
Scalable computational chemistry:
New developments and applications

Y uri Alexeev

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Physical Chemistry

Program of Study Committee:
Mark S. Gordon Major Professor

Robert J. Angelici
Bruce Harmon

Jacob W. Petrich
Xueyu Song

Iowa State University

Ames, Iowa

2002

Copyright 0 Yuri Alexeev, 2002. All rights reserved.

..
11

Graduate College
Iowa State University

This is to certify that the doctoral dissertation of

Yuri Alexeev

has met the dissertation requirements of Iowa State University

For the Major Program

1 4 .

111

to Katia

ABSTRACT

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

GENERAL INTRODUCTION
Introduction
Dissertation Organization
Literature Review
References

A THEORETICAL STUDY OF THE BYS-SILYLATION OF
ETHYLENE CATALYZED BY TITANIUM DICHLORIDE

Abstract
Introduction
Computational methods
Results and discussion

1. Oxidative addition
2. Ethylene insertion
3, Reductive elimination

Conclusions
Acknowledgement
References

THE DISTRIBUTED DATA SCF
Abstract
Keywords

I . Introduction
2. Tools and platforms
3.
4. Distributed Data SCF (DDSCF)
5. Performance models
6 . Results
7. Conclusions

Brief review of replicated data SCF parallel implementation

Acknowledgement
References

vi

vii

10
11
13
14
17
22
25
27
28
28

32
32
33
35
38
42
51
55
58
59
60

V

CHAPTER 4. A DISTRIBUTED DATA PARALLEL CPHF ALGORITHM
FOR ANALYTIC HESSIANS

Abstract
Keywords
Introduction
Tools and platforms
Brief review of CPHF theory
Distributed data CPHF algorithm

1. A blocking technique
2. A localized data access technique
3. Self consistent work distribution
4. Cache optimization technique

Results
Conclusions
Acknowledgement
References

CHAPTER 5 . A DISTRIBUTED DATA PARALLEL CASSCF ALGORITHM
Abstract
Keywords
Introduction
Tools and platforms
Review of CASSCF theory
CASSCF paraIlelization strategy
Conclusions
Acknowledgement
References

CHAPTER 6. GENERAL CONCLUSIONS

63
64
64
67
68
70
73
73
75
77
78
80
80
81

84
84
85
86
87
92
95
95
96

98

APPENDIX. SUPPLEMENTARY MATERIALS 100

Vi

ACKNOWLEDGMENTS

I would like to thank Professor Mark S. Gordon for his help and support during time I

spent in graduate school. Mark’s help made it possible for me to live up to expectations. The

research work presented in this thesis would never been possible without Mark’s support

especially when I just began my research career in the United States. We argued and often

disagreed on different issues, but we always were able to find a resolution which ultimately

resulted in the original research presented in this thesis.

I would also like to thank the members of Mark’s research group. In particular, I

would like to thank Dr. Mike Schmidt for his help and fruitful discussions during my

graduate work.

This work was performed at Ames Laboratory under Contract No. W-7405-Eng-82

with the U S . Department of Energy. The United States government has assigned the DOE

Report number IS-T 2013 to this thesis.

vii

ABSTRACT

The computational part of the thesis is the investigation of titanium chloride (TI) as a

potential catalyst for the bis-silylation reaction of ethylene with hexaclorodisilane at different

levels of theory. Bis-silylation is an important reaction for producing bis(sily1) compounds

and new C-Si bonds, which can serve as monomers for silicon containing polymers and

silicon carbides. Ab initio calculations on the steps involved in a proposed mechanism are

presented. This choice of reactants allows us to study this reaction at reliable levels of theory

without compromising accuracy. Our calculations indicate that this is a highly exothermic

barrierless reaction. The Tic12 catalyst removes a 50 kcaVmol activation energy barrier

required for the reaction without the catalyst. The first step is interaction of Tic12 with

ethylene to form an intermediate that is 60 kcaVmol below the energy of the reactants. This is

the driving force for the entire reaction. Dynamic correlation plays a significant role because

RHF calculations indicate that the net barrier for the catalyzed reaction is 50 kcal/mol. We

conclude that divalent Ti has the potential to become an important industrial catalyst for

silylation reactions.

In the programming part of the thesis, parallelization of different quantum chemistry

methods is presented. The parallelization of code is becoming important aspect of quantum

chemistry code development. Two trends contribute to it: the overalI desire to study large

chemical systems and the desire to employ highly correlated methods which are usually

computationally and memory expensive. In the presented distributed data algorithms

computation is parallelized and the largest arrays are evenly distributed among CPUs. First,

...
VI11

the paralldization of the Hartree-Fock self-consistent field (SCF) method is considered. SCF

method is the most common starting point for more accurate calculations. The Fock build

(sub step of SCF) from AO'integrals is also often used to avoid MO integral computation.

The presented distributed data SCF increases the size of chemical systems that can be

calculated by using RHF and DFT. The important ab inilio method to study bond formation

and breaking as well as excited molecules is CASSCF. The presented distributed data

CASSCF algorithm can significantly decrease computational time and memory requirements

per node. Therefore, large CASSCF computations can be performed. The most time

consuming operation to study potential energy surfaces of reactions and chemical systems is

Hessian calculations. The distributed data parallelization of CPHF will allow scientists carry

out large analytic Hessian calculations.

1

CHAPTER 1: GENERAZ, INTRODUCTION

Introduction

Computational quantum chemistry is a useful tool for many areas of science such

as biochemistry, materia1 science, catalysis, material design and biology. Ab initio

calculations can provide reliable predictions of structures and various properties of

chemical compounds. Computational quantum chemistry describes interactions of nuclei

and electrons which define physical and chemical properties of molecules. These

interactions are described by the Schrodinger equation. One limitation of ab initio

calculations is that solving the Schrodinger equation even for a small size system is a

challenging problem. Therefore an important advance in the effort to expand the size of

systems that can be studied by quantum chemistry is the development of new algorithms

and parallel quantum chemistry software.

The ultimate purpose of computational quantum chemistry is to apply these new

algorithms and methods to real chemical problems. Quantum chemistry can heIp to find

novel effective catalysts for important industrial reactions, new rocket fuels, or drugs to

cure people. There is an unlimited number of applications where quantum chemistry can

help.

Dissertation Organization

2

In this dissertation two important aspects of computational quantum chemistry

have been addressed. First, new parallel quantum chemistry algorithms were developed

to expand the size of systems that can be studied by quantum chemical methods. The new

algorithms employ non standard approaches to achieve good performance results.

Another important aspect is applications of quantum chemistry methods to find new

catalysts for the bis-silylation reaction,

In the second chapter, titanium chloride (XI) is investigated as a potential catalyst

for the bis-silylation reaction of ethylene with hexaclorodisilane at different levels of

theory. Bis-silylation is an important reaction for producing bis(sily1) compounds and

new C-Si bonds, which can serve as monomers for silicon containing polymers and

silicon carbides. Many of these organosilicon materials have desirable chemicaI and

physical properties, such as thermal stability and the ability to store and transfer optical

and electrical information.

In the second part of this dissertation new parallel algorithms are described.

