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ABSTRACT 

The computational part of the thesis is the investigation of titanium chloride (TI) as a 

potential catalyst for the bis-silylation reaction of ethylene with hexaclorodisilane at different 

levels of theory. Bis-silylation is an important reaction for producing bis(sily1) compounds 

and new C-Si bonds, which can serve as monomers for silicon containing polymers and 

silicon carbides. Ab initio calculations on the steps involved in a proposed mechanism are 

presented. This choice of reactants allows us to study this reaction at reliable levels of theory 

without compromising accuracy. Our calculations indicate that this is a highly exothermic 

barrierless reaction. The Tic12 catalyst removes a 50 kcaVmol activation energy barrier 

required for the reaction without the catalyst. The first step is interaction of Tic12 with 

ethylene to form an intermediate that is 60 kcaVmol below the energy of the reactants. This is 

the driving force for the entire reaction. Dynamic correlation plays a significant role because 

RHF calculations indicate that the net barrier for the catalyzed reaction is 50 kcal/mol. We 

conclude that divalent Ti has the potential to become an important industrial catalyst for 

silylation reactions. 

In the programming part of the thesis, parallelization of different quantum chemistry 

methods is presented. The parallelization of code is becoming important aspect of quantum 

chemistry code development. Two trends contribute to it: the overalI desire to study large 

chemical systems and the desire to employ highly correlated methods which are usually 

computationally and memory expensive. In the presented distributed data algorithms 

computation is parallelized and the largest arrays are evenly distributed among CPUs. First, 
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the paralldization of the Hartree-Fock self-consistent field (SCF) method is considered. SCF 

method is the most common starting point for more accurate calculations. The Fock build 

(sub step of SCF) from AO'integrals is also often used to avoid MO integral computation. 

The presented distributed data SCF increases the size of chemical systems that can be 

calculated by using RHF and DFT. The important ab inilio method to study bond formation 

and breaking as well as excited molecules is CASSCF. The presented distributed data 

CASSCF algorithm can significantly decrease computational time and memory requirements 

per node. Therefore, large CASSCF computations can be performed. The most time 

consuming operation to study potential energy surfaces of reactions and chemical systems is 

Hessian calculations. The distributed data parallelization of CPHF will allow scientists carry 

out large analytic Hessian calculations. 
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CHAPTER 1: GENERAZ, INTRODUCTION 

Introduction 

Computational quantum chemistry is a useful tool for many areas of science such 

as biochemistry, materia1 science, catalysis, material design and biology. Ab initio 

calculations can provide reliable predictions of structures and various properties of 

chemical compounds. Computational quantum chemistry describes interactions of nuclei 

and electrons which define physical and chemical properties of molecules. These 

interactions are described by the Schrodinger equation. One limitation of ab initio 

calculations is that solving the Schrodinger equation even for a small size system is a 

challenging problem. Therefore an important advance in the effort to expand the size of 

systems that can be studied by quantum chemistry is the development of new algorithms 

and parallel quantum chemistry software. 

The ultimate purpose of computational quantum chemistry is to apply these new 

algorithms and methods to real chemical problems. Quantum chemistry can heIp to find 

novel effective catalysts for important industrial reactions, new rocket fuels, or drugs to 

cure people. There is an unlimited number of applications where quantum chemistry can 

help. 

Dissertation Organization 
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In this dissertation two important aspects of computational quantum chemistry 

have been addressed. First, new parallel quantum chemistry algorithms were developed 

to expand the size of systems that can be studied by quantum chemical methods. The new 

algorithms employ non standard approaches to achieve good performance results. 

Another important aspect is applications of quantum chemistry methods to find new 

catalysts for the bis-silylation reaction, 

In the second chapter, titanium chloride (XI) is investigated as a potential catalyst 

for the bis-silylation reaction of ethylene with hexaclorodisilane at different levels of 

theory. Bis-silylation is an important reaction for producing bis(sily1) compounds and 

new C-Si bonds, which can serve as monomers for silicon containing polymers and 

silicon carbides. Many of these organosilicon materials have desirable chemicaI and 

physical properties, such as thermal stability and the ability to store and transfer optical 

and electrical information. 

In the second part of this dissertation new parallel algorithms are described. 

Chapter 3 addresses parallelization of the self consistent field procedure. The Hartree- 

Fock self-consistent field (SCF) method is the most common starting point for more 

accurate calculations. 

In chapter 4, a new distributed data parallel CP€F step for an analytic Hessian 

aIgorithm is described. Analytic Hessian calculations are a fast and efficient method to 

study potential energy surfaces. The analytical Hessians can be many times faster and 

more accurate than numerical Hessian calculations, but the programming and 

paraIlelization of these codes is ofien a challenge. Non traditional approaches were 

utilized to parallelize CPHF. 
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Chapters 2 through 5 are papers either published, submitted to journals, or in 

preparation for submission to refereed journals. In chapter 6 general conclusions are 

presented for the dissertation. 

Literature Review 

In this section, a brief theoretical background of quantum chemistry concepts and 

standard quantum chemical methods are reviewed. These methods are used throughout in 

the dissertation. 

Quantum chemistry is based on solving the time-independed Schrodinger equation 

HY? = E'3' (1) 

E is the energy of the system, Y is a wave function of the system. N is. called the 

Hamiltonian operator. 

H = KIiuc,e; + Kc, + 'c/-cI + YjircIei-e, + V;rrrc/ci-iac/ci (2) 

The Hamiltonian for a molecule with N nuclei and n electrons consists of the kinetic 

energy of the nuclei K,,l,cki ; the kinetic energy of the electrons K,, , the potential energy 

due to repulsion between electrons Vc[-c,, thhe potential energy due to the attraction 

between the electrons and the nuclei Y,ruc,ei-d, the potential energy due to the electrostatic 

repulsion between the nuclei Y; ,vc,c i-,ll,c,ci . The Hamiltonian depends both on electron (r) 

and nuclear coordinates (R). Therefore the wave function Y also depends on r and R. It 

makes solving equation (1) challenging. 

One of the most important assumptions in quantum chemistry in solving thhe 

Schrodinger equation is the Born-Oppenheimer approximation [ 11. Ordinary, the nuclei 

are moving much slowly than electrons because nuclei are much heavier than eIectrons 
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(mass of protons and neutrons are about 1800 times heavier than electrons). Thus to a 

good approximation the electron motion can be separated from the nuclear motion 

' Y k  R )  = ye/ (c R)Y,,,,,,. ( R )  (3) 

Therefore equation (1) can be solved in two steps. First solve for the electronic part: 

H e l y e 1  = 'e/ (')ye/ (4) 

Since the nuclei are fixed, at each R one can add the nuclear repulsion V;luclei-,luclei (r) to 

Eel@) : 

Then, 

H = He, "I- U(R)  

Then, the nuclear part of Schrodinger equation: 

H T w c l e i  = 'y-rliiic,ei (7) 

The total energy of the system is 

E x Ec, + En,rc lc i  (8) 

In general, the Born-Oppenheimer approximation correctly describes molecules in 

their ground electronic states. 

In a typical quantum chemistry computation equation (4) is solved by using 

various approximations for a particular set of fixed nuclear coordinates R. The resulting 

electronic energy is summed with the nuclear repulsion energy. The entire procedure is 

repeated for each set of fixed nuclear coordinates R. The total energy as a function of 

coordinates R, E@), describes the potential energy surface (PES) for the molecular 

sys tern. 

To study potential energy surfaces of reactions and chemical systems two 

operations are performed most often: single energy + gradient calculations and Hessian 
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calculations. At stationary points on potential energy surfaces the gradient of the energy 

with respect to nuclear coordinates is zero. The stationary points can be minima, first 

order saddle points (transition states) or higher order saddle points. To distinguish them 

Hessian calcuIations are performed. The Hessian is the second derivative matrix of the 

total energy with respect to nuclear coordinates. The diagonalized Hessian provides 

harmonic normal modes and corresponding vibrational frequencies. Minima and nth order 

saddle points correspond to zero and n negative eigenvahes of the Hessian, respectively. 

Since the harmonic fiequencies are the square roots of the Hessian eigenvalues, a 

negative eigenvalue corresponds to an imaginary frequency. The parallelization of 

analytical Hessian is addressed in chapter 4. 

The transition states are typically connected by two minima which correspond to 

reactants and products. The difference in energy between reactant and transition state is 

the barrier height. The transition states can be connected with minima using the intrinsic 

reaction coordinate (IRC) method [ 2 ] .  In the IRC the minimum energy path or reaction 

path is obtained in mass weighted Cartesian coordinates. 

To solve equation (4) a number of methods are utilized. All of these methods are 

approximate, since an exact solution can be found only for one electron molecules. The 

simplest method is the Hartree-Fock method, in which the n-electron Schrodinger 

equation is repIaced by a series of one-electron equations, called the Hartree-Fock 

equations: 

where Fi is the one electron Fock operator; ‘yi is the one electron molecular orbital; -zj is 

the one electron molecular orbital energy; i =l,..,n where n is the number of one electron 

molecuIar orbitals. 
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The total wavefunction is an antisymmetrized product of molecular orbitals which 

can be represented by Slater determinants. Each molecular orbital is a product of a spatial 

function and a spin function. 

The molecular orbitals can be expanded as linear combinations of atomic orbitals 

After atomic orbitals are introduced the Hartree-Fock equations (1.6) can be 

rewritten as a set of algebraic Hartree-Fock-Roothaan equations [3]: 

FC = SCE (1 1) 

where C is the matrix of expansion coefficients introduced in equation (IO); F is the Fock 

matrix; S is the overlap matrix and E is the matrix of orbital energies. The equations must 

be solved iterativeIy because the Fock matrix is a function of the expansion coefficients. 

The procedure is commonly called the seIf consistent field (SCF) method (41. The 

parallelization of the SCF method is addressed in chapter 3.  

In the Hartree-Fock operator in equation (9) the electron - electron repulsion is 

substituted by an average potential experienced by the ith electron due to the presence of 

the other electrons. Therefore the Hartree-Fock method does not take into account the 

correlation of eIectron motions. Thus the Hartree-Fock method often produces incorrect 

energies especially for non equilibrium stmctures for which electron correlation is 

especially important. 

The solution of the Hartree-Fock equations (9) provides a set of one electron 

molecular orbitals vi and one electron molecular orbital energies .si. This is the 

variationally best approximation to the ground state, of the single determinant form. 

However, it is only one of many possible determinants that could be formed from M 
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electrons in N molecular orbitals. In the full configuration interaction (FCI) method [5] all 

possible determinants are considered and coefficients Ak are optimized variationally in 

equation: 

The FCZ wavefunction is the exact solution of the Shrodinger equation for a given 

atomic basis set. If the basis set is incomplete then the FCI energy E,,,,, is the exact 

energy of the system for the given basis. The difference in energy between E,,,,, and 

Hartree-Fock in the complete basis set limit is called the correlation energy 

E,,, = L c ,  -E)$ (13) 

Unfortunately, basis sets are finite and the FCI method is very expensive. Even for small 

systems the number of determinants in FCI can be extremely large. There are several 

quantum chemistry methods to recover the correlation energy at a fraction of the FCI cost 

with moderate basis sets. The correlation energy is often divided into two types. “Static” 

correlation ensures that a correct zeroth order wavefunction is employed. “Dynamic” 

correlation corrects the interactions between electrons in close proximity to each other. 

The HF method is most commonly used to provide the zeroth order wavefunction. When 

the HF method is not appropriate, as in the case of diradicals, the alternative is 

multiconfigurational SCF (MCSCF) method. In the MCSCF method [6j, the 

wavefunction is a linear combination of a subset of FCI configurations. The complete 

active space SCF (CASSCF) method [7] is the most widely used version of MCSCF. In 

CASSCF the most chemically important orbitals and electrons are selected. AI1 possible 

configurations are generated by distributing these selected electrons in the selected 

orbitals. The CASSCF wavefunction is obtained by optimizing both configuration 
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coefficients and orbital expansion coefficients. The parallelization of the CASSCF 

method is addressed in chapter 5 .  

The simpIest method to recover dynamic correlation energy is perturbation theory. 

The most popular type is Moller-Plesset perturbation theory. The perturbation is defined 

as the difference between the exact Hamiltonian and the sum of one-electron Fock 

operators, The perturbation expansion is most often truncated at the second order term, 

referred to as MP2 [&I. 

Another widely used method is the coupled cluster method [9]. The excitation 

configurations are generated by using an exponential excitation operator to produce singIe 

(CCS), double (CCSD) and so on excitations. 
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CHAPTER 2: A THEORETICAL STUDY OF THE 

BYS-SILYLATION OF ETHYLENE CATALYZED BY 

TITANIUM DICHLORIDE 

A paper submitted for publication to 

Journal of American Clzemical So&& 

Yuri Alexeev and Mark S. Gordon 

Abstract: 

Titanium dichloride was investigated as a potential catalyst for the bis-silylation reaction 

of ethylene with hexachlorodisilane. Ab initio electronic structure calculations at the 

restricted Bartree-Fock (RHF), density functional theory (DFT), second order 

perturbation theory (MP2), and couple cluster (CCSD) levels of theory were used to find 

optimized structures, saddle points, and minimum energy paths that connect them. The 

reaction was found to ,have a net zero barrier at the DFT, MP2 and CCSD levels of 

theory. Dynamic correlation is found to be important for this reaction. 



Introduction 

The bis-silylation reaction [ 1) is an important process for producing bis(sily1) 

compounds and new C-Si bonds, which can serve as monomers for silicon containing 

poIymers and silicon carbides. Many of these organosilicon materials have desirabIe 

chemical and physical properties, such as thermal stability and the ability to store and 

transfer optical and electrical information [2,3]. However, there is a lack of quantum 

chemical calculations for the study of the effect of catalysis on the bis-silylation reaction. 

Such calcuIations can potentially lead to the deveIopment of new catalysts. In this paper, 

Tic12 is proposed as an effective catalyst for the bis-silylation reaction. This is supported 

by a series of quantum chemical calculations at different levels of theory. 

