulate steady-state groundwater flow through the site, then calculate travel times to the model boundaries from specified monitoring points. The lateral boundaries ... continued below

Physical Description

vp.

Creation Information

Doughty, Christine & Karasaki, Kenzi December 12, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Starting with regional geographic, geologic, hydrologic, geophysical, and meteorological data for the Tono area in Gifu, Japan, we develop a numerical model to simulate subsurface flow and transport in a 4 km by 6 km by 3 km thick fractured granite rock mass overlain by sedimentary layers. Individual fractures are not modeled explicitly. Rather, continuum permeability and porosity distributions are assigned stochastically, based on well-test data and fracture density measurements. The primary goal of the study is to simulate steady-state groundwater flow through the site, then calculate travel times to the model boundaries from specified monitoring points. The lateral boundaries of the model follow topographic features such as ridgelines and rivers. Assigning lateral boundary conditions is a major point of uncertainty in model construction. We evaluate two models with opposing boundary conditions: mostly closed and mostly open boundaries. The two models show vastly different spatial distributions of groundwater flow, so we would like to find a means of choosing the more realistic model. Surface recharge is much larger for the closed model, but field recharge data are of too limited spatial extent to provide a definitive model constraint. Temperature profiles in 16 boreholes show consistent trends with conduction-dominated (linear) temperature profiles below depths of about 300 m. The open and closed models predict strongly different temperature versus depth profiles; with the closed model showing a strong convective signature produced by widespread surface recharge effects to the depth. The open model shows more linear temperature profiles, better agreeing with measurements from the field. Based on this data we can eliminate from consideration the closed model, at least in its present form in which surface recharge penetrates deep into the model.

Physical Description

vp.

Notes

OSTI as DE00816791

Source

  • Rock Mechanics Symposium, Tokyo (JP), 01/23/2003--01/24/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--53828
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 816791
  • Archival Resource Key: ark:/67531/metadc737038

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 12, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 3:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Doughty, Christine & Karasaki, Kenzi. Constraining hydrologic models using thermal analysis, article, December 12, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc737038/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.