Chapter 3 addresses parallelization of the self consistent field procedure. The Hartree-

Fock self-consistent field (SCF) method is the most common starting point for more

accurate calculations.

In chapter 4, a new distributed data parallel CP€F step for an analytic Hessian

aIgorithm is described. Analytic Hessian calculations are a fast and efficient method to

study potential energy surfaces. The analytical Hessians can be many times faster and

more accurate than numerical Hessian calculations, but the programming and

paraIlelization of these codes is ofien a challenge. Non traditional approaches were

utilized to parallelize CPHF.

3

Chapters 2 through 5 are papers either published, submitted to journals, or in

preparation for submission to refereed journals. In chapter 6 general conclusions are

presented for the dissertation.

Literature Review

In this section, a brief theoretical background of quantum chemistry concepts and

standard quantum chemical methods are reviewed. These methods are used throughout in

the dissertation.

Quantum chemistry is based on solving the time-independed Schrodinger equation

HY? = E'3' (1)

E is the energy of the system, Y is a wave function of the system. N is. called the

Hamiltonian operator.

H = KIiuc,e; + Kc, + 'c/-cI + YjircIei-e, + V;rrrc/ci-iac/ci (2)

The Hamiltonian for a molecule with N nuclei and n electrons consists of the kinetic

energy of the nuclei K,,l,cki ; the kinetic energy of the electrons K,, , the potential energy

due to repulsion between electrons Vc[-c,, thhe potential energy due to the attraction

between the electrons and the nuclei Y,ruc,ei-d, the potential energy due to the electrostatic

repulsion between the nuclei Y; ,vc,c i-,ll,c,ci . The Hamiltonian depends both on electron (r)

and nuclear coordinates (R). Therefore the wave function Y also depends on r and R. It

makes solving equation (1) challenging.

One of the most important assumptions in quantum chemistry in solving thhe

Schrodinger equation is the Born-Oppenheimer approximation [11. Ordinary, the nuclei

are moving much slowly than electrons because nuclei are much heavier than eIectrons

4

(mass of protons and neutrons are about 1800 times heavier than electrons). Thus to a

good approximation the electron motion can be separated from the nuclear motion

' Y k R) = ye/ (c R)Y,,,,,,. (R) (3)

Therefore equation (1) can be solved in two steps. First solve for the electronic part:

H e l y e 1 = 'e/ (')ye/ (4)

Since the nuclei are fixed, at each R one can add the nuclear repulsion V;luclei-,luclei (r) to

Eel@) :

Then,

H = He, "I- U(R)

Then, the nuclear part of Schrodinger equation:

H T w c l e i = 'y-rliiic,ei (7)

The total energy of the system is

E x Ec, + En,rc lc i (8)

In general, the Born-Oppenheimer approximation correctly describes molecules in

their ground electronic states.

In a typical quantum chemistry computation equation (4) is solved by using

various approximations for a particular set of fixed nuclear coordinates R. The resulting

electronic energy is summed with the nuclear repulsion energy. The entire procedure is

repeated for each set of fixed nuclear coordinates R. The total energy as a function of

coordinates R, E@), describes the potential energy surface (PES) for the molecular

sys tern.

To study potential energy surfaces of reactions and chemical systems two

operations are performed most often: single energy + gradient calculations and Hessian

5

calculations. At stationary points on potential energy surfaces the gradient of the energy

with respect to nuclear coordinates is zero. The stationary points can be minima, first

order saddle points (transition states) or higher order saddle points. To distinguish them

Hessian calcuIations are performed. The Hessian is the second derivative matrix of the

total energy with respect to nuclear coordinates. The diagonalized Hessian provides

harmonic normal modes and corresponding vibrational frequencies. Minima and nth order

saddle points correspond to zero and n negative eigenvahes of the Hessian, respectively.

Since the harmonic fiequencies are the square roots of the Hessian eigenvalues, a

negative eigenvalue corresponds to an imaginary frequency. The parallelization of

analytical Hessian is addressed in chapter 4.

The transition states are typically connected by two minima which correspond to

reactants and products. The difference in energy between reactant and transition state is

the barrier height. The transition states can be connected with minima using the intrinsic

reaction coordinate (IRC) method [2] . In the IRC the minimum energy path or reaction

path is obtained in mass weighted Cartesian coordinates.

To solve equation (4) a number of methods are utilized. All of these methods are

approximate, since an exact solution can be found only for one electron molecules. The

simplest method is the Hartree-Fock method, in which the n-electron Schrodinger

equation is repIaced by a series of one-electron equations, called the Hartree-Fock

equations:

where Fi is the one electron Fock operator; ‘yi is the one electron molecular orbital; -zj is

the one electron molecular orbital energy; i =l,..,n where n is the number of one electron

molecuIar orbitals.

6

The total wavefunction is an antisymmetrized product of molecular orbitals which

can be represented by Slater determinants. Each molecular orbital is a product of a spatial

function and a spin function.

The molecular orbitals can be expanded as linear combinations of atomic orbitals

After atomic orbitals are introduced the Hartree-Fock equations (1.6) can be

rewritten as a set of algebraic Hartree-Fock-Roothaan equations [3]:

FC = SCE (1 1)

where C is the matrix of expansion coefficients introduced in equation (IO); F is the Fock

matrix; S is the overlap matrix and E is the matrix of orbital energies. The equations must

be solved iterativeIy because the Fock matrix is a function of the expansion coefficients.

The procedure is commonly called the seIf consistent field (SCF) method (41. The

parallelization of the SCF method is addressed in chapter 3.

In the Hartree-Fock operator in equation (9) the electron - electron repulsion is

substituted by an average potential experienced by the ith electron due to the presence of

the other electrons. Therefore the Hartree-Fock method does not take into account the

correlation of eIectron motions. Thus the Hartree-Fock method often produces incorrect

energies especially for non equilibrium stmctures for which electron correlation is

especially important.

The solution of the Hartree-Fock equations (9) provides a set of one electron

molecular orbitals vi and one electron molecular orbital energies .si. This is the

variationally best approximation to the ground state, of the single determinant form.

However, it is only one of many possible determinants that could be formed from M

7

electrons in N molecular orbitals. In the full configuration interaction (FCI) method [5] all

possible determinants are considered and coefficients Ak are optimized variationally in

equation:

The FCZ wavefunction is the exact solution of the Shrodinger equation for a given

atomic basis set. If the basis set is incomplete then the FCI energy E,,,,, is the exact

energy of the system for the given basis. The difference in energy between E,,,,, and

Hartree-Fock in the complete basis set limit is called the correlation energy

E,,, = L c , -E)$ (13)

Unfortunately, basis sets are finite and the FCI method is very expensive. Even for small

systems the number of determinants in FCI can be extremely large. There are several

quantum chemistry methods to recover the correlation energy at a fraction of the FCI cost

with moderate basis sets. The correlation energy is often divided into two types. “Static”

correlation ensures that a correct zeroth order wavefunction is employed. “Dynamic”

correlation corrects the interactions between electrons in close proximity to each other.