The bis-silylation reaction is a method to add an Si-Si bond across a C-C double or 

triple bond. The general reaction for Si-Si addition to a double bond can be written 

f . 1 1  

R3,C=CR4,, R3,C-CR4, 

Experimental and theoretical studies of this reaction in the absence of a catalyst 

suggest that the reaction has a high activation barrier. The predicted barrier height for the 

addition of disilane to ethylene is approximately 50 kcaVmo1 [4]. So some catalyst is 

needed to achieve high yields. A number of catalysts have been studied since 1972 when 

Okinoshima et al. camed out the first successhl double silylation of lY3-butadienes 

using Ni phosphine complexes as cataIysts [ 5 ] .  Later Okinoshima [6], Watanabe[7,8,9], 

and others discovered that Rh, Ni, Pt, and Pd phosphine complexes can be used to add 

substituted disilanes across various unsaturated acetylene and ethylene derivatives. It was 

found that complexes such as M(PPh& and MClz(PPh3)2, where M is Pt or Pd are the 
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most efficient catalysts. Bottoni et al. [lo] used density functional theory (DFT) with the 

B3LYP functional [l 13 to study the the bis-silylation reaction of acetylene with disilane, 

H3Si-SiH3, in the presence of Pd(PH&. Pd(PH3)2 was used to emulate Pd(PPh&, 

Pd(PEt3)z, and other catalysts often used in experimental studies. The reaction net barrier 

was found to be 18 kcallmol. 

A theoretical study of Pt(PH& catalyzed bis-silylation and hydrosilylation (Chalk- 

Harrod and modified Chalk-Hanod mechanisms) of alkenes was recently performed by 

Sakaki et al. [12,13] These authors used second order perturbation theory (MP2) [12j, 

fourth order perturbation theory (MP4SDQ) [ 131, and doubles coupled cluster theory 

(CCD) [14] to study the reactions. The net reaction bamer is predicted to be 19 kcaVmol 

in the bis-silylation reaction and 5 kcaVmol in the Chalk-Barrod mechanism of the 

hydrosilylation reaction. 

It is we11 known that earlier transition metals, such as Ti and Zr, complexes exhibit 

catalytic properties. In the Ziegler-Natta polymerization reaction, the commonly used 

catalysts are MClpAlR3, MR2 where M is Ti OT Zr [l5]. The first step in the currentIy 

accepted mechanism is formation of a metal-alkyl-olefin complex. The addition of 

C12TiCH3' to C2H4 was studied recently by Bernardi et al. [16] with DFT using the 

B3LYP functional. The reaction requires no net barrier. A n-complex intermediate is 

lower than reactants by 38 kcal/mol. 

Titanocene (TiCpz where Cp=cyclopentadienyl) and zirconocene (ZrCpz) were 

recently reported to be efficient catalysts for silylation by Terao et al. [17] and Barrod et 

al. In particular, silylation of isoprene with chlorotriethylsilane proceeds with 9 1% yield 

at 0°C in the presence of CpzTiClz and BuMgCl in THF solution. The double silylation of 

p-chlorostyrene by MezPhSiCl in the presence of BuMgCl and CpaTiCl2 in THF solution 
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under the same conditions gives a 72% yield. 

Bode, Day, and Gordon [ 181 demonstrated that Tic12 is an efficient catalyst for the 

hydrosilation reaction. The reaction was studied using restricted Hartree-Fock (RKF), 

second order perturbation theory (MPZ), and coupled cluster theory (CCSDfT)). All 

levels of theory predict that the reaction has no net barrier. The highest CCSD(T) energy 

is 3 1 kcaVrnol below reactants. 

The purpose of this paper is to present ab initio calcuhtions on the steps involved in a 

proposed mechanism. In the model reaction Tic12 is used as the catalyst for the bis- 

silylation reaction of ethylene with hexachlorodisilane. This choice of reactants allows us 

to study this reaction at reliable levels of theory without compromising accuracy. 

Although TiX2 has not previously been proposed as a cataIyst for bis-silylation, TiX2 is a 

promising model catalyst based on previous theoretical and experimenta1 studies. 

Computational methods 

All calculations performed for this paper were carried out using the GAMESS 

program [19), and figures were generated using the MacMolPlt program [20]. The basis 

set used in the calculations was the SBKJC effective core potential (ECP) basis [21] on 

Si, C1, and Ti. One d-type polarization function was added on each Si and C1 atom [223. 

The H and C atom basis used was 6-3 1G (d,p). This basis set was compared previously 

[23] with an all-electron triple-6 plus polarization basis set. It was found that the 

difference in relative energies between these is less than 0.5 kcal/mol, consistent with the 

present work. 
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The R€€F, DFT, MP2, and CCSD methods were used to study the bis-silylation 

reaction. Preliminary geometry calculations were carried out using RHF. These 

geometries were then used as starting geometries for the Mp2 calculations. DFT and 

CCSD calculations were camed out at selected transition states with the highest energy 

barriers. These methods predict results that are similar to those from MP2. Only the RHF 

method predicts a nonzero net barrier. 

All geometries and energies for reactants, products, and all stationary points on the 

reaction path presented in this paper are at the MP2 level of theory. Each stationary point 

was confirmed by computing the Hessian (matrix of second derivatives of energy). The 

diagonalized Hessian provides harmonic normal modes and corresponding vibrational 

frequencies. Transition states and minima are indicated by one and no imaginary mode, 

respectively. The calculated frequencies were also used to compute zero point vibrational 

energies (ZPE). 

Finally, each confirmed transition state has been connected to reactants and products 

using the Gonzales-Schlegel second-order intrinsic reaction coordinate (IRC) method 

with a step size of 0.3 amuLn*bohr. 

Results and discussion 

The previous studies established that dynamic correlation is important for reactions in 

which Ti is a catalyst, so the MP2 and CCSD methods were employed. Mp2 natural 

orbital occupation numbers (NOONS) were calculated and inspected at each stationary 

point. The largest observed deviation from the €E values of 2.0 and 0.0 for occupied and 

virtual orbitals respectively is 0.08, suggesting that there is little multiconfigurational 



15 

character in the wavefunction [24]. The MP2 geometries and energies are presented in all 

Figures and Tables. 

TiCl2. 

Y 

I 
1 

C1,Ti 
/ \  

C13Si SiC1, 

Scheme I .  Catalytic cycle for double silylation of ethylene with hexachlorodisilane 
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-80 

-90 

-1 00 

-110 
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M10 
P 

Figure 1. Minimum energy.reaction path 
I 

-59.0 -55.4 
-39.1 -3 G .2 

Table 1. MP2 relative energies with ZPE corrections in kcallmol. 

In the commonly accepted mechanism for bis-silylation of alkenes and alkynes [25 

,26, 271 the first step is oxidative addition of the catalyst to the disilane; then the alkene or 

alkyne is inserted into the metal-silyl bond. The final stage is reductive elimination and 

the regeneration of the catalyst. In the experiments no intermediates have been detected in 

the oxidative addition of Pt(0) to disilane, presumably confirming the fist  step [28] in 

this mechanism. Based on the current calculation with Tic12 an alternative mechanism is 

presented in a Scheme 1, in which the first step is coordination of the catalyst to the 

ethylene not the disilane to form an initial complex. The complex interacts with disilane. 

Subsequently, ethylene is inserted into the Ti-Si bond to form product after reductive 

elimination of the Tic12 catalyst. 
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The overall reaction path energetics are demonstrated in Figure 1. The reactants are 

labeled as R, minima as MX (where X is an integer number), transition states as TSX, and 

products as P. Minima M3 and M4, M5 and M6, M7 and MS, M8 and M9, M9 and M10 

were connected by using linear least motion paths and constrained optimization 

techniques. The highest point on a constrained optimization path is an upper bound to the 

energy barrier for that path. Each step will be discussed in detail in the following sections. 

The relative MP2 energies presented in Figure I do not include vibrational ZPE 

corrections. In the first column of Table 1 relative MP2 electronic energies corresponding 

to the data in Figure 1 are listed. ZPE corrected relative energies are presented in the last 

column of Table 1. 

In the following sections we will discuss in detail the potential energy surface (PES) 

of the proposed mechanism: (1) oxidative addition, (2) ethylene insertion into the Ti-Si 

bond, and (3) reductive elimination. For each step a figure with detailed geometry 

information for the stationary points is presented, with bond lengths shown in angstroms. 

For transition states the magnitude of the imaginary frequency is included. 

The MP2 total energies and MP2 totaI ZPE corrected energies for each stationary 

point in Figure 1 and Table 1 are avdable in supplementary materia1 Table S1. The 

Cartesian coordinates of all geometries can be found in Table S2. 

1. Oxidative addition 

Two scenarios have been investigated. The catalyst Tic12 can attack the C-C bond 

first as shown in Figure 2 or Tic12 can initially attack the Si-Si bond as shown in Figure 

3. 
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Structure 
Reactmts 

TiC12-CzH4 + Si2Clh 
T i C l ~ - S i ~ C l ~  + C2H3 

Figure 2. TiCI2-C2II4 complex 

MP2 Relative Energy MP2 + MP2 ZPE Relative Energy 
0 0 

-60.5 -59.6 
-17.8 -17.1 

Figure 3. TiCI2-Si,CI6 compIex 

Table 2. MP2 relative energies with ZPE corrections in kcaYmol 
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The optimized structures in Figures 2 and 3 have a large difference in energy relative 

to the energy of the initial reactants: TiC12-C~b is lower in energy than TiCXz-SizClG by 

42.7 kcaVmol as can be seen in Table 2. In the first mechanism, the TiCIZ-CzH4 complex 

shown in Figure 2 reacts with Si2Cl~ in a series of steps ultimately leading to products. In 

the second mechanism, the TiCl2-SizCle complex shown in Figure 3 reacts with C2& in a 

series of steps that converges to the minimum M2 in Figure 4. Therefore, the second 

mechanism leads to the same reaction path as the first mechanism. Since (a) the first 

mechanism leads to a much lower energy initial intermediate M1, (b) both mechanisms 

proceed through the M2 intermediate shown in Figure 4, and (c) the highest point on each 

path is lower in energy than the separated reactants, only the first mechanism is presented 

in detail here (see Scheme 1 and Figure 4). 
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Figure 4. Oxidative addition 

The MP2 structures for the oxidative addition step are presented in Figure 4. After 

Tic12 forms a complex with ethylene in MI, Ti in this complex interacts with a CI fiom 

disilane, leading to a new intermediate M2. A transition state TS1 connects M 2  with M3, 

in which Ti has broken the hexachlorodisilane &-Si bond. TS1 and M3 both have C2v 

symmetry, but M2 has C1 symmetry. Therefore, a bifixcation [29] occurs along the 
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reaction path that connects TSl with M2, since the valley-ridge inflection point does not 

coincide with transition state TS 1. The valley-ridge inflection point was found by first 

performing a series of Hessian calculations. Then, the imaginary mode was offset by 5% 

and the IRC mn was resumed to find the correct minimum M2. TSl is the highest point 

on the minimum energy reaction path. Based on bond and valence analysis, Ti in TSl 

forms 8 partial bonds with bond orders varying fiom 0.3 to 1.3 (Figure 5).  Ti forms strong 

bonds with two chlorines perpendicular to the Si-Ti-Si plane and with the two carbon 

atoms. 

I 2.137 (0.520’1 I 
I 2.685 (0.299) I 

piq 
I I I 2.283 (1.321) I 

I I 

’ I 2.761 (0.315) I 

Figure 5. Transition state 1 (TSI). Bond distance in a (bond order) 

It is interesting to track the C-C bond length changes in the oxidative addition step, In 

M1 the C-C length has single bond character after ethylene has interacted with Ti. Later 

after Ti has inserted into the Si-Si bond in M3, the C-C distance has decreased back to a 

distance very close to that in ethylene. 
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The activation energy leading from M2 to TS1 to MS is 20 kcal/mol. This is the 

largest activation energy along the reaction path. The energy of M 2  relative to M3 is 1 

kcaVmol after the ZPE correction is applied. It was expected that the Ti insertion into the 

Si-Si bond would have one of the highest activation energies, but it is still 50 kcalhol 

below the energy of the reactants. 

2. Ethylene insertion 

The first step in the ethyIene insertion (see Scheme 1 and Figure 7) is to position the 

ethylene molecule just above the Ti-Si bond. The potential energy surface in this region is 

shallow, because the ethylene molecule can essentially undergo free rotation. Therefore, a 

linear least motion path [30] and constrained optimization techniques [3 11 were employed 

to connect the minimum M3 with M4, and M5 with M6 (Scheme I). 

4 

Constrained geometry 

Figure 6. Constrained optimization path connecting M3 and M4, COSX are constrained optimized 

structures 
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An example of how the constrained optimization technique is employed is shown in 

Figure 6 .  The energies of 10 constrained optimized structures from COS1 to COS10 

connecting the M3 and M4 minima are plotted. The estimated activation barrier for the 

reaction at COS9 is 7.9 kcaVmol excluding the ZPE correction. The difference in energy 

between M3 and M4 is 7.0 kcal/mol. The geometry and location of COS9 on the PES is 

consistent with the Hammond postulate: COS9 is structurally close to the minimum M4 

which is 7.2 kcal/mol higher in energy than M3. The primary effect of the M3-+M4 

rearrangement is to move one ethylene C closer to its Si partner. The M4 and M5 minima 

in Figure 7 are connected via a transition state TS2 with an activation energy of 4 

kcaVmol (3 kcaVmol with the ZPE correction). In M5 a rotation about the Ti-Si bond has 

occurred , in order to further facilitate the formation of the new C-Si bond. Minima M5 

and M6 are connected in a manner similar to that used to connect minima M3 and M4, 

with an activation barrier of approximately 2 kcaVmo1. 

In the second part of the ethylene insertion reaction (Figure 7), the transition state TS3 

connects minima M6 and M7. The bamer height of this reaction is 3.6 kcal/mol. TS3 is 

the second highest stationary point. The energies of M6 and M7 relative to reactants are - 

55.9 and -80.7 respectively. 

In M6, the C-C bond is aIready slightly stretched from 1.335A in ethylene to 1.359& 

the Ti-Si bond is stretched from 2.5 l5A in M3 to 2.753A in M6. In transition state TS3, a 

four-membered ring is formed that consists of Ti, two carbons, and Si. The Ti-Si bond is 

stretched even further to 2.949A in TS3. The four-membered ring is opened via breaking 

a Ti-Si bond to give the minimum M7. In M7 the Ti-Si bond is broken, since the distance 

is 3.680& and a C-Si bond is finally formed. Therefore, M7 is the first time the Si-Ti-C- 

C-Si chain is formed. 



