FINAL REPORT

PDF Version Also Available for Download.

Description

In this program the teams at Penn State University (PSU), Sandia National Laboratories (SNL), DCH Technology (DCHT), and Air Products and Chemicals Inc. (APCI), have aggressively pursued engineering solutions to eliminate barriers to solid-state chemiresistor hydrogen sensor technology. The metallurgical effects of alloying palladium with nickel have been shown to prevent phase transitions in the thin films at high H2 overpressures, making the devices more suitable for IOF process conditions. We investigated the use of thin, semi-permeable membranes that protect the catalytic surface from poisoning or other undesirable surface reactions that would otherwise reduce sensitivity or operability in harsh IOF ... continued below

Creation Information

Horn, Mark W; McDaniel, Anthony & Schweighardt, Frank K May 23, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In this program the teams at Penn State University (PSU), Sandia National Laboratories (SNL), DCH Technology (DCHT), and Air Products and Chemicals Inc. (APCI), have aggressively pursued engineering solutions to eliminate barriers to solid-state chemiresistor hydrogen sensor technology. The metallurgical effects of alloying palladium with nickel have been shown to prevent phase transitions in the thin films at high H2 overpressures, making the devices more suitable for IOF process conditions. We investigated the use of thin, semi-permeable membranes that protect the catalytic surface from poisoning or other undesirable surface reactions that would otherwise reduce sensitivity or operability in harsh IOF process environments. The results of this project have provided new insight into the effects of metallurgy and protective coatings on device behavior, and open new avenues for research in this field. Commercialization of this sensor technology could be easily achieved, although not yet realized. The benefits to society, once this technology is commercialized, is a dramatic cost and energy savings to the industry, which employs these sensors. In addition, the fundamental understandings gained in this program could have an impact on both cost and safety in the future hydrogen economy utilizing hydrogen fuel cells and hydrogen storage.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/CH11031
  • Grant Number: FC07-00CH11031
  • DOI: 10.2172/811178 | External Link
  • Office of Scientific & Technical Information Report Number: 811178
  • Archival Resource Key: ark:/67531/metadc736870

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 23, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 6, 2017, 2:01 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Horn, Mark W; McDaniel, Anthony & Schweighardt, Frank K. FINAL REPORT, report, May 23, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc736870/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.