The HF method is most commonly used to provide the zeroth order wavefunction. When

the HF method is not appropriate, as in the case of diradicals, the alternative is

multiconfigurational SCF (MCSCF) method. In the MCSCF method [6j, the

wavefunction is a linear combination of a subset of FCI configurations. The complete

active space SCF (CASSCF) method [7] is the most widely used version of MCSCF. In

CASSCF the most chemically important orbitals and electrons are selected. AI1 possible

configurations are generated by distributing these selected electrons in the selected

orbitals. The CASSCF wavefunction is obtained by optimizing both configuration

8

coefficients and orbital expansion coefficients. The parallelization of the CASSCF

method is addressed in chapter 5 .

The simpIest method to recover dynamic correlation energy is perturbation theory.

The most popular type is Moller-Plesset perturbation theory. The perturbation is defined

as the difference between the exact Hamiltonian and the sum of one-electron Fock

operators, The perturbation expansion is most often truncated at the second order term,

referred to as MP2 [&I.

Another widely used method is the coupled cluster method [9]. The excitation

configurations are generated by using an exponential excitation operator to produce singIe

(CCS), double (CCSD) and so on excitations.

References

1. J. C. Tully, “Dynamics of Molecular Collisions”, edited by W. H. Miller, pages 217-

267. Plenum, New York, 1976.

2. (a) C.Gonzales, H.B.Schlege1, J.Chem.Phys. 90, 2154-2161(1989); (b) KKBaldridge,

M.S.Gordon, R.Steckler, D.G.Truhlar, J.Phys.Chern. 93, 5107-51 19 (1989).

3. C.C. Roothaan, J. Rev. Mod. Phys. 1951,23, 69.

4. J.Almlof, K.Faegri, K.Korsel1, J.Comput.Chem. 3, 385-399 (1982).

5. J.Ivanic, KRuedenberg Theoret.Chem.Acc. 106,339-351 (2001).

6. M.W. Schmidt and M.S. Gordon, Ann. Rev. Phys. Chem. 9 , 2 3 3 (1998).

7. B.O.Roos, in “Advances in Chemical Physics”, vo1.69, edited by K.P.Lawley, Wiley

Interscience, New York, 1987, pp 339-445.

9

8. (a) J.A.Pople, J.S.Binkley, RSeeger, Int. J. Quantum Chem. S10, 1-19(1976); (b)

M.J.Frisch, M.Head-Gordon, J.A.Pople, Chern.Phys.Lett. 166,275-280(1990).

9. P. Piecuch, S.A. Kucharski, R. Kowalski, and M. Musial, Comput. Phys. Comm., in

press (2002).

10

CHAPTER 2: A THEORETICAL STUDY OF THE

BYS-SILYLATION OF ETHYLENE CATALYZED BY

TITANIUM DICHLORIDE

A paper submitted for publication to

Journal of American Clzemical So&&

Yuri Alexeev and Mark S. Gordon

Abstract:

Titanium dichloride was investigated as a potential catalyst for the bis-silylation reaction

of ethylene with hexachlorodisilane. Ab initio electronic structure calculations at the

restricted Bartree-Fock (RHF), density functional theory (DFT), second order

perturbation theory (MP2), and couple cluster (CCSD) levels of theory were used to find

optimized structures, saddle points, and minimum energy paths that connect them. The

reaction was found to ,have a net zero barrier at the DFT, MP2 and CCSD levels of

theory. Dynamic correlation is found to be important for this reaction.

Introduction

The bis-silylation reaction [1) is an important process for producing bis(sily1)

compounds and new C-Si bonds, which can serve as monomers for silicon containing

poIymers and silicon carbides. Many of these organosilicon materials have desirabIe

chemical and physical properties, such as thermal stability and the ability to store and

transfer optical and electrical information [2,3]. However, there is a lack of quantum

chemical calculations for the study of the effect of catalysis on the bis-silylation reaction.

Such calcuIations can potentially lead to the deveIopment of new catalysts. In this paper,

Tic12 is proposed as an effective catalyst for the bis-silylation reaction. This is supported

by a series of quantum chemical calculations at different levels of theory.

The bis-silylation reaction is a method to add an Si-Si bond across a C-C double or

triple bond. The general reaction for Si-Si addition to a double bond can be written

f . 1 1

R3,C=CR4,, R3,C-CR4,

Experimental and theoretical studies of this reaction in the absence of a catalyst

suggest that the reaction has a high activation barrier. The predicted barrier height for the

addition of disilane to ethylene is approximately 50 kcaVmo1 [4]. So some catalyst is

needed to achieve high yields. A number of catalysts have been studied since 1972 when

Okinoshima et al. camed out the first successhl double silylation of lY3-butadienes

using Ni phosphine complexes as cataIysts [5] . Later Okinoshima [6], Watanabe[7,8,9],

and others discovered that Rh, Ni, Pt, and Pd phosphine complexes can be used to add

substituted disilanes across various unsaturated acetylene and ethylene derivatives. It was

found that complexes such as M(PPh& and MClz(PPh3)2, where M is Pt or Pd are the

12

most efficient catalysts. Bottoni et al. [lo] used density functional theory (DFT) with the

B3LYP functional [l 13 to study the the bis-silylation reaction of acetylene with disilane,

H3Si-SiH3, in the presence of Pd(PH&. Pd(PH3)2 was used to emulate Pd(PPh&,

Pd(PEt3)z, and other catalysts often used in experimental studies. The reaction net barrier

was found to be 18 kcallmol.

A theoretical study of Pt(PH& catalyzed bis-silylation and hydrosilylation (Chalk-

Harrod and modified Chalk-Hanod mechanisms) of alkenes was recently performed by

Sakaki et al. [12,13] These authors used second order perturbation theory (MP2) [12j,

fourth order perturbation theory (MP4SDQ) [131, and doubles coupled cluster theory

(CCD) [14] to study the reactions. The net reaction bamer is predicted to be 19 kcaVmol

in the bis-silylation reaction and 5 kcaVmol in the Chalk-Barrod mechanism of the

hydrosilylation reaction.

It is we11 known that earlier transition metals, such as Ti and Zr, complexes exhibit

catalytic properties. In the Ziegler-Natta polymerization reaction, the commonly used

catalysts are MClpAlR3, MR2 where M is Ti OT Zr [l5]. The first step in the currentIy

accepted mechanism is formation of a metal-alkyl-olefin complex. The addition of

C12TiCH3' to C2H4 was studied recently by Bernardi et al. [16] with DFT using the

B3LYP functional. The reaction requires no net barrier. A n-complex intermediate is

lower than reactants by 38 kcal/mol.

Titanocene (TiCpz where Cp=cyclopentadienyl) and zirconocene (ZrCpz) were

recently reported to be efficient catalysts for silylation by Terao et al. [17] and Barrod et

al. In particular, silylation of isoprene with chlorotriethylsilane proceeds with 9 1% yield

at 0°C in the presence of CpzTiClz and BuMgCl in THF solution. The double silylation of

p-chlorostyrene by MezPhSiCl in the presence of BuMgCl and CpaTiCl2 in THF solution

13

under the same conditions gives a 72% yield.

Bode, Day, and Gordon [181 demonstrated that Tic12 is an efficient catalyst for the

hydrosilation reaction. The reaction was studied using restricted Hartree-Fock (RKF),

second order perturbation theory (MPZ), and coupled cluster theory (CCSDfT)). All

levels of theory predict that the reaction has no net barrier. The highest CCSD(T) energy

is 3 1 kcaVrnol below reactants.