Figure 7. Ethylene insertion 
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3. Reductive elimination 

The final phase in the overall mechanism is the regeneration of the catalyst and 

formation of the final product. The geometries of all stationary points in this step are 

shown in Figure 8. The reaction proceeds in four steps. In the first step, the SiCb group 

attached to Tic12 moves into the staggered position (M8) relative to the Ti-C bond. Since 

internal rotations usually require little activation energy, the constrained optimization 

technique was utilized to connect M7 and M8. The estimated activation energy required 

to connect minima M7 and M8 is 3.4 kcal/mol. The energies of M7 and M8 relative to the 

reactants are -80.7 and -82.2, respectively, including the ZPE correction. 
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Figure 8. Reductive elimination 

In the next step M8+M9, Ti and Si interchange their positions. M9 is the first species 

in which the Ti-Si-C-C-Si linkage appears. To connect minima M8 and M9 the 

constrained optimization technique was used. The estimated barrier height is 5.7 

kcal/mol. The intermediate M9 is the global minimum on the reaction path. Including the 

ZPE correction, M9 is 102.9 kcaVmol below the energy of separated reactants. 

In the last two steps the catalyst is regenerated. First, one C1 atom on the TIC13 group 

migrates to a Si atom. Then, a new minimum M10 is formed in which Ti, Si, and two 
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chlorines form a four-membered ring, Two chIorines are shared between Ti and Si. Note 

that Ti is not connected to either Si in M10. The reaction M9-MIO is endothermic, with 

the top of the constrained optimization path being 2.9 kcal/mol above M10. The last step 

removes the catalyst from the system. No net transition state is expected for this step. The 

reverse reaction for adding TIC12 to product proceeds readily without any barrier. The 

product is the cis conformer of 1,2-bis-chlorosilyl ethane. The energies of M10 and the 

product P relative to reactants are -55.4 and -36.2 kcaVmo1 respectively with the ZPE 

correction. 

Conclusions 

The overall reaction is a highly exothermic barrierless process. The products are 36.2 

kcal/rnoI lower in energy than the combined energies of the separated reactants after the 

ZPE correction is applied to the MP2 energy. The Tic12 catalyst removes a 50 kcaVmol 

activation energy barrier required for the reaction without the catalyst. The first step is 

interaction of Tic12 with ethylene to form an intermediate that is 60 kcaVrnol below the 

energy of the reactants. This is the driving force for the entire reaction. After that Tic12 

easily cleaves the Si-Si bond with modest a 20 kcaVrnol activation energy. The transition 

state for this step is the highest point except products for the entire reaction, and it is stilI 

50 kcaVrnol below the energy of the reactants. Dynamic correlation plays a significant 

role because Rl3F calculations indicate that the net barrier for the catalyzed reaction is 50 

kcal/mol. There are also significant differences in relative energies and structures between 

RHF and MP2 Ievels of theory. 
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As discussed in several recent papers [32,33,34], Ti is an electron deficient atom, in 

much the same manner as B. This means Ti readily €oms additional bonds beyond 

“usuai” four. As noted before for the hydrosilation reaction this makes divalent Ti a 

particularIy effective catalyst, since the initial steps in which Ti binds to one of the 

reactants is especially facile with a large energy decrease. This energy decrease is 

sufficient to ensure that the activation barriers for all subsequent steps are well below the 

energy of the reactants. Consequently, the reaction proceeds easily. 
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Abstract: 

This paper describes a distributed data parallel SCF algorithm. The distinguishing 

features of this aIgorithm are: (a) columns of density and Fock matrices are distributed 

evenly among processors, (b) pair-wise dynamic load balancing is developed to achieve 

excellent load balance, (c) network communication time is minimized via careful anaIysis 

of data flow in the SCF algorithm. The developed performance models and benchmarking 

results illustrate good performance of the distributed data SCF algorithm. 
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Quantum chemistry, Cluster Computing, Self Consistent Field, Distributed Data 

Interface, Nonuniform Memory Access, Dynamic Load Balancing 



33 

1. Introduction 

Quantum chemistry is a useful tool for many areas of science. Ab initio 

calculations provide reliable energetics and molecular properties for chemical reactions 

applicable to areas such as biochemistry, material science, catalysis, material design and 

others. One limitation of ab initio calculations is that they require significant 

computational resources that increase rapidly with the size of the molecular system. An 

important advance in the effort to expand the size of systems that can be studied by such 

methods is the development of parallel quantum chemistry software. 

Recently, the definition of supercomputing broadened significantly with the 

introduction of cluster computing [ 11. This technology has become increasingly popular 

in recent years. There are several advantages of cluster computing: 

1. It can provide the computational power of supercomputers for a small fraction of 

the price. 

2. One can use commodity parts. 

3. Scalability can be attained in principle. 

4, Installation is relatively simple. 

5 .  One has local direct control of computational resources. 

There are also some serious disadvantages of cluster computing. For example, the low 

hardware cost of clusters is accompanied by slower communication between nodes, In 

addition, parallel programming software is less robust for clusters. In general, not all 

parallel libraries are available or optimized for the cluster environment [2,3]. A good 

example is an IBM cluster of IBM RS/6000 dual processor Power 3 running AIX version 

4.3.3, using Gigabit Ethernet to connect the nodes [4]. The MPI bandwidth utilizes less 



34 

than half of the TCP performance, since the MPI library is not optimized to handle Jumbo 

Frames [ 5 ] .  However, ths is likely to change as researchers in several laboratories 

develop robust libraries that are optimized for cluster environments [6,7,8,9,lOj. 

Replicated data models, in which the data is replicated on each node, are 

straightforward to code, but limit the size of systems that can be calculated by the 

memory on each individual node. In quantum chemistry codes, one must deal with both 

two dimensional and four dimensional arrays. The size of each dimension N (total 

number of basis functions) can range from a small number to a few thousand. Most 

scalable algorithms focus on distributing the four dimensional arrays and replicating the 

two dimensional arrays. However, this is still limiting if one wants to study very large 

systems where N>>1,000. 

The quantum chemistry package GAMESS [ I l l  is a multi-hnctional code that 

performs a broad variety of electronic structure calculations. Over the past 10 years, 

several parts of the quantum chemistry package GAMESS have been made parallel; 

however, most of the functionality was implemented using the replicated data model. 

Recently, the distributed data interface (DDI) 171 was implemented in GAMESS, in order 

to perform second order perturbation theory energy and gradient calculations. The 

DDUMP2 code scales linearly to 512 nodes on the Cray T3E [12]. 

In this paper a direct algorithm is discussed. Direct methods do not save data on 

disk thereby avoiding large storage problems, This eliminates input/output (YO) 

bottlenecks associated with lack of local disk space on nodes and possibble poor VO 

performance. 

The purpose of this paper is to present a scalable distributed data direct Fock 

builder, as this is the most important computational kernel of a SCF program. The initial 

guess and diagonalization will not be addressed in this paper. The Hartree-Fock self- 
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consistent field (SCF) method is the most common starting point for more accurate 

calculations. The current bottleneck in replicated data SCF (RDSCF) that is implemented 

in GAMESS [l 11 is that the density (D) and Fock (F) matrices are replicated on each 

node. Because D and F are two dimensional rather than four dimensional arrays, this only 

becomes an issue when one is interested in very large systems. Then one needs a 

distributed SCF. There have been several other efforts to develop distributed data SCF 

(DDSCF) codes [13,14,15]. The large latency and low bandwidth of clusters that 

constitute a primary development platform, however, limit performance and scalability of 

these algorithms. Because communication overhead degrades performance, one desires a 

ratio of computation time to communication time that is at Ieast a few orders of 

magnitude to achieve good performance. 

A major problem with most SCF algorithms is “irregular” data access and update 

patterns to D and F arrays since we intend to distribute them among nodes. The careful 

analysis of loop structures at the beginning of Section 5 illustrates how access and update 

of corresponding D and F elements can be organized. The algorithm presented in Section 

5 illustrates the distribution of D and F matrices, loop structure, and dynamic load 

balancing tasks. The performance analysis in Section 5 shows that the communication 

cost is much less than the computation cost. Hence, we expect that the algorithm will be 

efficient and scalable on most parallel machines. This is explicitly demonstrated by 

benchmark timings presented in Section 6. 

2. Tools and platforms 
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PC clusters are popular since small research groups and departments usually don’t 

have sufficient resources to purchase large computer systems. Currently, the most 

common types of clusters are PC clusters connected by a commodity network such as 

Fast Ethernet. Hence, the code described here has been developed and tested on a PC 

cluster [16] running Red Hat Linux 5.2 that consists of 16 Pentium 11 400Mhz nodes 

connected by Fast Ethernet. Each node has 1 processor, 512 MB of memory, 8 GB IocaI 

disk, and total aggregate distributed memory is about 8 GB. 

Currently, the message-passing model is widely used because it has been ported to 

a large. variety of platforms. However, complex scientific applications often require a 

sophisticated distribution of data with irregular access patterns [ 171. The complexity of 

programming within the limits of a message-passing model can be too high for such 

applications. An alternative is a model based on the shared memory paradigm. However, 

until recently only a few vendor specific libraries have been available for shared memory 

computers. These include SHMEM on Cray and SGI platforms, Fujitsu MPlib, and IBM 

LAP1 on the IBM SP platform. The need for a portable shared-memory library resulted in 

the development of OpenMP [3] libraries and partially in the development of the MPI-2 

[ 181 library. The uncertainty with regard to the wide avaihbility and implementation of 

MPI-2 has resulted in the development of alternative portable libraries, such as 

GNARMCI [19], DDI (Distributed Data Interface) [7], and GPSHMEM [20]. 

It is important to understand that the global memory access model is based on a 

data-passing model. The purpose of DDDI or GA [21,22] is not to replace MPI-1 but to add 

hnctionality that one hopes will ultimately be available in MPI-2. DDI has a set of point 

to point messages implemented by using a socket code. On platforms for which socket 
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DDI-CREATE 
DDI-DESTROY 
DDI-DISTlUB 

code is not available, MPI is used, At present, DDI uses only simple distributed memory 

operations based on the point to point messages presented in Table 1. 

Create distributed matrix 
Destroy distributed matrix 
Obtain distributed matrix distribution 

Table 1. Distributed memory operations 

DDI-GET 
DDI-PUT 

Get patch of distributed matrix 
Put patch of distributed matrix 

DDI-ACC Accumulate patch of distributed matrix 

The performance of two of these operations, DDI-GET and DDI-ACC used in DDSCF, 

is shown on Table 2. The data presented in Table 2 will be used to estimate 

Operation 
GET 
ACC 

communication time. This information is essential for the performance analysis camed 

Latency (ps) Bandwidth (MB/sec) 
67 9.7 
95 8.9 

out in Sections 4 and 5. 

Table 2. Performance of remote GET and ACC on a Pentium I1 400 Mhz cluster connected by Fast 
Ethernet 

The RHF method expresses molecular orbitals in terms of atomic basis Eunctions. 

However, when coding this method it is advantageous to group basis functions in shells, 

in order to exploit the shared arithmetic and symmetry of shells utilized by most integral 

packages. The loop structure in the following algorithms is done in terms of shells. A11 

formulas in Section 4 devoted to distributed data SCF and Section 5 devoted to 

performance models are developed in terms of shells unless it is specified explicitly that 
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Basis Set 
Mini 

6-31G** 
TZV** 

basis functions or atoms are used. We use N when we refer to the total number of basis 

functions and Nsh when we refer to the total number of shells, 

A necessary step for any ab initio quantum chemistry calculations is evaluation of 

atomic two electron integral quartets (ijlkl) where i, j, k, and 1 represent shells. GAMESS 

uses two integral packages. For fast evaluation of integral quartets consisting of s and p 

atomic orbitals, the Pople-Hehre [23] integral package is used. For all higher angular 

momentum integrals, the Rys polynomial code [24] is used. The average performance of 

these two codes on a typical organic molecule is presented in Table 3. The data is given 

for three basis sets: a minimal, double zeta plus polarization, and triple zeta plus 

polarization basis sets. 

sedint Total number of integrals 
2*10a5 2,445,366 
6*10q5 8,386,560 
2* 1 0-05 202,015,050 

Table 3. Total time to run Hehre-Pople and Rys integral packages for luciferin, divided by the total 
number of non-zero integral quartets. Performance measured on a 16-node Pentium I1 400 Mhz PC 

cluster 

The data presented in Table 3 will be used in the following sections to analyze 

computational time. 

3. Brief review of replicated data SCF parallel implementation 

The major bottleneck of an SCF procedure is calculation of the Fock matrix. It is 

therefore useful to review the steps involved in formation of Fock matrix elements and 
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analyze them. Additional information about SCF procedure can be found in Almolf s 

review [26]. Each Fock matrix element is the sum of a one-electron part. 

and a two-electron part [25], 

where i and j represent basis functions, h is the one electron Hamiltonian, D is the density 

matrix, and (ijjkl) is a two electron integral quartet. So our final expression for the Fock 

matrix element is: 

131 

Calculation of the one-electron part takes a relatively small amount of time, since it scales 

as N 2 ,  where N is number of basis functions. The two-electron part scales as a much 

faster growing Eunction N4. The calculation of these integral qvartets and entering them 

into F constitutes the major bottleneck of the SCF process, so it is not surprising that this 

is a part that needs parallelization. The actual number of integral quartets one must 

evaluate may be reduced by: (a) symmetry of integral quartets, (b) prescreening of 

integral quartets and (c) symmetry of the system. 

Because of permutation symmetry, the following integral quartets are equivalent: 

( i j  I kl) = (ij I Zk) = (ji I kZ) = (ji I Ik) = 

= (kl I i j )  = (kl I ji) = (Zk 1 7 j )  = (Zk I ji) 

Hence, the total number integral quartets to be computed is reduced to 
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The upper bound of the magnitude of an integral quartet can be estimated fiom the 

Schwartz inequality [26]: 
c51 

I ( i j  I kl)  I q/m*$iqT) 

Since the Om2) (ijlij) and (kllkl) exchange integral quartets can be evaluated before 

calculation of (ijlkl), Schwartz screening means not all (ijlkl) integral quartets have to be 

evaluated. Screening typically reduces the number of integral quartets to approximately 

Om3) for three dimensional systems containing about 50 atoms, and the asymptotic limit 

is o(N’) for linear systems. 

