DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION

PDF Version Also Available for Download.

Description

The huge emissions of carbon dioxide from fossil fuel fired power plants and industrial plants over the last century have resulted in an increase of the atmospheric carbon dioxide concentration. Climatological modeling work has predicted severe climate disruption as a result of the trapping of heat due to CO{sub 2}. As an attempt to address this global warming effect, DOE has initiated the Vision 21 concept for future power plants. We first synthesized mesoporous aluminosilicates that have high surface area and parallel pore channels for membrane support materials. Later we synthesized microporous aluminosilicates as the potential thin membrane materials for ... continued below

Physical Description

14 pages

Creation Information

Shih, Wei-Heng; Patil, Tejas & Zhao, Qiang March 25, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The huge emissions of carbon dioxide from fossil fuel fired power plants and industrial plants over the last century have resulted in an increase of the atmospheric carbon dioxide concentration. Climatological modeling work has predicted severe climate disruption as a result of the trapping of heat due to CO{sub 2}. As an attempt to address this global warming effect, DOE has initiated the Vision 21 concept for future power plants. We first synthesized mesoporous aluminosilicates that have high surface area and parallel pore channels for membrane support materials. Later we synthesized microporous aluminosilicates as the potential thin membrane materials for selective CO{sub 2} adsorption. The pore size is controlled to be less that 1 nm so that the adsorption of CO{sub 2} on the pore wall will block the passage of N{sub 2}. Mesoporous and precipitated alumina were synthesized as the base material for CO{sub 2} adsorbent. The porous alumina is doped with Ba to enhance its CO{sub 2} affinity due to the basicity of Ba. It is shown by gas chromatograph (GC) that the addition of Ba enhances the separation CO{sub 2} from N{sub 2}. It was found that mesoporous alumina has larger specific surface area and better selectivity of CO{sub 2} than precipitated alumina. Ba improves the affinity of mesoporous alumina with CO{sub 2}. Phase may play an important role in selective adsorption of CO{sub 2}. It is speculated that mesoporous alumina is more reactive than precipitated alumina creating the xBaO {center_dot}Al{sub 2}O{sub 3} phase that may be more affinitive to CO{sub 2} than N{sub 2}. On the other hand, the barium aluminates phase (Ba{sub 3}Al{sub 2}O{sub 6}) in the mesoporous sample does not help the adsorption of CO{sub 2}. Microporous aluminosilicate was chosen as a suitable candidate for CO{sub 2}/N{sub 2} separation because the pore size is less than 10 {angstrom}. If a CO{sub 2} adsorbent is added to the microporous silica, the adsorption of CO{sub 2} can block the passage of N{sub 2} and an effective CO{sub 2}/N{sub 2} separator will be found. It was first demonstrated that microporous silica could be synthesized. The microporous silica was then impregnated with Ba(OH){sub 2}. No adsorption of CO{sub 2} was observed. It was found that alumina must be added to facilitate CO{sub 2} adsorption. However, no microporous aluminosilicates have been shown before. We developed a process that partially coat alumina on microporous silica. It was demonstrated that microporous aluminosilicates can be obtained by the coating process and a candidate material for selective CO{sub 2} separation is available.

Physical Description

14 pages

Notes

OSTI as DE00812171

Source

  • Other Information: PBD: 25 Mar 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FG26-00NT40823
  • DOI: 10.2172/812171 | External Link
  • Office of Scientific & Technical Information Report Number: 812171
  • Archival Resource Key: ark:/67531/metadc736592

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 25, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Dec. 16, 2016, 6:59 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Shih, Wei-Heng; Patil, Tejas & Zhao, Qiang. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION, report, March 25, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc736592/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.