The purpose of this paper is to present ab initio calcuhtions on the steps involved in a

proposed mechanism. In the model reaction Tic12 is used as the catalyst for the bis-

silylation reaction of ethylene with hexachlorodisilane. This choice of reactants allows us

to study this reaction at reliable levels of theory without compromising accuracy.

Although TiX2 has not previously been proposed as a cataIyst for bis-silylation, TiX2 is a

promising model catalyst based on previous theoretical and experimenta1 studies.

Computational methods

All calculations performed for this paper were carried out using the GAMESS

program [19), and figures were generated using the MacMolPlt program [20]. The basis

set used in the calculations was the SBKJC effective core potential (ECP) basis [21] on

Si, C1, and Ti. One d-type polarization function was added on each Si and C1 atom [223.

The H and C atom basis used was 6-3 1G (d,p). This basis set was compared previously

[23] with an all-electron triple-6 plus polarization basis set. It was found that the

difference in relative energies between these is less than 0.5 kcal/mol, consistent with the

present work.

14

The R€€F, DFT, MP2, and CCSD methods were used to study the bis-silylation

reaction. Preliminary geometry calculations were carried out using RHF. These

geometries were then used as starting geometries for the Mp2 calculations. DFT and

CCSD calculations were camed out at selected transition states with the highest energy

barriers. These methods predict results that are similar to those from MP2. Only the RHF

method predicts a nonzero net barrier.

All geometries and energies for reactants, products, and all stationary points on the

reaction path presented in this paper are at the MP2 level of theory. Each stationary point

was confirmed by computing the Hessian (matrix of second derivatives of energy). The

diagonalized Hessian provides harmonic normal modes and corresponding vibrational

frequencies. Transition states and minima are indicated by one and no imaginary mode,

respectively. The calculated frequencies were also used to compute zero point vibrational

energies (ZPE).

Finally, each confirmed transition state has been connected to reactants and products

using the Gonzales-Schlegel second-order intrinsic reaction coordinate (IRC) method

with a step size of 0.3 amuLn*bohr.

Results and discussion

The previous studies established that dynamic correlation is important for reactions in

which Ti is a catalyst, so the MP2 and CCSD methods were employed. Mp2 natural

orbital occupation numbers (NOONS) were calculated and inspected at each stationary

point. The largest observed deviation from the €E values of 2.0 and 0.0 for occupied and

virtual orbitals respectively is 0.08, suggesting that there is little multiconfigurational

15

character in the wavefunction [24]. The MP2 geometries and energies are presented in all

Figures and Tables.

TiCl2.

Y

I
1

C1,Ti
/ \

C13Si SiC1,

Scheme I . Catalytic cycle for double silylation of ethylene with hexachlorodisilane

Energy
(kcallmol) -40

-50

-60

-70

-80

-90

-1 00

-110
Reaction coordinate

16

M10
P

Figure 1. Minimum energy.reaction path
I

-59.0 -55.4
-39.1 -3 G .2

Table 1. MP2 relative energies with ZPE corrections in kcallmol.

In the commonly accepted mechanism for bis-silylation of alkenes and alkynes [25

,26, 271 the first step is oxidative addition of the catalyst to the disilane; then the alkene or

alkyne is inserted into the metal-silyl bond. The final stage is reductive elimination and

the regeneration of the catalyst. In the experiments no intermediates have been detected in

the oxidative addition of Pt(0) to disilane, presumably confirming the fist step [28] in

this mechanism. Based on the current calculation with Tic12 an alternative mechanism is

presented in a Scheme 1, in which the first step is coordination of the catalyst to the

ethylene not the disilane to form an initial complex. The complex interacts with disilane.

Subsequently, ethylene is inserted into the Ti-Si bond to form product after reductive

elimination of the Tic12 catalyst.

17

The overall reaction path energetics are demonstrated in Figure 1. The reactants are

labeled as R, minima as MX (where X is an integer number), transition states as TSX, and

products as P. Minima M3 and M4, M5 and M6, M7 and MS, M8 and M9, M9 and M10

were connected by using linear least motion paths and constrained optimization

techniques. The highest point on a constrained optimization path is an upper bound to the

energy barrier for that path. Each step will be discussed in detail in the following sections.

The relative MP2 energies presented in Figure I do not include vibrational ZPE

corrections. In the first column of Table 1 relative MP2 electronic energies corresponding

to the data in Figure 1 are listed. ZPE corrected relative energies are presented in the last

column of Table 1.

In the following sections we will discuss in detail the potential energy surface (PES)

of the proposed mechanism: (1) oxidative addition, (2) ethylene insertion into the Ti-Si

bond, and (3) reductive elimination. For each step a figure with detailed geometry

information for the stationary points is presented, with bond lengths shown in angstroms.

For transition states the magnitude of the imaginary frequency is included.

The MP2 total energies and MP2 totaI ZPE corrected energies for each stationary

point in Figure 1 and Table 1 are avdable in supplementary materia1 Table S1. The

Cartesian coordinates of all geometries can be found in Table S2.

1. Oxidative addition

Two scenarios have been investigated. The catalyst Tic12 can attack the C-C bond

first as shown in Figure 2 or Tic12 can initially attack the Si-Si bond as shown in Figure

3.

18

Structure
Reactmts

TiC12-CzH4 + Si2Clh
T i C l ~ - S i ~ C l ~ + C2H3

Figure 2. TiCI2-C2II4 complex

MP2 Relative Energy MP2 + MP2 ZPE Relative Energy
0 0

-60.5 -59.6
-17.8 -17.1

Figure 3. TiCI2-Si,CI6 compIex

Table 2. MP2 relative energies with ZPE corrections in kcaYmol

19

The optimized structures in Figures 2 and 3 have a large difference in energy relative

to the energy of the initial reactants: TiC12-C~b is lower in energy than TiCXz-SizClG by

42.7 kcaVmol as can be seen in Table 2. In the first mechanism, the TiCIZ-CzH4 complex

shown in Figure 2 reacts with Si2Cl~ in a series of steps ultimately leading to products. In

the second mechanism, the TiCl2-SizCle complex shown in Figure 3 reacts with C2& in a

series of steps that converges to the minimum M2 in Figure 4. Therefore, the second

mechanism leads to the same reaction path as the first mechanism. Since (a) the first

mechanism leads to a much lower energy initial intermediate M1, (b) both mechanisms

proceed through the M2 intermediate shown in Figure 4, and (c) the highest point on each

path is lower in energy than the separated reactants, only the first mechanism is presented

in detail here (see Scheme 1 and Figure 4).