Each integral quartet must be multiplied by a density matrix element to produce a 

Fock matrix element. Using permutational symmetry, each unique integral quartet 

multiplies up to six density matrix elements to update up to six Fock matrix elements, for 

example, 

Since an integral quartet must be multiplied by up to six different density matrix 

elements, this can potentially lead to a huge communication overhead to fetch these 

elements if they are located on remote nodes. In GAMESS [ll], to eliminate 

communication overhead, density and Fock matrices are currently replicated on each 

node. The algorithm is presented in Figure 1 



41 

DO I=1, N 
DO J=lJ 

Dynamic Load Balancer 

DO K=l,I 
L-H=K 
IF ( K.EQ.1) L-H=J 
DO L=l,L-H 

Screen (ijlkl) 
Compute (ij Ikl) 
(DijyDik,Di1,Djk,pljl,Dk1) '(ijlkl) * {Fij,Fik,Fil,Fjk,Fjl,FkI 

END DO 
END DO 

END DO 
END DO 
SUM(F) 

Figure 1. The direct repIicated data SCF (RDSCF) aIgorithm. N s ~ l c ~  is the total number of sheIls. 
SUM(F) operation sums up partial contributions of Pock matrices 

The do loops access only the unique list of integral quartets. The DLB (dynamic load 

balancer) in the J loop assigns the next block of integral quartets to be calculated. After 

looping over all integral quartets, each node will have a partial Fock matrix. These partial 

matrices are summed to obtain the complete Fock matrix. The algorithm is almost 

perfectly parallel. Load balancing and global summation of Fock matrices take a 

negligible amount of time. However, the largest problem that one can calculate is 

constrained by the local memory of each node. Since density and Fock mabices are 

replicated, each node has to allocate 2*8*N2 bytes of memory. For large systems it is 

desirable instead to have a distributed data SCF code in which density and Fock matrices 

are distributed among all nodes. This effectively utilizes the aggregate memory of the 

parallel computer or cluster, which is often the most expensive component. 
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4. Distributed Data SCF (DDSCF) 

The algorithm described in Figure 1 will not be useful when density and Fock 

matrices are distributed among nodes, due to the communication overhead involved in 

manipulating these matrix elements inside four loops. Consider a system that has 1000 

shells, and assume that all elements of the distributed matrices are remote. This would be 

roughly true for large cIusters of computers. The total number of integral quartets to be 

calculated is N;,~10004=1012. Since each integral quartet needs as many as six density 

matrix elements to update six Fock matrix elements, the worst case is that the total 

number of remote operations is Nc,mm=12*10'2. Now, 

tcomp=l 0-O' = average time to calculate one integral quartet (from Table 3). 

LOmm=l]atency =1 *loa2 = time to get/acc one remote matrix element (from Table 2). 

Tcomp = time to compute all integral quartets 

Tcomm = time to get or acc all necessary density or Fock elements 

So, using a naive algorithm, communication would take four orders of magnitude more 

time than calculation of the integral quartets. A viable distributed code requires the 

communication time to be a smalI fiaction of the computation time, TcomdTcomm>>l. 

So, the communication time must be minimized by using data efficiently. This goal may 

be achieved by analyzing the construction of the Fock matrix in detail. 
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First note that six density and six Fock matrix elements can each be grouped into 

three blocks, as shown in Figure 2. 

Figure 2. The grouping of density and Fork matrix elements. 

Indices for these elements obey i d ,  k>l, (ij)>(kl) to account for the permutation symmetry 

of the integral quartets. So, we address onIy the lower triangular parts of the density and 

Fock matrices. Access to density and Fock matrix elements can be moved to the 

corresponding outer loops. In Figure 3, the algorithm is presented with a complexity 

analysis of each critical step. Note that the Schwarz screening already mentioned is 

applied inside the innermost loop to the computation of integral quartets and effectively 

reduces the formal 0(N,,4) compIexity to roughly O(Nsj ,3) .  



44 

2. 

3.  

4. 

5 .  

6. 

7 .  

DO I=l,Nsh 
1. GET D; block 

DO J=1 ,I 
GET Dj block 
DO K=l,I 

L H=K 
I6-( K.EQ.1) L-H=J 
DO L=l ,L-H 

Compute (ijlkl) 
END DO 
ACC Fk block 
END DO 

GET Dk block 

ACC Fj block 
END DO 
ACC Fi block 

END DO 

Figure 3. DDSCP Pseudocode with performance analysis of time consuming steps. Note: this analysis 
is based on the number of operations ignoring of the cost of each operation. t,,,, and tcomp are 

time(sec) per each operation defined in Section 5 

The most expensive communication operations are in lines 3 and 5 ,  where the order is 

0(Ns,13)  . So, the communication scales as 0(Ns ,13 )  while computation scales as 

0(Ns,14) . This algorithm may perform well on supercomputers. However, on clusters 

where each communication operation is 10 times more expensive than computing one 

integral quartet, one wiIl obtain poor performance due to the communication overhead. 

There are many possibIe solutions. One is to work with large blocks of data. The 

extreme case occurs when the size of a block is equal to N,h/N,. So each time one shell is 

requested from a remote processor, all shells fiom the remote processor are copied to a 

local buffer on the compute server. Then, the latency is offset by moving Iarge blocks of 

data and the “effective” bandwidth improves significantly. But in this case, six buffers: 

Di, Dj, Dk, F;, Fj, F k  have to be allocated on each processor, where the size of each buffer 
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is Nsh/ N, This effectively increases local storage requirements by a factor of 6 .  This 

measure is justified only for large massively parallel processor platforms (MPPs). 

A second approach is to calculate integral quartets only on the processor that has 

the k block on its local data server. Then, the communication cost scaIes as O(N,,t2) vs. 

computation 0(N,, ,4) . The communication overhead drops significantly, but the 

computation of integra1 quartets is then based on a static distribution of density and Fock 

matrices. This algorithm has poor load balance, because: 

- Time to compute integral quartets greatly depends on the angular momentum of 

the basis Eunctions, on the integral package and on the basis set used. 

Distribution of integral quartets to be calculated is not constant among processors. 

Figure 4 iIlustrates this load balancing problem for the simple case of &-,=20 and Np=20 

from it simulation of our application. Then, Njnt is the total number of (ijlkl) integral 

quartets calculated on processor p. An integral quartet is calculated on processor p only if 

index (ijlkl) integral quartet index k = p, so that the Dk block from Figure 3 is local. The 

data is obtained from simulation of code and holds for much larger values of Nsh and N,. 

- 
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__ 

Integral contributions versus processor number. 

Nint 

1 3 5 7 9 11 13 15 17 19 
p (processor number) 

Figure 4. Distribution of integral quartets to be calculated over processors 

Due to the reasons listed above, the wall clock time for the SCF step for the 

problem illustrated in Figure 4 averaged over all nodes scales perfectly, but there is a 

significant discrepancy in wall clock time among different nodes. The wall clock time on 

the last and first nodes tends to be much smaller than on other nodes because of the nature 

of the index k. It is possible to balance computation time by introducing shell and integral 

quartet weights, determined by predicting how much time each shell will require to 

calculate integrals. Once this information is available, the shells are distributed in such a 

way that each processor spends equal time. The weight for each shell may be calculated 

from Figure 5. To account for the diversity in integral calculations, the calculation time 

for each integral quartet can be estimated based on the type of shell. However, this type of 

prediction is unreliable, since it depends greatly on the specific integral package, and 
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leads to asymmetric distribution of both matrices. Further, the implementation is 

complicated. 

A composite algorithm is needed to achieve reasonable performance and good 

scaling. Good performance should be achieved by preserving communication scaling as 

O(ZVs,r2) and good scaling via dynamic load balancing. . 

Since both density and Fock matrices are symmetric, in the original replicated 

data algorithm we addressed only the lower triangles. The key to achieving dynamic load 

balancing is to store the entire symmetric matrix. The kl element in the lower triangle is 

equal to the lk element in the upper triangle, but they belong to different nodes unless 1 

and k shells are on the same processor. This is rare if one is using more than a few 

processors. 



48 

K shell 

1 
Processor 0 ... 1 ,.. P ... Np-1 ... 

0 

1 

Kshell p+ 

J shell 

I shell ’ * 
N, -1 

NP 

Figure 5. Distributed square matrix 

The access pattern to I, J, and K shells is demonstrated in Fig. 5. Processor p has 

the whole K she11 (KL block) that is located in the lower triangle. At the same time, 

processors with index < p have part of the R shell (LK block) located in the upper 

triangle. This creates the basis for dynamic load balancing. The workload is balanced 

between a processor that has the KL block and a processor that has the LK block. This 

approach, which distributes the workload by taking advantage of the symmetric property 

of density and Fock matrices, is called pair-wise dynamic Ioad balancing. The K and L 

indices are frequently changed inside the four loops, providing good average load 

balancing demonstrated in Figure 6. 
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time, 
sec 

processor 

Figure 6. Time to complete one SCF iteration on 16 processors. The tested system is described in 
Section 6 

In conventional dynamic Ioad balancing a local counter on each processor is 

incremented for all task values and compared with a global counter; the global counter is 

increased via message passing. In the pair-wise dynamic load balancing scheme, only 

processors that have the local K or L shells compare the local counter with the global 

counter. Since the dynamic load balancer is located inside four loops, fine-grained load 

balancing is achieved. The price for such a load balancer is the communication overhead 

associated with incrementing the global counter, since this may affect the scalability of 

the algorithm on a system with a large number ofprocessors. 
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DO I=l,Nsh 
DO J=l,I 

DO K=l,I 
L-H=K 
IF ( K.EQ.1) L-H=J 
DO L=l ,L-H 

IF K or L is local then 
Pair-wise Dynamic Load Balancer 

END IF 
END DO 

END DO 
END DO 

END DO 

Figure 7. Pseudocode of final version of DDSCF 

Figure 7 presents the final version of the DDSCF algorithm. Both density and 

Fock matrices are distributed evenly among the processors. The distribution is done over 

shells since integral quartets are evaluated over shells. All communication calls are placed 

inside the four loops to dynamically load balance them. DDDI operations are called only 

when the outer loop counter has been incremented. This is also a scheme for enhancing 

the overlap of communication with computation since a node only does communication 

when it has received a task to compute that can be enhanced further if we would use non 

blocking GET and ACC operations. 

The DDSCF algorithm can be improved further if communication between local 

computation and data-server processes becomes a bottleneck. A copy of the local portions 

of F and D matrices, held simultaneously by the data-server process, is placed in the 
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innermost loop shown above. This additional improvement provides true scalability of 

both data and work loads on commodity hardware such as PC clusters at the expense of a 

four-fold redundancy in data storage. 

Note that the access pattern to density elements is different from the access pattern 

to Fock elements. Each time, when a new integral quartet is calculated, the whole set of 

Fock elements is updated: 

The partial contributions in the lower and upper triangles of the Fock matrix are summed 

on each processor at the end of each iteration. 

The next two sections consider the performance model and results that 

mathematically and experimentally illustrate that DDSCF is an efficient and scalable 

algorithm. 

5. Performance models 

The quality of the DDSCF paraIlel algorithm shown schematically in Figure 7, is 

estimated in this section by two important performance models [27,28,29,30]. The first is 

the ratio of computation time to communication time. The second model addresses 
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communication efficiency. These two models use estimates of computation and 

communication times that are calculated below. 

The total number of integral quartets is given by 

The actual number is usually less than the theoretical number, since factors such 

as the molecular symmetry, basis set, and integral screening can significantly reduce Nint. 

Some of these factors are included in a “scale factor” a that ranges from 0 to 1. So the 

computation time on Np processors is : 

where tcomp is the average time required to calculate integral quartet. 

From Figure 3, the total number of communication operations N,,,, is the sum of 

Get (Neomm-geJ and ACC (Ncomm-acc) operations from I and J loops: 

For simplicity we assume that bandwidth (3W) and latency (tlatency) of Get and Acc 

operations are same. The time required to perform one communication operation, bomml is 

the sum of the latency time and the transmission time (ttmnsm): 

The transmission time is caIculated from the bandwidth obtained from the formula: 

where Nbfpsh is number of basis fbnctions per shel1. 



53 

Thus, the total communication time on Np processors is: 

The total execution time on N, processors is: 

K x e c  = Kornp + r,Of,l , lI  

The first performance model measures the ratio of computation time to communication 

time (Tratio): 

After substitution of appropriate values taken from Tables 2 and 3, Trati0 is in the range 

where 

Nsh ranges from 1000 to 10000 

Nbfpsh=4 

tcomp =6'10a5 sec (6-3 IG** basis set) 

-4 
t]a[c"cy= 1 * 10 sec 

BW = 9 Mblsec 

The second performance model addresses the communication efficiency (Efcomm) 

of DDSCF; this is the ratio of computational time (eq. 9) to the total execution time (eq. 

19) : 

After substitution of same constants as in Tratio: 
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Such high Tratio and Efcomm suggest that in the algorithm presented in Figure 7, 

communication time is negIigible compared to computation time. This means the CPU 

utiIization will be high on each processor, resulting in good performance of DDSCF. 

Since these two models don't include the sparsity factor that arises from the molecular 

geometry and basis set, there can be significant variation between results of performance 

analysis and actual calculations. It is clear that the DDSCF algorithm will perform best 

for dense molecules and large basis sets because of improved T,,,, over T,,,,. 

These two performance models demonstrate that for a sensibly chosen problem, 

the DDSCF algorithm is very efficient. One can expect that DDSCF wilI have good 

scalability on a large number of processors, as well as good performance relative to a 

replicated data SCF algorithm. In the next section, the results of test calculations are 

shown that are consistent with results of the performance analysis. 
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6. Results 

To test the scalability and overall performance of the DDSCF algorithm two 

molecules are chosen. The first molecule is calphostin [3 11, a potential anti-cancer drug 

[32,33]. The optimized structure is illustrated in Figure 8 (a). The second molecule is 

luciferin [34], whose equlibrium structure is shown in Figure 8 (b). Luciferin’s 

fluorescent properties are responsible, for example, for the light emitted by fireflies. The 

basis sets used for calphostin and luciferin are the split-valence basis sets [35] 6-31G (d) 

and 6-3 IG (p,d,i), respectively. The choice of molecules and basis sets was determined to 

design computationally demanding calculations that produce reliable benchmarking 

results, such that all arrays fit in the memory of a singIe node of a PC cluster [16]. 
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Figure 8. Calphostin (946 basis functions) on the top (a) and Luciferin (498 basis functions) 
on the bottom @) 
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Calphostin Luciferin 

Table 4. Speedup and wall clock time (see) of the Fock builder in the first RDSCF iteration on a 16 
node PC cluster 

Table 5. Speedup, wall clock time, Comm time, and Comm% of Fock builder in first DDSCF 
iteration on a 16 node PC cluster; times in seconds 

In Tables 4 and 5 the wall clock time is measured on the compute server, while 

communication (Comm) time is measured on the data server. Since all communication 

operations are synchronous, the communication time on the data server provides a good 

estimate of the ratio of communication time to computation time on the compute server. 

The communication time for calphostin is bigger than that predicted by our performance 

model. This can be explained by DLB overhead or inefficient work of the data server. 

