Fracture and fatigue properties of Mo-Mo{sub 3}Si-Mo{sub 5}SiB{sub 2} refractory intermetallic alloys at ambient to elevated temperatures (25-1300 degrees Centigrade)

PDF Version Also Available for Download.

Description

The need for structural materials with high-temperature strength and oxidation resistance coupled with adequate lower-temperature toughness for potential use at temperatures above {approx} 1000 degrees C has remained a persistent challenge in materials science. In this work, one promising class of intermetallic alloys is examined, namely boron-containing molybdenum silicides, with compositions in the range Mo (bal), 12-17 at. percentSi, 8.5 at. percentB, processed using both ingot (I/M) and powder (P/M) metallurgy methods. Specifically, the oxidation (''pesting''), fracture toughness and fatigue-crack propagation resistance of four such alloys, which consisted of {approx}21 to 38 vol. percent a-Mo phase in an intermetallic matrix ... continued below

Physical Description

vp.

Creation Information

Choe, Heeman; Schneibel, J.H. & Ritchie, R.O. August 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The need for structural materials with high-temperature strength and oxidation resistance coupled with adequate lower-temperature toughness for potential use at temperatures above {approx} 1000 degrees C has remained a persistent challenge in materials science. In this work, one promising class of intermetallic alloys is examined, namely boron-containing molybdenum silicides, with compositions in the range Mo (bal), 12-17 at. percentSi, 8.5 at. percentB, processed using both ingot (I/M) and powder (P/M) metallurgy methods. Specifically, the oxidation (''pesting''), fracture toughness and fatigue-crack propagation resistance of four such alloys, which consisted of {approx}21 to 38 vol. percent a-Mo phase in an intermetallic matrix of Mo3Si and Mo5SiB2 (T2), were characterized at temperatures between 25 degrees and 1300 degrees C. The boron additions were found to confer superior ''pest'' resistance (at 400 degrees to 900 degrees C) as compared to unmodified molybdenum silicides, such as Mo5Si3. Moreover , although the fracture and fatigue properties of the finer-scale P/M alloys were only marginally better than those of MoSi2, for the I/M processed microstructures with coarse distributions of the a-Mo phase, fracture toughness properties were far superior, rising from values above 7 MPa sqrt m at ambient temperatures to almost 12 MPa sqrt m at 1300 degrees C.

Physical Description

vp.

Source

  • Journal Name: Metallurgical and Materials Transactions A; Journal Volume: 34; Journal Issue: 2; Other Information: Journal Publication Date: Feb. 2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--50131
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 821018
  • Archival Resource Key: ark:/67531/metadc737037

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 4:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Choe, Heeman; Schneibel, J.H. & Ritchie, R.O. Fracture and fatigue properties of Mo-Mo{sub 3}Si-Mo{sub 5}SiB{sub 2} refractory intermetallic alloys at ambient to elevated temperatures (25-1300 degrees Centigrade), article, August 1, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc737037/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.