20

d b
L -*

\ /2.151

Figure 4. Oxidative addition

The MP2 structures for the oxidative addition step are presented in Figure 4. After

Tic12 forms a complex with ethylene in MI, Ti in this complex interacts with a CI fiom

disilane, leading to a new intermediate M2. A transition state TS1 connects M 2 with M3,

in which Ti has broken the hexachlorodisilane &-Si bond. TS1 and M3 both have C2v

symmetry, but M2 has C1 symmetry. Therefore, a bifixcation [29] occurs along the

21

reaction path that connects TSl with M2, since the valley-ridge inflection point does not

coincide with transition state TS 1. The valley-ridge inflection point was found by first

performing a series of Hessian calculations. Then, the imaginary mode was offset by 5%

and the IRC mn was resumed to find the correct minimum M2. TSl is the highest point

on the minimum energy reaction path. Based on bond and valence analysis, Ti in TSl

forms 8 partial bonds with bond orders varying fiom 0.3 to 1.3 (Figure 5). Ti forms strong

bonds with two chlorines perpendicular to the Si-Ti-Si plane and with the two carbon

atoms.

I 2.137 (0.520’1 I
I 2.685 (0.299) I

piq
I I I 2.283 (1.321) I

I I

’ I 2.761 (0.315) I

Figure 5. Transition state 1 (TSI). Bond distance in a (bond order)

It is interesting to track the C-C bond length changes in the oxidative addition step, In

M1 the C-C length has single bond character after ethylene has interacted with Ti. Later

after Ti has inserted into the Si-Si bond in M3, the C-C distance has decreased back to a

distance very close to that in ethylene.

22

The activation energy leading from M2 to TS1 to MS is 20 kcal/mol. This is the

largest activation energy along the reaction path. The energy of M 2 relative to M3 is 1

kcaVmol after the ZPE correction is applied. It was expected that the Ti insertion into the

Si-Si bond would have one of the highest activation energies, but it is still 50 kcalhol

below the energy of the reactants.

2. Ethylene insertion

The first step in the ethyIene insertion (see Scheme 1 and Figure 7) is to position the

ethylene molecule just above the Ti-Si bond. The potential energy surface in this region is

shallow, because the ethylene molecule can essentially undergo free rotation. Therefore, a

linear least motion path [30] and constrained optimization techniques [3 11 were employed

to connect the minimum M3 with M4, and M5 with M6 (Scheme I).

4

Constrained geometry

Figure 6. Constrained optimization path connecting M3 and M4, COSX are constrained optimized

structures

23

An example of how the constrained optimization technique is employed is shown in

Figure 6 . The energies of 10 constrained optimized structures from COS1 to COS10

connecting the M3 and M4 minima are plotted. The estimated activation barrier for the

reaction at COS9 is 7.9 kcaVmol excluding the ZPE correction. The difference in energy

between M3 and M4 is 7.0 kcal/mol. The geometry and location of COS9 on the PES is

consistent with the Hammond postulate: COS9 is structurally close to the minimum M4

which is 7.2 kcal/mol higher in energy than M3. The primary effect of the M3-+M4

rearrangement is to move one ethylene C closer to its Si partner. The M4 and M5 minima

in Figure 7 are connected via a transition state TS2 with an activation energy of 4

kcaVmol (3 kcaVmol with the ZPE correction). In M5 a rotation about the Ti-Si bond has

occurred , in order to further facilitate the formation of the new C-Si bond. Minima M5

and M6 are connected in a manner similar to that used to connect minima M3 and M4,

with an activation barrier of approximately 2 kcaVmo1.

In the second part of the ethylene insertion reaction (Figure 7), the transition state TS3

connects minima M6 and M7. The bamer height of this reaction is 3.6 kcal/mol. TS3 is

the second highest stationary point. The energies of M6 and M7 relative to reactants are -

55.9 and -80.7 respectively.

In M6, the C-C bond is aIready slightly stretched from 1.335A in ethylene to 1.359&

the Ti-Si bond is stretched from 2.5 l5A in M3 to 2.753A in M6. In transition state TS3, a

four-membered ring is formed that consists of Ti, two carbons, and Si. The Ti-Si bond is

stretched even further to 2.949A in TS3. The four-membered ring is opened via breaking

a Ti-Si bond to give the minimum M7. In M7 the Ti-Si bond is broken, since the distance

is 3.680& and a C-Si bond is finally formed. Therefore, M7 is the first time the Si-Ti-C-

C-Si chain is formed.

Figure 7. Ethylene insertion

25

3. Reductive elimination

The final phase in the overall mechanism is the regeneration of the catalyst and

formation of the final product. The geometries of all stationary points in this step are

shown in Figure 8. The reaction proceeds in four steps. In the first step, the SiCb group

attached to Tic12 moves into the staggered position (M8) relative to the Ti-C bond. Since

internal rotations usually require little activation energy, the constrained optimization

technique was utilized to connect M7 and M8. The estimated activation energy required

to connect minima M7 and M8 is 3.4 kcal/mol. The energies of M7 and M8 relative to the

reactants are -80.7 and -82.2, respectively, including the ZPE correction.

t

26

\

Figure 8. Reductive elimination

In the next step M8+M9, Ti and Si interchange their positions. M9 is the first species

in which the Ti-Si-C-C-Si linkage appears. To connect minima M8 and M9 the

constrained optimization technique was used. The estimated barrier height is 5.7

kcal/mol. The intermediate M9 is the global minimum on the reaction path. Including the

ZPE correction, M9 is 102.9 kcaVmol below the energy of separated reactants.

In the last two steps the catalyst is regenerated. First, one C1 atom on the TIC13 group

migrates to a Si atom. Then, a new minimum M10 is formed in which Ti, Si, and two

27

chlorines form a four-membered ring, Two chIorines are shared between Ti and Si. Note

that Ti is not connected to either Si in M10. The reaction M9-MIO is endothermic, with

the top of the constrained optimization path being 2.9 kcal/mol above M10. The last step

removes the catalyst from the system. No net transition state is expected for this step. The

reverse reaction for adding TIC12 to product proceeds readily without any barrier. The

product is the cis conformer of 1,2-bis-chlorosilyl ethane. The energies of M10 and the

product P relative to reactants are -55.4 and -36.2 kcaVmo1 respectively with the ZPE

correction.

Conclusions

The overall reaction is a highly exothermic barrierless process. The products are 36.2

kcal/rnoI lower in energy than the combined energies of the separated reactants after the

ZPE correction is applied to the MP2 energy. The Tic12 catalyst removes a 50 kcaVmol

activation energy barrier required for the reaction without the catalyst. The first step is

interaction of Tic12 with ethylene to form an intermediate that is 60 kcaVrnol below the

energy of the reactants. This is the driving force for the entire reaction. After that Tic12

easily cleaves the Si-Si bond with modest a 20 kcaVrnol activation energy. The transition

state for this step is the highest point except products for the entire reaction, and it is stilI

50 kcaVrnol below the energy of the reactants. Dynamic correlation plays a significant

role because Rl3F calculations indicate that the net barrier for the catalyzed reaction is 50

kcal/mol. There are also significant differences in relative energies and structures between

RHF and MP2 Ievels of theory.

28

As discussed in several recent papers [32,33,34], Ti is an electron deficient atom, in

much the same manner as B. This means Ti readily €oms additional bonds beyond

“usuai” four. As noted before for the hydrosilation reaction this makes divalent Ti a

particularIy effective catalyst, since the initial steps in which Ti binds to one of the

reactants is especially facile with a large energy decrease. This energy decrease is

sufficient to ensure that the activation barriers for all subsequent steps are well below the

energy of the reactants. Consequently, the reaction proceeds easily.

