Bending Effects in the Frictional Energy Dissipation in Lap Joints

PDF Version Also Available for Download.

Description

Frictional energy dissipation in joints is an issue of long-standing interest in the effort to predict damping of built up structures. Even obtaining a qualitative understanding of how energy dissipation depends on applied loads has not yet been accomplished. Goodman postulated that in harmonic loading, the energy dissipation per cycle would go as the cube of the amplitude of loading. Though experiment does support a power-law relationship, the exponent tends to be lower than Goodman predicted. Recent calculations discussed here suggest that the cause of that deviation has to do with reshaping of the contact patch over each loading period.

Physical Description

16 pages

Creation Information

HEINSTEIN, MARTIN W. & SEGALMAN, DANIEL J. January 1, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Frictional energy dissipation in joints is an issue of long-standing interest in the effort to predict damping of built up structures. Even obtaining a qualitative understanding of how energy dissipation depends on applied loads has not yet been accomplished. Goodman postulated that in harmonic loading, the energy dissipation per cycle would go as the cube of the amplitude of loading. Though experiment does support a power-law relationship, the exponent tends to be lower than Goodman predicted. Recent calculations discussed here suggest that the cause of that deviation has to do with reshaping of the contact patch over each loading period.

Physical Description

16 pages

Source

  • Other Information: PBD: 1 Jan 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2002-0083
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/793221 | External Link
  • Office of Scientific & Technical Information Report Number: 793221
  • Archival Resource Key: ark:/67531/metadc736641

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 11, 2016, 1:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

HEINSTEIN, MARTIN W. & SEGALMAN, DANIEL J. Bending Effects in the Frictional Energy Dissipation in Lap Joints, report, January 1, 2002; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc736641/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.