Analysis of the vaporization barrier above waste emplacement drifts

PDF Version Also Available for Download.

Description

Prediction of the amount of water that may seep into the waste emplacement drifts is an important aspect of assessing the performance of the proposed geologic nuclear waste repository at Yucca Mountain, Nevada. The repository is to be located in thick, partially saturated fractured tuff that will be heated to above-boiling temperatures as a result of heat generation from the decay of nuclear waste. Since water percolating down towards the repository will be subject to vigorous boiling for a significant time period, the superheated rock zone (i.e., rock temperature above the boiling point of water) can form an effective vaporization ... continued below

Physical Description

vp.

Creation Information

Birkholzer, Jens; Mukhopadhyay, Sumit & Tsang, Yvonne February 3, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Prediction of the amount of water that may seep into the waste emplacement drifts is an important aspect of assessing the performance of the proposed geologic nuclear waste repository at Yucca Mountain, Nevada. The repository is to be located in thick, partially saturated fractured tuff that will be heated to above-boiling temperatures as a result of heat generation from the decay of nuclear waste. Since water percolating down towards the repository will be subject to vigorous boiling for a significant time period, the superheated rock zone (i.e., rock temperature above the boiling point of water) can form an effective vaporization barrier that reduces the possibility of water arrival at emplacement drifts. In this paper, we analyze the behavior of episodic preferential flow events that penetrate the hot fractured rock, and we evaluate the impact of such flow behavior on the effectiveness of the vaporization barrier.

Physical Description

vp.

Notes

INIS; OSTI as DE00809293

Source

  • 10th International High-Level Radioactive Waste Management Conference, Las Vegas, NV (US), 03/30/2003--04/03/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--51539
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 809293
  • Archival Resource Key: ark:/67531/metadc736782

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 3, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 2:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Birkholzer, Jens; Mukhopadhyay, Sumit & Tsang, Yvonne. Analysis of the vaporization barrier above waste emplacement drifts, article, February 3, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc736782/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.