Acknowledgement

The calculations in this work were performed on an IBM workstation cluster made

possible by grants fkom IBM in the form of a Shared University Research grant, the

Department of Energy, and a DUMP grant from the Air Force Office of Scientific

Research.

The research reported here was made possible by a grant from the Air Force Office of

Scientific Research,

References

1. R.G. Jones, W. Ando, J. Chojnowski, Silicon-Containing Polymers: The Science and

Technology of Their Synthesis and Applications; Publisher: Kluwer Academic

Publishers, 2000.

2. (a) €3. H. Lee, Fundamentals of Microelectronic Processing; McGraw-Hill: New York,

1990. (b) 5. Mort, 1;. Jansen, Eds.; PIasma Deposited Thin Films; CRC Press: Boca Raton,

29

FLY 1986. (c) T. Sueta, T. Okoshi, Ultrafast and Ultra-Parallel Optoelectronics; John

Wiley & Sons: Tokyo, 1995. (d) P. N. Prasad, D. R. Ulrich, Nonlinear Optical and

Electroactive Polymers; Plenum Press: New York, 1988.

3. (a) D. C. Bradley. Chem. Rev. 1989,89, 1317. (b) L. L. Hench, J. K. West, Chern.

Rev. 1990,90,33.

4. F. Raaii, M.S. Gordon; J. Phys. Chem. A, 1998,102 (24), 4666 -4668.

5. H. Okinoshima, K. Yamamoto, M. Kurnada, J. Am. Chem. SOC. 1972, vol. 94,9263.

6. H. Okinoshima, K.Yamamoto, M. Kumada, J-Organomet. Chem. 1975,86, C27.

7. H, Watanabe, M. Kobayashi, M. Saito, Y. Nagai, J.Organom. Chem. 1981, 149, vol.

216.

8. H.Watanabe, M. Saito, N. Sutou, K. Kishimoto, J. hose, Y. Nagai, J.0rganom. Chern.

1982,225, vol. 343.

9. H-Watanabe, T. Kitahara, T.Motegi, Y. Nagai, J. Organom. Chem. 1977,215, vol. 139.

10. A. Bottoni, A.P. Higueruelo, G.P. Miscione, J. Am. Chem. Sac., 124 (19), 5506 -

5513,2002.

1 1. W. Koch, M. Holthausen, “A Chemist’s Guide to Density Functional Theory.”

Wiley-VCH Wiley & Sons. Weinheim, 2000.

12. C. Moler, M. S. Plesset, Phys. Rev. 1934,46, 618.

13. C.J. Cramer, “Essentials of Computational Chemistry”, 2002, John Wiley & Sons,

LTD

14. T. D. Crawford, H. F. Schaefer 111, , Reviews in Computational Chemistry; 1996, Vol.

14, pp. 33-136.

15. (a) 0. Novaro, E. Blaisten-Barojas, E. Clementi, G. Giunchi, M. E. Ruiz-Vizcaya, 5.

Chem. Phys. 1978,68,2337.; @) H. Kawamura-Kuribayashi, N. Koga,

30

K. Morokuma, J. Am. Chem. Soc. 1992, 114,2359; (c) R. 5. Meier, G. H. J. van

Doremaele, S. Iarlori, F. Buda, J. Am, Chem. SOC. 1994, 116,7274.

16. F. Bernardi, A. Bottoni, G. P. Miscione, Organometallics, 1998, 17(1); 16-24.

17. (a) 5. Terao and N. Kambe, JournaI of Synthetic Organic Chemistry Japan, 2001 ,

59(11), 1044-1051. (b) J. Terao, N. Kambe, and N. Sonoda, Tetrahedron Lett. 1998,39,

9697. (c) J. Terao, K. Torii, K. Saito, N. Kambe, A. Baba, and N. Sonoda; Angew.

Chem., Int. Ed. Engl. 1998, 37,2653.

18. B. M. Bode, P. N. Day, M. S. Gordon, J. Am. Chern. SOC.; 1998; 120(7); 1552-1555.

19. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S.

Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery,

J. Cornput. Chem. 14,1347-1363 ,1993

20. B. M. Bode, M. S. Gordon, J. Molec. Graphics., 16, 133 (1999).

21. (a) For Si, C1: W.J. ,Stevens, H. Basch, M. Krauss, J. Chem Phys 81: 6026, 1984; @)

For Ti: W.J. Stevens, H. Basch, M. Krauss, P. Jasien, Can, J. Chem 70: 612, 1992

22. The exponents used are: Si c d = 0.364, C1

23. B. Bode, M.S. Gordon, Volume 102, Issue 1-6, pp 366-376, Theoretical Chemistry

= 0.566

Accounts, 1998

24. M.S. Gordon, M.W. Schmidt, G.M. Chaban, K.R. Glaesemann, W.J. Stevens, C.

Gonzalez, J. Chem. Phys., 110,4199 (1999).

25. T. Hayashi, T. Kobayashi, A. M. Kawarnoto, H. Yarnashita,

M. Tanaka,;Organometallics; 1990 9; 280

26. M. Murakami, T. Yoshida, Y. Ito, Organometallics; 1994 13; 2900

27. S. Sakaki, M. Ogawa, Y. Musashi, J. Organom. Chem. 1997,25-28, vol. 535.

31

28. M. J. Michalczyk, J. C. Calabrese, C. A. Recatto, M J. Fink; J. Am. Chem. SOC.;

1992; 114f20); 7955-7957. R. H. Heyn, T. D. Tilley; J. Am. Chem. SOL; 1992; 114(5);

19 17-1 9 19.

29. K. Ruedenberg, P. Valtazanos, Theoretica Chimica Acta, 64,281-307 (1986).

30. P. Pechukas, J. Chem. Phys. 64,1516-1521 (1976)

31. J. Baker, A. Kessi, B. Delley, J. Chem. Phys. 105, 192-21211996)

32. S.P. Webb, M.S. Gordon, J. Am. Chem. SOC., 121,2552 (1999).

33. S.P. Webb, M.S. Gordon, J. Am. Chem. SOC., 120, 3846 (1998).

34. S.P. Webb, M.S. Gordon, J. Am. Chem. SOC., 117,7195 (1995).

32

CHAPTER 3: THE DISTRIBUTED DATA SCF

A paper published in and reprinted with permission from

Computer Physics Conzinunicatian 143,69 (2002)

0 Copyright 2002, Elsevier Science, AI1 rights reserved

Yuri AIexeev, Rkky A. Kendall, Mark S. Gordon

Abstract:

This paper describes a distributed data parallel SCF algorithm. The distinguishing

features of this aIgorithm are: (a) columns of density and Fock matrices are distributed

evenly among processors, (b) pair-wise dynamic load balancing is developed to achieve

excellent load balance, (c) network communication time is minimized via careful anaIysis

of data flow in the SCF algorithm. The developed performance models and benchmarking

results illustrate good performance of the distributed data SCF algorithm.