First, compare the performance of the RDSCF and DDSCF algorithms. In Tables 

4 and 5, the waIl clock times for calphostin and luciferin are presented for different 

numbers of nodes [14]. The wall dock time is almost identical for RDSCF and DDSCF 
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algorithms. As expected, even though the density and Fock matrices are distributed in the 

DDSCF algorithm, communication time does not contribute significantly to the overall 

timing. 

The relative speedup data of DDSCF is demonstrated in Table 5. Calphostin and 

luciferin scale very well, but there is a small loss in scalability on 16 processors. The loss 

in scalability is mainIy due to communication operations between computational and data 

servers. In Table 5 ,  the Cornm columns present the time spent to perform message 

passing by each data server. The percentage (Comm%) wall clock time on computational 

server to Comm clock time on data server is demonstrated in TabIe 5. Up to 10 % of the 

Comm time is consumed by communication operations such as GET, ACC, and message 

passing operations to update the global counter for the dynamic load balancer. 

The overall performance of DDSCF is good as expected from the performance 

model analysis. For much bigger molecules, the speedup data is likely to improve, since 

the number of computational operations grows much faster than the number of 

communication operations in the DDSCF algorithm. 

7. Conclusions 

We have successfully developed an efficient, scalabIe distributed data algorithm 

that solves a major bottleneck in SCF caIculations on distributed memory platforms. A 

new dynamic load balancing technique for symmetric matrices is developed. This 

technique allows us to significantly improve the ratio of computation time to 

communication time, and to achieve excellent load balancing. The performance models 

and results demonstrate the high efficiency and scalability of the DDSCF algorithm. 
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The cluster solution for supercomputing is an attractive alternative to large 

massively paralleI processor platforms due to a good performance/price ratio. The slow 

speed interconnection between nodes on clusters is the source of poor performance and 

scalability of algorithms developed for MPPs. Typically, in distributed data quantum 

chemistry algorithms, bulk data is moved between processors. This means that to achieve 

good performance and scalability high bandwidth is required. Bulk data movement is 

designed to hide the need for low latency network. 
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CHAPTER 4: A DISTRIBUTED DATA PARALLEL 

CPHF ALGORITHM FOR ANALYTIC HESSIANS 

A paper to be submitted for pubIication to 

Journal of Computational Chemistv 

Yuri Alexeev, Michael W. Schmidt, 

Theresa Windus, Mark S. Gordon 

Abstract: 

One of the most commonly used operations to study potential energy surfaces of reactions 

and chemical systems is the Hessian calculation. The most accurate analytic Hessian is 

cornputationally and memory demanding. A new highly scalable, efficient, distnbuted 

data analytical Hessian algorithm is presented. Features of the distributed data parallel 

CPHF are (a) columns of density-like and Fock-like matrices are distributed among 

processors, (b) an efficient static load balancer scheme was developed to achieve good 

work load distribution among processors, (c) network communication time is minimized, 

(d) numerous performance improvements in analytic Hessian steps. As result, the new 

code has excelIent performance. The performance of the code is demonstrated via 

calcuIations on large biological systems. 
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Introduction 

An important advance in theoretical chemistry is the development of new.methods 

and algorithms for calculating large chemical systems. The need for new parallel 

algorithms arises because many important quantum chemistry methods such as second 

order perturbation theory (MP2) El], coupled cluster theory (CCSD(T)) [2 ] ,  hull 

configuration interaction (FCI) [3], complete active space self-consistent field (CASSCF) 

[4], and analpica1 Hessian calculations 151 are bounded not only by CPU power but by 

the amount of the memory and disk on a computer as well. Thus, the sizes of systems that 

can be studied by such methods often limit their usefulness to the scientific community. 

An important direction in quantum chemistry is developing algorithms so that both 

computation and memory are scalable. 

To study potential energy surfaces of reactions and chemical systems two 

operations are performed most often: energy + gradient calculations and Hessian 

calculations. The Hessian is the second derivative matrix of the total energy with respect 

to geometric coordinates. The diagonalized Hessian provides harmonic normal modes and 

corresponding vibrational frequencies. Transition states and minima are indicated by one 

and no imaginary mode, respectively. So, a Hessian calculation is useful both for 

providing vibrational frequencies and as a diagnostic for the nature of a stationary point. 
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There are two types of Hessian calculations: numerical using a finite difference 

method [6] and analytic [7]. The computational and memory requirements are rather 

different for these two methods. The analytic approach is usually preferable due to the 

accuracy of calculated vibrational frequencies and considerable time savings. 

The coupled perturbed Hartree-Fock (CPHF) approach for computing analytic 

second derivatives was developed by many authors including Pople et al. [SI, since 1968 

when it was introduced by Gerrat and Mills [7]. The first implementations used a 

molecular orbital (MO) based approach in which the orbital Hessian used in the CPHF 

was computed via two electron MO integrals. This approach requires a four index 

transfornation of atomic orbital (AO) integrals and therefore storage of the huge 

intermediate orbital Hessian matrix. Osamura et al. [SI suggested an A 0  based approach 

to solve the CPHF equations. Later Head-Gordon et al. [ 103 developed a “direct CPHF” 

method to avoid the four index integral transformation and storing the orbital Hessian 

matrix. This approach is used in the present paper. 

The CPHF step is one of the most computationally demanding steps in the 

analytic Bessian code. Further, the memory requirements of the CPHF step are the largest 

in analytic Hessian calculations. This limits the size of chemical systems that can be 

studying using this method, The current bottleneck in the replicated data CPHF algorithm 

that .is implemented in GAMESS [ l l ]  is that the density-like (D) and Fock-like (F) 

matrices which scale as Ow3) ,  where N is the size of the atomic basis set, are replicated 

on each node. Both matrices are three dimensional matrices, so CPHT calculations are 

limited to relatively small chemical systems if all matrices are replicated. 

There have been severaI other efforts to parallelize the CPHF step in Hessian 

calcuIations. Windus et al. [12] developed a “small scale parallel algorithm” for first and 

second derivatives of the integrals. In their implementation, the orbital Hessian used in 
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the CPHF step was computed via MO integrals. Both the four index transformation of A 0  

integrals and the CPHF step were carried out sequentially. Marquez et al. [13] 

implemented parallel second derivatives of the integrals, four index transformation of the 

A 0  integrals, and the CPHF step in BOND0 [14]. However, in their implementation the 

MO integrals were saved to the disk. The product, orbital Hessian with response matrix, 

is directly computed from saved MO integrals. As result, on 8 CPUs a relative speedup of 

only four is achieved. Sosa et al. [ 15,161 parallelized a LCdirectyy implementation of CPHF. 

The relative speedup is 13 on 16 CPUs, using is a - Pinene and the 6-31G(d) basis set on 

a Cray T3E 600. The main disadvantage of all these algorithms is that all arrays are 

duplicated. So the largest system that can be calculated is limited by the maximum 

-memory on a single CPU. Recently Prakashan et al. [17] reported a simple “direct” 

parallel implementation of CPHF [lX], in which both computation and memory are 

distributed among all CPUs. The parallelization is done via responses that are evenly 

divided among the CPUs. Subsequently, each CPU runs a sequential CPHF within a 

given subset of responses. Thus, memory and computation are distributed. This is a very 

appealing approach because of simplicity of implementation. There are however, a few 

drawbacks to this approach: (a) the computation of integrals is replicated on each CPU, 

(b) the work load balancing is not addressed: some of the responses usually converge 

earlier than others (the average CPU time reported may differ from the real time), (c) 

possibly slower convergence depending on the converger: next trial responses are 

obtained within a subset of responses on each CPU [19]. The replication of the integral 

computation is a fundamental limitation due to Amdahl’s law scalability of this 

algorithm. The relative speedup of C24H50, using the 6-3 lGh basis set on an IBM SP is 12 

on 16 CPUs. 
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The purpose of the present paper is to present a distributed data coupled perturbed 

Hartree-Fock (DDCPHF) algorithm. The algorithm uses recently developed algorithms 

and libraries to achieve good scalability of both computation and memory among 

available CPUs. The “direct” approach pioneered by Head-Gordon [lo] is used to avoid 

storage of the orbital Hessian. To solve multiple sets of linear CPHF equations a fast 

preconditioned conjugate gradient procedure is used [20]. The memory is distributed via 

the distributed data interface (DDI) [21]. The novel DDCPHF aIgorithm presented here 

uses an approach originally developed for parallelization of the self consistent field SCF 

method [22]. Hence, the algorithm is efficient and scalable. This is demonstrated by 

benchmark timings presented in the Results section. The code is developed for closed 

shell wavefunction, but can be easily extended to UHF and ROHF wavefunctions. 

Tools and platforms 

Beowulf-class clusters [23] are popular since smaIl research groups and 

departments usually don’t have sufficient resources to purchase large computer systems. 

Currently, the most common types of clusters are workstations connected by a 

commodity network such as Fast Ethernet or Gigabit Ethernet. The DDI codes in 

GAMESS have been developed and tested on an IBM pSeries cluster [24]. This cluster 

consists of 32 IBM RS/6000 pSeries p640 servers connected by dual Fast Ethernet and 

dual Gigabit Ethernet. Each p640 has 4 Power311 processors running at 375MHz, with 16 

GB of memory and 73 GB local disk. The aggregate system has 512 GB of RAM and is 

capable of 192 GFLOPs peak performance. 
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Complex scientific applications, such as many quantum chemistry methods 

including CPHF, often require a sophisticated distribution of data with irregular access 

patterns. The complexity of programming within the limits of a classical message-passing 

model [25] can be too high for such applications. An alternative is a model based on the 

global memory access model. The globaI memory access model is implemented in 

GAMESS in the DDI library. At present, DDI uses only simple distributed memory 

operations based on the point to point messages presented in Table 1. 

Table 1. Distributed memory operations 

DDI - CREATE I Create distributed matrix 
DDI-DESTROY Destroy distributed matrix 
DDI - DISTRIB Obtain distributed matrix distribution 

DDI-GET I Get patch of distributed matrix I 
DDI - PUT 

DDI-ACC 

Put patch of distributed matrix 

Accumulate patch of distributed matrix 

Brief review of CPHF theory 

There are two methods for computing Hessians: analytic and numerical. A 

numerical Hessian calculation has a modest N2 (N is the total number of basis functions) 

memory requirement, but is computationally ineffective because it scales as Nxp*P*Niter 

(where N,, is the total number of atoms in the system multiplied by three and Niter is the 

number of iterations) and frequently does not predict accurate vibrationa1 frequencies. 
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The analytic Hessian method presented in this paper has N2*N,, memory requirements 

and Nite,*N computational requirements. 4 

One of the most computational and memory consuming steps of analytic Hessian 

calculations is the CPHF step. The CPHF equation is: 

((4[ij Ikl]-[ik~l]-[il~k])-(~, - ~ , ) 6 , 6 ,  >Ui,= 
k l  

=T (S; (2  [ij Ikll- [ikb 13 +S;E -F; ) 
k I  

where i,k represent virtual MO orbitals, and j,l represent occupied MO orbitals. Therefore 

[ijlkl], etc. are two electron integrals over MO, E, are the orbital energies, U is the 

response matrix, Sa is the derivative of the overlap matrix, F" is the active Fock matrix, 

One can rewrite equation [ 11 in the more compact form 

where A is called the orbital Hessian and B is referred to as the inhomogeneity. All 

matrices are formed in the molecular orbital (MO) space. To avoid calculations of the 

large A matrix, Aij,klUk? and Bija and are calculated directly from A 0  integrals. GAMESS 

uses two integral packages. For fast evaluation of integral quartets consisting of s and p 

atomic orbitals, the Pople-Hehre [26] integral package is used. For all higher angular 

momentum integrals, the Rys polynomial code [27] is used. Since the integrals are 

evaluated in shell integral quartets this explains the loop structure shown in Figure 4 

below. The computation is converted to a series of Fock -like builds from density - like 

matrices with dimension N2*N,,. The A 0  integrals required by the CPHF are calculated 

in exactly the same way as in the Fock builder. The only difference is that each unique 
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integral quartet multiplies up to 6*NxF density - like matrix elements to update up to 

6*N,, Fock - like matrices: 

FkliXF+Dijixyz (ijlkl) -> FklixYz 

F~/XYZ+J-J~~W (ijlkl) -> FjliXw 

-.. 

As a result, the computation to communication ratio is even smaller for CPHF than for 

the Fock builder because communication requirements have grown more than 

computation requirements. 

After Ai,JJkt and Bija are formed, the multiple set of h e a r  equations 

CCA,. Ua -Ba=O 
k l  9 ,kl M 11 (3 )  

is solved using a preconditioned conjugate gradient procedure. 

Distributed data CPHF algorithm 

To explain clearly the strategy used to parallelize the CPHF aIgorithm and how it 

is implemented, this chapter is divided into subsections that clearly explain each step. 

The goals of the DDCPHF paralldization scheme are 

1. Distribute evenly the computation and largest Fock - like and density - like 

matrices among available processors. The code should have both computational 

and data scalability. 

2. Minimize communication and other overheads. The code is supposed to have 

comparable performance to replicated data CPHF. It is often possible to design a 

code that has good scalability but poor performance. 
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A few techniques can be applied to parallelize the CPHF code and satisfy the goals listed 

above. These techniques are discussed in detail in the next four sections. 

1. A blocking technique 

In the commonly used blocking technique small computational tasks are grouped 

into larger tasks. If the computational tasks are grouped then the necessary data needed to 

get or accumulate is grouped too. This will increase the network bandwidth for 

communication operations if the size of the data block before grouping is less than -3 M B  

(the actual number depends on network type, operating system, etc). A typical bandwidth 

graph is shown in Figure 1 .  The graph will look different for different MPI 

implementations and other factors [ZSJ. However, the typical change is decreasing 

bandwidth and shift of the curve to the right which will make blocking of data even more 

justified. 

1000 
900 
800 

2 700 
600 

B 

$ .- 500 
4 400 
5 300 

m q;1 
0 

1.EtO0 I.E+02 1.E1-04 I.E+06 1.E.108 
Messagesize, bits 

Figure 1. TCP/IP sendlreceive performance on the IBM RS/6000 

In GAMESS, A 0  integrals are computed in shell blocks. Therefore every D(1,J) element 

is accessed as a block of data D(l:N%@shI,l:NbfpshJ) where NbfpshI and NbfpshJ are 
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number of basis functions per corresponding 1. and J shell, This approach can be extended 

further to compute integrals over atom blocks [29,30]. In the DDCPHF algorithm a more 

effective strategy was employed to block data. Note that the six Fock-like update 

operations can each be divided into three groups, as shown in Figure 2. 

