The Effects of Moisture on LiD Single Crystals Studied by Temperature Programmed Reaction

PDF Version Also Available for Download.

Description

Temperature programmed reaction (TPR) technique was performed on LiOH powders and LiD single crystals previously exposed to different moisture levels. Our results show that the LiOH decomposition process has an activation energy barrier of 30 to 33.1 kcal/mol. The LiOH structure is stable even if kept at 320 K for 100 years. However, LiOH structures formed on the surface of LiD during moisture exposure at low dosages may have multiple activation energy barriers, some of which may be much lower than 30 kcal/mol. We attribute the lowering of the activation energy barrier for the LiOH decomposition to the existence of ... continued below

Physical Description

917 Kilobytes pages

Creation Information

Dinh, L.; Balooch, M.; Cecala, C.M. & Leckey, J.H. September 14, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Temperature programmed reaction (TPR) technique was performed on LiOH powders and LiD single crystals previously exposed to different moisture levels. Our results show that the LiOH decomposition process has an activation energy barrier of 30 to 33.1 kcal/mol. The LiOH structure is stable even if kept at 320 K for 100 years. However, LiOH structures formed on the surface of LiD during moisture exposure at low dosages may have multiple activation energy barriers, some of which may be much lower than 30 kcal/mol. We attribute the lowering of the activation energy barrier for the LiOH decomposition to the existence of dangling bonds, cracks, and other long range disorders in the LiOH structures formed at low levels of moisture exposure. These defective LiOH structures may decompose significantly over the next 100 years of storage even at room temperature. At high moisture exposure levels, LiOH.H{sub 2}O formation is observed. The release of H{sub 2}O molecules from LiOH.H{sub 2}O structure has small activation energy barriers in the range of 13.8 kcal/mol to 16.0 kcal/mol. The loosely bonded H{sub 2}O molecules in the LiOH.H{sub 2}O structure can be easily pumped away at room temperature in a reasonable amount of time. Our experiments also suggest that handling LiD single crystals at an elevated temperature of 340 K or more reduces the growth rate of LiOH and LiOH.H{sub 2}O significantly. Therefore, a proposed way of minimizing hydrogen formation (due to H{sub 2}O reaction with LiD) in a closed system containing LiOH in the presence of LiD may be to handle LiD at a slightly, elevated temperature during the assembly.

Physical Description

917 Kilobytes pages

Source

  • 23rd Aging, Compatibility and Stockpile Stewardship Conference, Livermore, CA (US), 11/14/2000--11/16/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-140650
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 791077
  • Archival Resource Key: ark:/67531/metadc736737

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 14, 2000

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 1:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Dinh, L.; Balooch, M.; Cecala, C.M. & Leckey, J.H. The Effects of Moisture on LiD Single Crystals Studied by Temperature Programmed Reaction, article, September 14, 2000; California. (digital.library.unt.edu/ark:/67531/metadc736737/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.