Keywords:

Quantum chemistry, Cluster Computing, Self Consistent Field, Distributed Data

Interface, Nonuniform Memory Access, Dynamic Load Balancing

33

1. Introduction

Quantum chemistry is a useful tool for many areas of science. Ab initio

calculations provide reliable energetics and molecular properties for chemical reactions

applicable to areas such as biochemistry, material science, catalysis, material design and

others. One limitation of ab initio calculations is that they require significant

computational resources that increase rapidly with the size of the molecular system. An

important advance in the effort to expand the size of systems that can be studied by such

methods is the development of parallel quantum chemistry software.

Recently, the definition of supercomputing broadened significantly with the

introduction of cluster computing [11. This technology has become increasingly popular

in recent years. There are several advantages of cluster computing:

1. It can provide the computational power of supercomputers for a small fraction of

the price.

2. One can use commodity parts.

3. Scalability can be attained in principle.

4, Installation is relatively simple.

5 . One has local direct control of computational resources.

There are also some serious disadvantages of cluster computing. For example, the low

hardware cost of clusters is accompanied by slower communication between nodes, In

addition, parallel programming software is less robust for clusters. In general, not all

parallel libraries are available or optimized for the cluster environment [2,3]. A good

example is an IBM cluster of IBM RS/6000 dual processor Power 3 running AIX version

4.3.3, using Gigabit Ethernet to connect the nodes [4]. The MPI bandwidth utilizes less

34

than half of the TCP performance, since the MPI library is not optimized to handle Jumbo

Frames [5] . However, ths is likely to change as researchers in several laboratories

develop robust libraries that are optimized for cluster environments [6,7,8,9,lOj.

Replicated data models, in which the data is replicated on each node, are

straightforward to code, but limit the size of systems that can be calculated by the

memory on each individual node. In quantum chemistry codes, one must deal with both

two dimensional and four dimensional arrays. The size of each dimension N (total

number of basis functions) can range from a small number to a few thousand. Most

scalable algorithms focus on distributing the four dimensional arrays and replicating the

two dimensional arrays. However, this is still limiting if one wants to study very large

systems where N>>1,000.

The quantum chemistry package GAMESS [I l l is a multi-hnctional code that

performs a broad variety of electronic structure calculations. Over the past 10 years,

several parts of the quantum chemistry package GAMESS have been made parallel;

however, most of the functionality was implemented using the replicated data model.

Recently, the distributed data interface (DDI) 171 was implemented in GAMESS, in order

to perform second order perturbation theory energy and gradient calculations. The

DDUMP2 code scales linearly to 512 nodes on the Cray T3E [12].

In this paper a direct algorithm is discussed. Direct methods do not save data on

disk thereby avoiding large storage problems, This eliminates input/output (YO)

bottlenecks associated with lack of local disk space on nodes and possibble poor VO

performance.

The purpose of this paper is to present a scalable distributed data direct Fock

builder, as this is the most important computational kernel of a SCF program. The initial

guess and diagonalization will not be addressed in this paper. The Hartree-Fock self-

35

consistent field (SCF) method is the most common starting point for more accurate

calculations. The current bottleneck in replicated data SCF (RDSCF) that is implemented

in GAMESS [l 11 is that the density (D) and Fock (F) matrices are replicated on each

node. Because D and F are two dimensional rather than four dimensional arrays, this only

becomes an issue when one is interested in very large systems. Then one needs a

distributed SCF. There have been several other efforts to develop distributed data SCF

(DDSCF) codes [13,14,15]. The large latency and low bandwidth of clusters that

constitute a primary development platform, however, limit performance and scalability of

these algorithms. Because communication overhead degrades performance, one desires a

ratio of computation time to communication time that is at Ieast a few orders of

magnitude to achieve good performance.

A major problem with most SCF algorithms is “irregular” data access and update

patterns to D and F arrays since we intend to distribute them among nodes. The careful

analysis of loop structures at the beginning of Section 5 illustrates how access and update

of corresponding D and F elements can be organized. The algorithm presented in Section

5 illustrates the distribution of D and F matrices, loop structure, and dynamic load

balancing tasks. The performance analysis in Section 5 shows that the communication

cost is much less than the computation cost. Hence, we expect that the algorithm will be

efficient and scalable on most parallel machines. This is explicitly demonstrated by

benchmark timings presented in Section 6.

2. Tools and platforms

36

PC clusters are popular since small research groups and departments usually don’t

have sufficient resources to purchase large computer systems. Currently, the most

common types of clusters are PC clusters connected by a commodity network such as

Fast Ethernet. Hence, the code described here has been developed and tested on a PC

cluster [16] running Red Hat Linux 5.2 that consists of 16 Pentium 11 400Mhz nodes

connected by Fast Ethernet. Each node has 1 processor, 512 MB of memory, 8 GB IocaI

disk, and total aggregate distributed memory is about 8 GB.

Currently, the message-passing model is widely used because it has been ported to

a large. variety of platforms. However, complex scientific applications often require a

sophisticated distribution of data with irregular access patterns [171. The complexity of

programming within the limits of a message-passing model can be too high for such

applications. An alternative is a model based on the shared memory paradigm. However,

until recently only a few vendor specific libraries have been available for shared memory

computers. These include SHMEM on Cray and SGI platforms, Fujitsu MPlib, and IBM

LAP1 on the IBM SP platform. The need for a portable shared-memory library resulted in

the development of OpenMP [3] libraries and partially in the development of the MPI-2

[181 library. The uncertainty with regard to the wide avaihbility and implementation of

MPI-2 has resulted in the development of alternative portable libraries, such as

GNARMCI [19], DDI (Distributed Data Interface) [7], and GPSHMEM [20].

It is important to understand that the global memory access model is based on a

data-passing model. The purpose of DDDI or GA [21,22] is not to replace MPI-1 but to add

hnctionality that one hopes will ultimately be available in MPI-2. DDI has a set of point

to point messages implemented by using a socket code. On platforms for which socket

37

DDI-CREATE
DDI-DESTROY
DDI-DISTlUB

code is not available, MPI is used, At present, DDI uses only simple distributed memory

operations based on the point to point messages presented in Table 1.

Create distributed matrix
Destroy distributed matrix
Obtain distributed matrix distribution

Table 1. Distributed memory operations

DDI-GET
DDI-PUT

Get patch of distributed matrix
Put patch of distributed matrix

DDI-ACC Accumulate patch of distributed matrix

The performance of two of these operations, DDI-GET and DDI-ACC used in DDSCF,

is shown on Table 2. The data presented in Table 2 will be used to estimate

Operation
GET
ACC

communication time. This information is essential for the performance analysis camed

Latency (ps) Bandwidth (MB/sec)
67 9.7
95 8.9

out in Sections 4 and 5.

Table 2. Performance of remote GET and ACC on a Pentium I1 400 Mhz cluster connected by Fast
Ethernet

The RHF method expresses molecular orbitals in terms of atomic basis Eunctions.