Djixyr block contains: 

FjixF bIock contains: 
D j ~ x y z ,  Djlixy2 

FjkixF, FjliXF 

DkiXYZ block contains: 

FixYz block contains: 
DkliXYZ 

FkliXF 

Figure 2. Grouped update operations and corresponding block structures 

The idea is to access, for example, a line DiixF in a 3 dimensional density - like or Fock - 

like matrix every time Dij'"", DikixF, DiliXF are needed. The density - like matrix is shown 

in Figure 3. The access to the Fock - like matrix is performed in the same way. 

Y V 

Figure 3. Density like matrix D; Di block is a blue box 
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For large target systems the size of each block is estimated to be -3-10 MB which is 

beyond the 3MB threshold. Therefore, operations GET and ACC in the DDCPHF 

algorithm operate on the optimal size of the data. 

2. A localized data access technique 

Dynamic load balancing (DLB) is ofiten used when an even distribution of 

computations is desirable. The disadvantages of DLB are that there is communication 

overhead associated with distributing jobs on the master CPU and there is irregular access 

to the data. The irregular access often implies that if data is not local then it must be 

fetched from remote CPUs. The cost of fetching data can easily surpass the time required 

to compute a task, especially if small tasks are utilized. Therefore, DLB is best suited for 

replicated data/computationally driven algorithms. The alternative approach is to utilize a 

static work distribution. In this data distribution driven paradigm, the computation of a 

task is performed only if the data is local. This is the approach used in the DDCPHF 

algorithm. In the proposed DDCPHF algorithm in Figure 4, an integral is computed only 

if shell J or K is local. 

DO I=l ,Nsh 
1. GET D(I) shell 

DO J= 1 ,I 
DO K=l,J 

DO L=l,K 
IF J or K is Local 

Compute (IJIKL) 

Update Fock elements 
END DO 

Cost Number of operations 

1- tcornnl Nsh 

END DO 
END DO 
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END DO 
4. ACC F(1) shell 

END DO 
4. ~,omrn 

Figure 4. DDCPHF algorithm with performance analysis of time consuming steps; 
tCollllll i s  the time to getlacc one shelI, fcolnpl is the time to calculate two electron integral block, 

t conlpz is the time to to update up to six Fock elements 

Up to six elements of the Fock matrix are updated from up to six elements of the density 

matrix. All CPUs execute the GET D(1) shell so that all CPUs have Dij, Dik, Dil elements. 

After the integrals are computed the F(1) shell is accumulated to the distributed matrix F 

so that the Fij, Fik, Fil elements are updated. Other elements are fetched and updated based 

on whether she11 J or shell R is local. If shell J is local Djk and Djl elements are available 

and F j k  and Fjl elements can be updated in array F(1) which will be accumulated at the end 

of the cycle: 

Update array F(1): 

F(I,K)= F(1,K)-D(J,L)*(IJIKL) 

F(I,L)= F(I,L)-D(J,K)*(IJIECL) 

Update local F(J): 

F(J,K)= F(J,K)-D(I,L)*(IJIIuL) 

F(J,L)= F(J,L)-D(I,K)*(IJlKL) 

If K shell is local Dkl element is avaiIable and Fkl element can be updated: 

Update array F(1): 

F(I,J)= F(1,J)-D(K,L)*(IJIKL) 

Update local F(K): 

F(K,L)= F(K,L)-D(I,J)*(IJlKL) 
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3. Self consistent work distribution 

The advantage of using a static work distribution is clear from Figure 4. This 

aIgorithm has a large computation cost to communication cost ratio: 

5 Computation - Ns,l 
Communication Nsh 

--- Ratio = - NSh4 (4) 

The reason that DDCPHF is such a communication conservative algorithm is that tcomm>> 

tcornp1 where bompl  is defined in Figure 4. 

In the new DDCPHF algorithm the computation of integral quartets is then based 

on a static distribution of density and Fock matrices. The work load per CPU is affected 

by the following factors: 

1. The time required to compute integral quartets greatly depends on the angular 

momentum of the basis functions, on the integral package and on the basis set 

used. 

2. The disbibution of integral quartets to be calcuIated is not constant among 

processors (This is explained in detail in [22]). 

3. The time required to compute integral quartets depends on distances between 

atoms in a chemical system or how many integrals are screened out. 

To solve the workload imbalance note that CPHJ? has an iterative nature as do 

many quantum chemistry algorithms. The responses are unknown, and it takes 10-15 

iterations to converge. Initially, shells are distributed evenIy among CPUs for the D and F 

matrices. After each iteration, the time to compute the integrals associated with a given 

shell is estimated based on the wall clock time required to finish the CPHF step on one 

CPU divided by the number of shells per CPU. The distribution of shells is adjusted, 

based on this information on the next iteration. Typically, the self consistent work 
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distribution converges within 3-5 iterations if the convergence criterion is 10% 

imbalance. After the self consistent work distribution converges the shell distribution is 

locked and CPHF proceeds further until responses are found. The work distribution is self 

consistent because redistribution of the shells affects the time associated with the 

computation per shell. Since wall clock timings are used, at convergence, all factors such 

as molecule properties, network performance, heterogeneity of a cluster are taken into 

account to achieve good work load distribution. 

To demonstrate the performance of the self consistent work distribution scheme 

the cAMP molecuk [31] was chosen. CAMP is the second messenger that carries signals 

from a cell surface to proteins within the cell, and is found widely in eukaryotes. cAMP 

also frequently acts to stimulate protein kinases. The basis set used for CAMP calculations 

is 6-31G (d,p). On the first iteration 122 shells are distributed evenly on 8 CPUs as shown 

in Figure 5. This results in an uneven work load distribution which is a direct result of 

using the localized data access technique discussed in the previous section. The weight or 

workload associated with a shell is estimated by using wall clock timings. This 

information is used to redistribute shells in the D and F matrices. After four iterations 

good workload is achieved. The green line is an optimal workload. The final workload 

imbalance is an acceptable 8%. 
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Figure 5. Workload and shells distribution of CAMP in the first four CPHF iterations; 
Shell number is the x axis and wall clock time is y axis 

4. Cache optimization technique 

Cache optimization is often underestimated or not taken into account in 

parallelization of code. A code running on a cluster of computers can potentially utilize 

cache on each CPU, vs. a sequential code for which only one cache is available. As the 

number of CPUs grows the data is partitioned so that it fits completely into the cache on 
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each CPU. In such a case a super linear speedup may be observed. This was achieved in 

the algorithm, developed by Korambath et al. [ 171. 

In the DDCPHF code it is hard to achieve super linear speedup due to the manner 

in which parallelization is organized. Parallelization is implemented in the same way as 

SCF for which no cache optimization approach exists to achieve super linear scalability. 

There is currently underway an effort to cache optimize the code for a replicated 

data parallel CPHF code. This will improve the performance of sequential CPHF and 

DDCPHF codes as well. The “copy method” [32] will be utilized to insure conflict misses 

are minimized. The density, Fock blocks, and integrals will be grouped in a unified block 

to increase data reuse and reduce possibility of cache conflicts. This method will be 

implemented via reorganizing the internal loop in Figure 4. 

Results 

The moIecule calphostin C was chosen to test the scalability and overall 

performance of the DDCPHF algorithms. Calphostin C is a widely-used inhibitor of 

protein kinase C [33]. The basis set used for the calphostin C calculations is 6-31G (d,p). 

The choice of molecule and basis set was determined to design computationally 

demanding calculations that produce reliable benchmarking results. 
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Calphostin C 
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Figure 6. DDCPHF speedup; Tested system is caiphostin C (1060 basis functions, 96 atoms) 

Table 2. Time to complete different types of Hessian calcdations 

The speedup in Figure 6 and performance data in Table 2 are calculated based on 

wall clock time measured on the compute server. The longest wall clock time among all 

processors is used to compute each point in Figure 6. The DDCP€F code shows good 

scalability. The overall scalability of the Hessian is certainly not perfect. It may be 

possible to deveIop more sophisticated techniques to distribute the workload by 

redistributing shells in D and F. An advantage of the new algorithm does not have a built 

in scalability limit due to the network overhead. This is usually a common factor defining 

the scalability of an algorithm. 

The advantage of using the new distributed data analytic Hessian code rather than 

a conventional numerical Hessian code is clear from Table 2. In the DDCPHF algorithm 

the ratio of computation time to communication time (4) is approximately four, the result 

of careful analysis of data flow. The algorithms were designed to minimize 
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communication overhead that often prevents scalability. The difference between 

performance of analytic and numerical Hessians should become even bigger as the size of 

system is increased. 

Conclusions 

An efficient and scalable distributed data algorithm has been developed that 

solves a major bottleneck in analyhc Hessian calculations on distributed memory 

platforms. This novel algorithm has an excellent ratio of computation time to 

communication time and achieves good load balancing. The performance results 

demonstrate the good efficiency and scalability of the DDCPW algorithm. Calculations 

on big chemical systems are now possible not only on large supercomputers but on 

Beowulf-class clusters where communication overhead is often a bottleneck. 

The cluster solution for supercomputing is an attractive alternative to large 

massively parallel processor platforms due to a good performance/price ratio. The slow 

speed interconnection between nodes on clusters can be a source of poor performance and 

scalability of algorithms developed for MPPs. Typically, in distributed data quantum 

chemistry algorithms, bulk data is moved between processors. This means that to achieve 

good performance and scalability high bandwidth is required. It also means that new 

algorithms like that presented in this paper are required to efficiently utilize a cluster’s 

potential. 
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CHAPTER 5: A DISTRIBUTED DATA PAFtALLEL 

CASSCF ALGORITHM 

A paper to be submitted for publication to 

Journal of Computational Chemistry 

Yuri Aiexeev, Zhenting Gan, Michael W. Schmidt, Mark S. Gordon 

Abstract: 

A new parallelifization scheme for the complete active space self consistent field 

(CASSCF) method is developed. The purpose is to have a highly scalable, distributed 

data CASSCF to perform computations on large chemical systems. The approach uses 

recently developed algorithms to achieve excellent scalability. The following codes are 

utilized: a highly scalable two-electron integral transformation code, a parallel full 

configuration interaction (FCI) code, and a second order self consistent field (SOSCF) 

code. The preliminary results are demonstrated with calculations on a moderate size 

system. 

Keywords: 
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Quantum chemistry, complete active space self consistent field, CASSCF, full 

configuration interaction, FCI, second order self consistent field, SOSCF , DDI, 

Nonuniform Memory Access, Dynamic Load Balancing, Static Load Balancing. 

Introduction 

Computational quantum chemistry is a useful tool for providing reliable 

predictions of the structures and various properties of chemical compounds. A 

particularly important case is the study of chemical reactions in which bonds are forming 

and breaking. Another interesting case is the electronic excitation of an atom or molecule. 

In such cases, the wavefunction often has multiconfigurational character which requires 

multiconfgurational ab initio methods such as full configuration interaction (FCI) [ 11 or 

multiconhguration self consistent field (MCSCF) [2] for a correct description of the 

electronic structure. Even for small systems, the FCI can be extremely expensive to 

calculate. MCSCF is usually a more computationally feasible method. The most 

commonly used version of MCSCF is the complete active space SCF (CASSCF) method 

[3]. In CASSCF the most chemically important orbitals and electrons are selected. They 

are usualIy referred as active orbitals and active electrons correspondingly. All possible 

configurations are generated by distributing active electrons in the active orbitals. 

CASSCF calculations consist of muItiple steps: A 0  integral transformation, FCI 

computation within the active space, orbital optimization step. Each of these steps can 

become a computational andor memory bottleneck. 

There have been several other efforts to parallelize MCSCF. Dupuis et al. 

implemented a parallel first order MCSCF. The A 0  integral transfornation was 



86 

parallelized, but the FCI computation and orbital optimization step were not parallelized. 

Therefore, this code has very limited scalability. Windus et al. developed a parallel 

algorithm for the integral transformations and GUGA based FCI in GAMESS [4]. The 

code has limited scalability on a small number of CPUs; this will be demonstrated in 

Section 4. 

The purpose of this paper is to present a distributed data CASSCF (DDCASSCF) 

algorithm. To achieve excellent scalability and efficiency, recently developed state of the 

art algorithms and libraries were employed. The goal of DDCASSCF is to perform 

computations on large chemical systems. The code has been implemented in the ab initio 

quantum chemistry program GAMESS [ 5 ] .  

Tools and platforms 

Beowulf-class clusters are an attractive option for small research groups and 

departments that usually have insufficient resources to purchase large computer systems. 

Currently, the most common types of clusters are workstations connected by a 

commodity network such as Fast Ethernet or Gigabit Ethernet. The DDI codes in 

GAMESS have been deveIoped and tested on an IBM pSeries cluster [6]. This cluster 

consists of 32 IBM RS/6000 pSeries p640 servers connected by dual Fast Ethernet and 

dual Gigabit Ethernet. Each p640 has 4 Power311 processors running at 375MHz, 16 GB 

of memory, 73 GB local disk. The aggregate system has 512 GB of RAM and is capable 

of 192 GFLOPs peak performance. 

A model based on the global memory access model is a convenient model for 

algorithms that require a sophisticated distribution of data with irregular access patterns. 
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DDT-CREATE 
DDI-DESTROY 

The global memory access model is implemented in GAMESS in the DDI library [7]. At 

present, DDI uses only simple distributed memory operations based on point to point 

messages. In the DDCPH3 algorithm the largest arrays are distributed and accessed via 

the DDI operations presented in Table 1. 

Create distributed matrix 
Destroy distributed matrix 

DDI-DISTRIB 

DDI-GET 
DDI-PUT 

DDI-ACC 

Obtain distributed matrix distribution 

Get patch of distributed matrix 
Put patch of distributed matrix 

Accumulate patch of distributed matrix 

Review of CASSCF theory 

The complete active space SCF (CASSCF) method is the most widely used 

version of MCSCF. In CASSCF the most chemically important orbitals and electrons are 

selected. These are called active orbitals and electrons, respectively. A11 possible 

determinants are generated by distributing the active electrons in the active orbitals in all 

possible ways. Thus, one of the CASSCF steps is the FCI method. 

The total CASSCF wavefunction yl,,,,,f is an antisymmetrized product of 

molecular orbitals (MO) 4 which can be represented by Slater determinants Yk : 

Y.,=;{qm.) 



88 

where Ak are the CI coefficients, 

Each molecular orbitals #i is expanded in an atomic basis set x, : 

, 
where CPiare the MO expansion coefficients. Both Ak and Cpi coefficients are 

variationally optimized. The orbitals #i can be divided into several subsets: core, active, 

and virtual MO orbitals. The following notation will be used to label different types of 

orbitals: 

i, j, k, I - core MO orbitals 
a, by cy d - virtual MO orbitals 
t,u,v,w-active MO orbitals 
p ,  q, Y,S - general MO orbitals 
p , v , A , ~  - A 0  orbitals 

The energy expression for a CASSCF wavehnction is 

where hP4 and (pq  Irs) are one and two electron integrals respectively; y,, and rprlrs are 

one and two body density matrices. 

To minimize the energy (4) with respect to both Ak and C, coefficients, the 

frequently used “unfolded, two step” approach is employed in GAMESS. In the first step, 

8E 
the Hamiltonian is constructed and energy minimization - = 0 leads to CI coefficients 

8 4  

A k .  On the second step given A , ,  the orbital improvement scheme generates Cfli 

coefficients with fixed coefficients A,.  The procedure is repeated until convergence is 

achieved. 
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One of the most advantageous orbital improvement schemes is the approximate 

second order Newton-Raphson method: 

x = -B-'g (5) 

where x is a vector of independent rotational parameters, I3 is the orbital Hessian of the 

energy matrix, g is the orbital gradient of the energy vector. The independent rotational 

parameters x were utilized since not all MO expansion coefficients Cpi are independent 

variables. It is desirable to preserve orthogonality of the starting,MO orbitals without 

introducing Lagrange multipliers. So the orthogonal matrix U is constructed fiom vector 

x elements. The orthogonal matrix U can be written as the exponential of an 

antysymmetric matrix x: 

1 U = e x p ( T ) = I + T + - T 2 +  ... 
2 

where T is 

T = [ O  --x "1 0 (7) 

In the current implementation expansion exp(T) (6) is truncated at the first order. 

The improved MO orbital coefficient matrix C,,, is obtained iteratively fkom Cold and U: 

C,,,," = C0,P (8) 

The orbital Hessian matrix B is a large matrix. In the approximate second order Newton- 

Raphson method only the diagonal elements are calculated [SI. The inverse orbital 

Hessian is updated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [9]. 

The gradient formula needed to compute x is derived fiom the Lagrangian formula 

(generalized Fock operator): 

i 
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Core 

The Lagrangian formula can be derived from the minimization of the energy expression 

0 Loreactive Lore-virtual 

for a CASSCF wavefunction (4) subject to orthonormalization constrains. 

The Lagrangian is the matrix which has the following arrangement: 

Core Active Virtual 

Active 

Virtual 

symmetric at convergence. Eliminating Lcore-vifiual and Lactive-vimal at convergence means 

that the single excitation element is zero. This is simply the Brillouin theorem [ 10,11,12]. 

There is also another Brillouin-Levy-Berththier theorem that states that at convergence 

gcore-active= Lorn-active- X-activc-core=O 

The detailed formulas for the gradients are 

where Fore and F" are defined as 
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The gradient is always computed exactly because this is the convergence criteria of 

MCSCF. Note that to calculate the gradient vector g the following classes of MO 

integraIs are needed: 

where "a" is an active orbital, "c" is core orbital, "v" is a virtual orbital. 

However, the orbital Hessian B [13] can be approximated. Chaban et al. [14] 

suggested to approximate the diagonal of matrix B to avoid computation of the MO 

integrals other than those needed for gradient computation. The approximate diagonal 

Hessian elements are 

Active-virtual: B,a,,a = 2~,~4,:,'~@ - Z~y, , ,FJ , :" '  - 2 ~ F , u v , v ( B  J uw) + 2y,,4zd (16) 
I I  IIUlY 

U UUlV 

Note that to calculate both g and B, only Fore, FC', and (pu uw) are needed. Fare and 

F"' can be calculated from A 0  integrals and via a similarity transformation which 

transforms Fore and P"' into appropriate MO space. The product of two body density and 

MO integrals r l r r u a ( p  I uw) needed in (1 1) and (12) can be calculated from the half 
U,U, lV  

transformed integrals ( p v  I ow) : 
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CPU 
2-e A 0  integrals 
Integral transf. 

FCI 
DM 

SOSCF 
Total time 

Therefore, only two types of integrals are needed for the whole CASSCF macroiteration: 

All active MO integrals: (tu I OW) 

Half transformed integrals: (P I ow) 

1 4 16 
366(363) 662(407) 895(373) 
348(344) 625(250) 1667( 126) 

8574(8573) lOOOl(8654) 8953(8933) 
11 86(1185) . 1193(1191) 14031 1192) 

78(77) 534(99) 21 02(99) 
10559( 10550) 1 1828( 10608) 15026( 10728) 

CASSCF parallelization strategy 

Currently, CASSCF is partially parallelized. Only the integral transformation step 

is parallelized by Windus et al. which is based on HONDO’s code [15]. The current FCI 

determinant code is not parallel. The molecule stilbene was chosen to test the 

performance of the current code on one macro iteration. The input file parameters are 

basis set: 6-311(dYp) (338 bf), group=C~, number of core orbitals ncore41, number of 

active orbitals nact=l4, number of active electrons nels=14. The performance and 

scalability of the code is demonstrated in Table 2. 

Table 2. CASSCF waIl clock timings for one macroiteration on 1,4, and 16 CPUs; 

improvement scheme described in the previous section 
CPU time in parenthesis, DM i s  computation of CL density matrix, SOSCF is orbital 

The overall performance of the code is not satisfactory. There are a few reasons that 

contribute to poor performance. The computation of 2-e A 0  integrals in the first step is 

replicated because all A 0  integrals on each CPU are needed for integral transformation in 

the current code. A 0  integrals, MO integrals, CI density matrix, and half transformed 
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integrals are stored on hard disk to reduce RAM memory requirements per CPU. This 

strategy is hardly applicable to clusters of S M F  workstations because the YO performance 

is often not addressed there. On the IBM workstation cluster where the code was tested, 

each box consists of four CPUs, two Gigabit Ethernet cards, and one Ultra SCSI I/O 

controller. This particular Ultra SCSI I/O controller (one of the best available) can sustain 

bandwidth 80 MB/sec or 20 MB/sec per CPU. The network bandwidth is approximately 

40 MEUsec per CPU. For comparison, the internal memory bandwidth for IBM Power3 

series is 275 MB/sec per CPU. The f a k e  of this approach can be clearly seen in integral 

transformation step. CPU timing has descent scaling, whereas wall clock time increased 

five times because of I/O on 16 CPUs compared to performance on one CPU. The 

distributed data algorithms including those used in parallelization of CASSCF have 

minimum HD VO and network bandwidth requirements. The data in the large arrays is 

recomputed, if it is too expensive to recompute then data is stored in distributed data 

arrays. 

In the DDCASSCF algorithm, new recentIy developed aIgorithms and new 

parallelization schemes are employed to achieve good scalability and performance. The 

proposed DDCASSCF algorithm is reviewed step by step below. 

1. Generate the following MO integrals distributed among nodes using the integral 

transformation adopted from the DDMP2 code written by Fletcher et al.: 

(tu I uw) : for the FCI step and orbital Hessian Equations (1 6), (1 7 )  

( p v  I ow) : the gradients in Equations (1 l), (12) are computed from half transformed 

integrals (pv I uw) 

2. Compute Fare from A 0  integrals. pore is needed not onIy in calculations of g and B 

but in the FCI step too 
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CPU 
Integral transf. 

Fore 
FCI 
DM 

SOSCF 
Total time 

3. Generate CI coefficients Ak using the DDFCI code E161 where the CI vectors are 

distributed among nodes 

4. Generate ypr, and rprjrs , respectively one and two body CI density matrices from CI 

coefficients Ak 

5. Parallel orbital optimization step SOSCF generates Cpi coeficients 

The most time consuming operations by far in SOSCF are computation of F““ 

and Pcf from A 0  integrals. They are essentially Fock builds with different density 

matrices which have to be transformed into appropriate MO space via a similarity 

transformation. F””” matrix is needed for FCI step so it is calculated in the step 2. The 

A 0  integrals are computed and written to disk. Fcr is computed directly fiom stored A 0  

integrals. Both steps are scaling as good as SCF which is almost‘perfect up to 32 CPWs. 

The estimated performance and scalability of code is demonstrated in Table 3 on 

the same molecule stilbene with the same input parameters as at the beginning of this 

section. 

1 4 16 
2635(2619) 674(665) 203( 181) 
366(363) 92(91) 23(22) 

4460(4460) 1 199(1115) 3 63(3 3 8) 
1186(1185) 297(296) 89(89) 

8725 (8704) 2282(2187) 684(636) 
78677) ZO(20) 6(6) 

The integral transformation step in Table 3 is the time to compute the distributed 

data MO integrals (oojoo). The code is adopted from the distributed data MP2 code. Since 

the code was originally developed for MP2 the unnecessary MO integrals (cclcc) are 
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computed too which is responsible for the difference in time to transform integrals on one 

CPU .in Table 2 and Table 3. The code will be modified firther to generate only the 

necessary MO integrals (aalaa) and the half-transformed integrals. Thus, it will decrease 

the time required for the integral transformation step significantly. computation of F 

matrix in Table 3 is the time to build the Fock matrix from A 0  integrals which are saved 

to disk. Timings for distributed data parallel FCI and DM steps are provided by Z. Gan. 

The code will be further improved in the computation of CI density matrix (DM step) 

because the time to compute the CI density matrix is too large. The most expensive 

operation in SOSCF is computation of PCr which is computed directly from stored A 0  

integrals. This step has same scaling as computation of a Fock matrix from stored A 0  

integrals. 

Conclusions 

A new efficient and scalable distributed data CASSCF algorithm is under 

development using recently developed highly scalable codes and parallelization schemes. 

The largest arrays such as CI vectors and half transformed integrals are distributed among 

nodes. Therefore, DDCASSCF will be able to perform calculations on big chemical 

systems. This is the major problem of the currently employed CASSCF method. 

DDCASSCF wilI have excellent performance. Further improvements of code 

performance are under way, 
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CHAPTER 6: GENERAL CONCLUSIONS 

All papers presented in the thesis have conclusions. Therefore, only general 

conclusions will be presented in chapter 6 .  

In the second chapter, titanium chloride (11) is investigated as a potential catalyst for 

the bis-silylation reaction. This paper falls into line with other papers recently published in 

the Gordon group that demonstrates the effectiveness of titanium as a catalyst. Ti is an 

electron deficient atom, so Ti readily forms additional bonds beyond the “usual” four. In the 

studied reactions, Ti in the initial steps binds with a n: donor reactant which results in large 

energy decrease. This large energy decrease ensures that the activation barriers for all 

subsequent steps are below the energy of the reactants. In the transition states of subsequent 

steps Ti typically forms more than four bonds which result in relatively small activation 

barriers compared to the energy of the reactants. We conclude that divalent Ti has the 

potential to become an important industrial catalyst for silylation reactions. The mechanism 

of bis-silylation reactions was studied in detail. The investigation of Pt as an effective 

catalyst for bis-silylation reactions is underway. 

In this thesis, parallelization of different quantum chemistry methods is presented. 

The parallelization of code is becoming important aspect of quantum chemistry code 

development. Two trends contribute to it: the overall desire to study large chemical systems 

and the desire to employ highly correlated methods which are usually computationally and 

memory expensive. Ab initio methods can provide reliable energetics and molecular 

properties for chemical reactions. In recent years because of that, quantum chemistry is 

becoming a valuable tool to study important biological reactions that result in better 
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understanding about how nature works. It may ultimately lead to finding better drugs to cure 

people, prolong people’s Iives and other applications. The main obstacle is the typical size of 

biologically important molecules. The quantum chemistry methods that can be applied are 

usually very simple methods such as RHF and DFT. The highly accurate methods such as 

CASSCF, MP2 and others are not applicable. Ths  problem is addressed in the thesis. The 

presented distributed data SCF increases the size of chemical systems that can be calculated 

by using RHF and DFT. The important ab initio method to study bond formation and 

breaking as well as excited molecules is CASSCF. The presented distributed data CASSCF 

algorithm can significantly decrease computational time and memory requirements per node, 

Therefore, large CASSCF computations can be performed. The most time consuming 

operation to study potential energy surfaces of reactions and chemical systems is Hessian 

calculations. The distributed data parallelization of CPHF will allow scientists carry out large 

analytic Hessian calculations. The parallelization of other quantum chemistry methods is 

undenvay. 
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APPENDIX: SUPPLEMENTARY MATERIALS 

Table S1. MP2 total energies with ZPE corrections in Hartrees 
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Table SZ. The Cartesian coordinates of each stationary point in A 

Structure 
R 
C2H2 
C 
H 
H 
C 
H 
H 
SizC16 
SI 
S [  
CL 
CL 
CL 
CL 
CL 
CL 
Tic12 
CL 
TI 

. CL 
M1 
Tic& CzH2 
TI 
CL 
CL 
C 
C 
H 
H 
H 
H 
M2 
SI 
CL 
CL 
CL 
TI 
CL 
CL 
CL 
SI 
CL 
CL 
C 
C 
H 

14 
14 
17 
17 
17 
17 
17 
17 

17 
22 
17 

22 
17 
17 
6 
6 
1 
1 
1 
1 

14 
17 
17 
17 
22 
17 
17 
17 
14 
17 
17 
6 
6 
I 

Cartesian coordinates 

2.51 0704 0.70891 2 3.26861 7 
2.3028 1.769408 3.266477 

2.00058 0.112671 4.01 1646 
3.358135 0.161058 2.394191 
3.868259 0.757346 1.651 159 

3.56607 -0.89943 2.396284 

0.094767 

1.640207 
-0.10036 

-0.44212 
-1.66785 
-1.64751 
1.658365 
0.443124 

-0.1 0908 
0.121383 
0.909694 

4.37633 
-1.721 13 

-0.89064 
-1.36917 
1.732963 

-1.16864 
1.169473 
1.9241 04 
2.01 135 
I .603596 
-1.92621 
-1.60202 
-2.00884 

-0.84389 0 -2.14549 
0.047493 0 -0.01989 
0.938856 0 2.105719 

-0.42276 
-2.37642 
0.877375 

0.59122 
0.201 957 
1.675436 

0.492072 

-0.1 1568 

-0.981 23 

0.45664 
1.6126 

'! .34414 
0.39562 

-1.44832 
-3.1472 

-0.93347 
-2.56331 
-1.691 46 
-1.391 86 
-2.84409 
-1.4574 

-0.31454 
-0.33542 

2.1 1 719 1 
I .453937 
1.168644 
4.126405 
3.371 178 
3.450499 
3.321452 
4.71 5883 
4.584973 

0.25742 

0.40249 
2.1 8085 
3.87206 
3.04965 
3.4885 

-0.85709 

-0.71 885 
-0.71678 
-2.64838 
0.27672 
5.91 327 
5.30889 
5.26692 

-0.49764 
0.329696 
-2.03 146 
-0.3 163 

0.752935 
1.764437 
0.699286 

-0.026 
-1.091 75 

-0.76333 
0.54024 

0.09714 

0.2731 I 

0.92946 

-2.59577 

-0.91 826 

-3.05804 

-0.92058 
-1.55245 
-2.28401 
-0.63962 
0.05362 
1.13974 
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H 
H 
H 
H 
TS 1 
SI 
CL 
CL 
CL 
CL 
SI 
CL 
CL 
CL 
TI 
CL 
C 
H 
H 
C 
H 
H 
M3 
Si 
CI 
CI 
CI 
CI 
Si 
CI 
CI 
CI 
Ti 
CI 
C 
H 
H 
C 
H 
H 
H 
M4 
SI 
CL 
CL 
CL 
CL 
SI 
CL 
CL 
CL 

1 0.67847 5.46965 -0.35873 
1 -2.2882 6.2786 -0.0433 
I -1.26869 6.4876 -1.54206 
1 -1.26869 6.4876 -1,54206 

14 
17 
17 
17 
17 
14 
17 
17 
17 
22 
17 
6 
1 
1 
6 
1 
1 

$4  
17 
17 
17 
17 
74 
17 
17 
17 
22 
17 
6 
1 
1 
6 
1 

' 1  
1 

14 
17 
17 
17 
17 
14 
17 
17 
17 

0.71 669 

2.659266 
0.755848 

-0.26255 
-1.671 

-0.31 584 
1.256577 

1.62113 
-1.26552 

-0.45683 
-2.346 

-0.71767 
0.24471 4 
-1.36875 
-I .28046 
-2.35574 
-0.74253 

0.85033 
0.72846 
2.84197 

-0.06714 
-1.89897 
-0.46608 
1.07013 

1.64414 
-1.3899 

-0.31 529 
-2.28215 
-0.738 73 
0.28619 
-1.3407 

-1.271 38 
-2.3 7 334 
-0.68647 
-0.68647 

0.944844 
0.772916 
2.95636 

0.037576 
-2.27424 
-0.32327 
0.50321 9 
0.684631 
1 .647236 

-1.26645 
-1.08996 
-1.42655 
-3.00832 
-0.70744 
0.426045 
0.86 1445 
2.253735 

1.030207 

1.771 69 1 
1.98421 7 
1.114546 
2.694442 
2.73251 7 
3.602738 

I .888691 

-0.24569 

-1.48356 
-0.98751 
-1.74052 
-3.30901 
-0.29654 
0.681 31 
1.27199 
2.49616 
1.78692 
0.72023 

-0.33002 
I .a0658 
1.90226 
1.02509 
2.68246 
2.62459 
3.50177 
3.50177 

-1 A9742 
-1.85959 
-1.57006 
-3.1 21 96 
I .61768 

1.261 865 
0.072752 
3.084875 
1.377278 

0.22361 7 
2.322236 
-0.38865 
-0.20243 
-2.50848 
-1.48235 
-2.71 21 9 
-1.04123 
0.808931 
1.207624 
1.077524 
3.194591 
3.646886 
3.760439 
2.264976 
2.129906 
2.0 1 680 1 

0.48456 
2.61 177 
0.02993 
0.22901 

-2.80437 
-1.69532 
-3.00347 
-0.89608 

0,81467 

3.18595 

3.62988 

0.69072 

0.95942 

3.51 855 

2.30397 
2.07927 
I .go793 
1.90793 

0.1 55723 
2.36296 

-0.23595 
-0.70615 
-1.61 31 1 
-0.93982 
-2.47358 
-1.14684 
2.048599 
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TI 
CL 
C 
H 
H 
C 
H 
H 
1x2 
Si 
CI 
CI 
Ct 
Ct 
Si 
CI 
CI 
CI 
Ti 
CI 
C 
H 
H 
C 
H 
H 
H 
M5 
SI 
CL 
CL 
CL 
CL 
SI 
CL 
CL 
CL 
TI 
CL 
C 
H 
H 
C 
H 
H 
M6 
C 
H 
H 
Ti 
CI 

22 -0.21845 
17 -2.22762 
6 -1.49821 
1 -2.35803 
1 -0.7263 
6 -1.43618 
1 -0.61651 
I -2.24992 

14 
17 
17 
17 
17 
14 
17 
17 
17 
22 
17 
6 
1 
I 
6 
1 
I 
1 

14 
17 
17 
17 
17 
14 
17 
17 
17 
22 
17 
6 
1 
1 
6 
1 
1 

4.00439 
I. 12943 
2.92545 
0.12465 

-2.281 76 
-0.34613 
0.13467 
0.95067 
1.36947 

-0.33817 
-2.1237 

-1.05901 
-1.39679 
-0.095 74 
-1.85717 
"I 57534 
-2.84745 
-2.84745 

I SI1796 
1.46944 

0.07306 
2.82084 

-2.22208 
-0.33088 
0.04551 
1.07039 
I .I 5568 

-0.42618 
-2.08753 
-0.98387 
-1 .I 3305 
-0.08326 
-1.92656 
-1.82867 
-2.85259 

0.289189 
-0.65134 
2.709662 
2.546777 
3.376848 
2.j 72304 
2.405068 
1.5741 03 

-1.52631 
-2.2 7424 
-1.22964 
-3.02712 
1.88835 
1.21 686 

2.84526 
1.20427 
0.42026 

3.16514 
3.51 736 
3.50976 
2.38996 
2.12493 
2.11022 
2.11022 

-0.03901 

-0.8087 

-1.53281 
-2.52844 
-1.01 629 
-2.944 1 4 
2.00402 
1 .I 94 12 

2.73407 
1.06387 

-0.0873 

0.48479 
-0.8269 
3.27456 
3.63882 

2.52517 

2.27441 

3.58134 

2.24806 

1.524645 
1 .402166 
1.691436 
,056668 

1.333471 
2.9321 75 
3.599397 
3.320365 

0.36736 
2.34209 
-0.3219 

-0.73956 
-1.54695 
-1.07954 
-2.6598 

-1.281 05 
2.58237 

1.4389 
1.71 724 
1.431 98 
0.46999 
1.78036 
2.201 14 
3.21 506 
1.86821 
1.86821 

0.5029 
2.28389 

-0.37869 
-0.681 52 
-1.60347 
-1.15617 
-2.73553 
-1.33985 

2.7943 
1.40049 
1.88014 
1.35539 
0.35129 

1.8699 
I .96991 
3.01405 
1.46795 

6 3.33648 0.17176 -0.32291 
1 3.98836 -0.12372 0.49127 
1 3.33982 -0.44745 -1.21 097 

22 1.18232 -0.67268 0.58644 
17 1.29937 -0.74209 2.7523 
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CI 
Si 
c1 
CI 
CI 
Si 
CI 
CI 
CI 
C 
H 
H 
H 
TS3 
C 
H 
H 
Ti 
CI 
CI 
Si 
CI 
CI 
CI 
Si 
c1 
c1 
CI 
C 
H 
H 
H 
&I7 
C 
H 
H 
TI 
CL 
CL 
SI 
CL 
CL 
CL 
SI 
CL 
CL 
CL 
C 
H 
H 
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17 
14 
17 
17 
17 
14 
17 
17 
17 
6 
1 
1 
1 

6 
I 
1 

22 
17 
17 
14 
17 
17 
17 
14 
17 
17 
17 
6 
1 
1 
1 

6 
1 
1 

22 
17 
17 
14 
17 
17 
17 
14 
17 
17 
17 
6 
I 
1 

1.85 136 
-1.17257 
-1.74357 
-2.84437 
0.26405 

-0.03202 
-1.72504 
1.21 327 

2.65826 
2.76781 
2.09544 
2.09544 

-0.56003 

2.89277 
3.66973 
3.12383 

1.2607 
1.34868 
I 39817 

-1 .I3945 
-1.90975 
-2.6732 
0.33292 
0.06528 

-1.59994 
1.16408 

-0.66525 
I ,93488 
2.1591 1 
1.43364 
1.43364 

2.227296 
2.87831 

2.777445 
0.887433 
0.9081 81 
2.006123 
-1.28559 
-1 301 98 
-3.17325 
-0.08063 
0.625798 

1.495592 

1.79719 
2.645753 
1.256274 

-0.84097 

-0.33822 

-2.71223 
-1.03862 
-2.974 1 6 
0.1 0887 

-0.4091 I 
1.7349 

1.50896 
2.91626 
3.01417 
1.34838 
2.01 903 
I .70118 
1.701 18 

0.44928 
0.47904 

-0.1 0079 
-0.7975 1 
-0.68766 
-2.84269 
-0.88843 
-2.80303 

I .ai 767 

0.32447 
-0.79312 

1.22631 
2.86385 
3.22649 
1 A9324 
2.39534 
1.65676 
1.65676 

0.677983 
0.729726 
0.159947 
-0.88247 
-1.01 148 
-2.67082 
-1.70028 
-3.57499 
-0.84973 
-0.52782 
2.782787 
1.28281 5 
3.056486 
4.495 149 
2.066055 
2.742324 
2.01 0709 

-0.00627 
-0.35977 
-0.793 1 6 
-0.67016 
-1.89053 
1.14085 
2.34383 
2.37086 

-0.42905 
-0.28531 
0.55361 

-1.13878 
-I .I 3878 

-0.18593 
0.5692 

0.45937 
2.63933 
0.07729 

-1.09564 

-0.39786 
-0.35907 
-1.03137 
-2.02514 
1 . I  1277 
2.22974 
2.55025 

-0.22851 
-0.25833 
0.29782 

-1.20413 
-1 204 1 3 

0.1 13923 
0.995277 

0.703131 

0.097217 

-0.67863 

2.a99019 

-0.42572 
-1.26392 
-0.42279 
-I ,82561 
0.895208 
1 .I 16224 
2.728675 
0.31 7625 
-0.35354 
-0.49727 
-1.30071 
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C 
H 
H 
TI 
CL 
CL 
St 
CL 
CL 
CL 
SI 
CL 
CL 
CL 
C 
H 
H 
M9 
C 
n 
H 
TI 
CL 

. CL 
SI 
CL 
CL 
CL 
SI 
CL 
CL 
CL 
C 
H 
H 
M10 
CL 
SI 
CL 
CL 
C 
H 
H 
C 
H 
H 
CL 
CL 
SI 
CL 
TI 

6 
I 
1 

22 
17 
17 
14 
17 
17 
17 
14 
17 
17 
17 
6 
4 
1 

6 
1 
1 

22 
17 
17 
14 
17 
17 
17 
14 
77 
77 
17 
6 
1 
1 

17 
14 
17 
17 
6 
1 
I 
6 
1 
1 

17 
17 
14 
17 
22 

0.129437 
1.102431 

0.601 307 

2.626604 

-0.28026 

-0.94995 

-0.41 547 
-0.39452 
-2.40046 
0.585985 

-0.0384 
-1.31397 
1.367684 
I .038726 
-0.84732 
-1.19417 
-1.73852 

1.36226 1 
1.458953 
2.1 30025 
-0.14975 
-2.18645 
0.461423 

1.41 7407 
-0.2787 

-1.77563 
-0.82239 
0.706324 
0.614954 
1.760131 

1.62661 2 
2.683552 
1.443692 

-1.19277 

1.38 1678 
0.855777 

1.675289 
1.490905 
2.552781 
1.01 6308 
1.358035 
1.785861 
1.925077 

-1.j9488 

-1.49683 
-0.09224 
-0.33923 
-1.3778 

-0.41 368 

0.958676 
I .412524 
0.587862 
-0.61 11 8 
-1 .I3635 
-1.43604 
-2.1 6748 
-4.17097 
-1.64209 
-2.00704 
2.914255 
3.50142 

4 585978 
4.51 6203 
1.963718 
2.699026 
1.465707 

0.3461 23 
0.425735 
-0.36177 
-3.1271 

-3.71883 
-3.06025 
-0.54651 
-3.62234 
0.197548 

3.207079 
3.1 7860 1 
4.880649 
3.360955 
1.69771 2 
1.951616 
1.636327 

-0.23543 

0.986477 
2.070077 
2.25461 1 
3.951 172 
1.22671 1 
1.4801 19 
I .717828 
-0.30249 
-0.80131 
-0.66322 
-0.07 921 
-3.0 1564 
-1.041 54 
-1.35093 
-3.835 88 

-0.60775 
-0.84204 
-1.54812 
0.7292 1 4 
2.196706 
0.601 378 
-1.091 04 
-0.54921 
-1.46379 
-2.91 022 
1 .418972 
2.903879 
2.272842 
0.734318 
0.030909 

0.42005 
-0.70296 

0.526789 
1.61 2463 
0.1 99207 
0.625278 
0.1 57881 
2.71 2448 
0.197403 

1.437253 

0.472954 
2.5301 39 

-0.80296 

-1.79039 

-0.1 1501 
-0.291 57 
-0,15722 
-0.03627 
-1.23224 

2.291924 
0.633065 
0.568529 

0.73579 
-0.9206 

-0.96996 
-1.77301 
-1.00713 
-0.1 3395 
-1.87089 
-2.59023 
-1.91737 
-1.25831 
0.528673 
0.609791 
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CL 17 1.720284 -3.31 196 1.359398 
CL 17 -2.28349 -5.17626 0.535566 
P 
Sic13 C2&SiC13 
CL 17 0.83278 1.14018 2.48915 
SI 14 0.66578 2.40854 0.56363 

' CL 17 1.80143 4.0788 0.8928 
CL 17 -1.24961 3.00187 0.15594 

C 6 1.46938 1.46481 -0.85001 
H I 2.53324 1.69746 -0.75569 
H 1 1.12814 1.95096 -1.76757 
C 6 1.32183 -0.061 55 -0.94898 
H I 1.7344 -0.56796 -0.07417 
H 1 1.9571 3 -0.41615 -1.76822 
CL 17 -1 .I5735 0.3068 -2.98894 
CL 17 -0.25873 -2.74408 -1.92651 
SI 14 -0.38635 -0.77414 -1.42503 
CL 17 -1.71823 -0.55551 0.16483 