However, when coding this method it is advantageous to group basis functions in shells,

in order to exploit the shared arithmetic and symmetry of shells utilized by most integral

packages. The loop structure in the following algorithms is done in terms of shells. A11

formulas in Section 4 devoted to distributed data SCF and Section 5 devoted to

performance models are developed in terms of shells unless it is specified explicitly that

38

Basis Set
Mini

6-31G**
TZV**

basis functions or atoms are used. We use N when we refer to the total number of basis

functions and Nsh when we refer to the total number of shells,

A necessary step for any ab initio quantum chemistry calculations is evaluation of

atomic two electron integral quartets (ijlkl) where i, j, k, and 1 represent shells. GAMESS

uses two integral packages. For fast evaluation of integral quartets consisting of s and p

atomic orbitals, the Pople-Hehre [23] integral package is used. For all higher angular

momentum integrals, the Rys polynomial code [24] is used. The average performance of

these two codes on a typical organic molecule is presented in Table 3. The data is given

for three basis sets: a minimal, double zeta plus polarization, and triple zeta plus

polarization basis sets.

sedint Total number of integrals
2*10a5 2,445,366
6*10q5 8,386,560
2* 1 0-05 202,015,050

Table 3. Total time to run Hehre-Pople and Rys integral packages for luciferin, divided by the total
number of non-zero integral quartets. Performance measured on a 16-node Pentium I1 400 Mhz PC

cluster

The data presented in Table 3 will be used in the following sections to analyze

computational time.

3. Brief review of replicated data SCF parallel implementation

The major bottleneck of an SCF procedure is calculation of the Fock matrix. It is

therefore useful to review the steps involved in formation of Fock matrix elements and

39

analyze them. Additional information about SCF procedure can be found in Almolf s

review [26]. Each Fock matrix element is the sum of a one-electron part.

and a two-electron part [25],

where i and j represent basis functions, h is the one electron Hamiltonian, D is the density

matrix, and (ijjkl) is a two electron integral quartet. So our final expression for the Fock

matrix element is:

131

Calculation of the one-electron part takes a relatively small amount of time, since it scales

as N 2 , where N is number of basis functions. The two-electron part scales as a much

faster growing Eunction N4. The calculation of these integral qvartets and entering them

into F constitutes the major bottleneck of the SCF process, so it is not surprising that this

is a part that needs parallelization. The actual number of integral quartets one must

evaluate may be reduced by: (a) symmetry of integral quartets, (b) prescreening of

integral quartets and (c) symmetry of the system.

Because of permutation symmetry, the following integral quartets are equivalent:

(i j I kl) = (ij I Zk) = (ji I kZ) = (ji I Ik) =

= (kl I i j) = (kl I ji) = (Zk 1 7 j) = (Zk I ji)

Hence, the total number integral quartets to be computed is reduced to

40

The upper bound of the magnitude of an integral quartet can be estimated fiom the

Schwartz inequality [26]:
c51

I (i j I kl) I q/m*$iqT)

Since the Om2) (ijlij) and (kllkl) exchange integral quartets can be evaluated before

calculation of (ijlkl), Schwartz screening means not all (ijlkl) integral quartets have to be

evaluated. Screening typically reduces the number of integral quartets to approximately

Om3) for three dimensional systems containing about 50 atoms, and the asymptotic limit

is o(N’) for linear systems.

Each integral quartet must be multiplied by a density matrix element to produce a

Fock matrix element. Using permutational symmetry, each unique integral quartet

multiplies up to six density matrix elements to update up to six Fock matrix elements, for

example,

Since an integral quartet must be multiplied by up to six different density matrix

elements, this can potentially lead to a huge communication overhead to fetch these

elements if they are located on remote nodes. In GAMESS [ll], to eliminate

communication overhead, density and Fock matrices are currently replicated on each

node. The algorithm is presented in Figure 1

41

DO I=1, N
DO J=lJ

Dynamic Load Balancer

DO K=l,I
L-H=K
IF (K.EQ.1) L-H=J
DO L=l,L-H

Screen (ijlkl)
Compute (ij Ikl)
(DijyDik,Di1,Djk,pljl,Dk1) '(ijlkl) * {Fij,Fik,Fil,Fjk,Fjl,FkI

END DO
END DO

END DO
END DO
SUM(F)

Figure 1. The direct repIicated data SCF (RDSCF) aIgorithm. N s ~ l c ~ is the total number of sheIls.
SUM(F) operation sums up partial contributions of Pock matrices

The do loops access only the unique list of integral quartets. The DLB (dynamic load

balancer) in the J loop assigns the next block of integral quartets to be calculated. After

looping over all integral quartets, each node will have a partial Fock matrix. These partial

matrices are summed to obtain the complete Fock matrix. The algorithm is almost

perfectly parallel. Load balancing and global summation of Fock matrices take a

negligible amount of time. However, the largest problem that one can calculate is

constrained by the local memory of each node. Since density and Fock mabices are

replicated, each node has to allocate 2*8*N2 bytes of memory. For large systems it is

desirable instead to have a distributed data SCF code in which density and Fock matrices

are distributed among all nodes. This effectively utilizes the aggregate memory of the

parallel computer or cluster, which is often the most expensive component.

42

4. Distributed Data SCF (DDSCF)

The algorithm described in Figure 1 will not be useful when density and Fock

matrices are distributed among nodes, due to the communication overhead involved in

manipulating these matrix elements inside four loops. Consider a system that has 1000

shells, and assume that all elements of the distributed matrices are remote. This would be

roughly true for large cIusters of computers. The total number of integral quartets to be

calculated is N;,~10004=1012. Since each integral quartet needs as many as six density

matrix elements to update six Fock matrix elements, the worst case is that the total

number of remote operations is Nc,mm=12*10'2. Now,

tcomp=l 0-O' = average time to calculate one integral quartet (from Table 3).

LOmm=l]atency =1 *loa2 = time to get/acc one remote matrix element (from Table 2).

Tcomp = time to compute all integral quartets

Tcomm = time to get or acc all necessary density or Fock elements

So, using a naive algorithm, communication would take four orders of magnitude more

time than calculation of the integral quartets. A viable distributed code requires the

communication time to be a smalI fiaction of the computation time, TcomdTcomm>>l.

So, the communication time must be minimized by using data efficiently. This goal may

be achieved by analyzing the construction of the Fock matrix in detail.

43

First note that six density and six Fock matrix elements can each be grouped into

three blocks, as shown in Figure 2.

Figure 2. The grouping of density and Fork matrix elements.

Indices for these elements obey i d , k>l, (ij)>(kl) to account for the permutation symmetry

of the integral quartets. So, we address onIy the lower triangular parts of the density and

Fock matrices. Access to density and Fock matrix elements can be moved to the

corresponding outer loops. In Figure 3, the algorithm is presented with a complexity

analysis of each critical step. Note that the Schwarz screening already mentioned is

applied inside the innermost loop to the computation of integral quartets and effectively

reduces the formal 0(N,,4) compIexity to roughly O(Nsj ,3) .

44

2.

3.

4.

5 .

6.

7 .

DO I=l,Nsh
1. GET D; block

DO J=1 ,I
GET Dj block
DO K=l,I

L H=K
I6-(K.EQ.1) L-H=J
DO L=l ,L-H

Compute (ijlkl)
END DO
ACC Fk block
END DO

GET Dk block

ACC Fj block
END DO
ACC Fi block

END DO

Figure 3. DDSCP Pseudocode with performance analysis of time consuming steps. Note: this analysis
is based on the number of operations ignoring of the cost of each operation. t,,,, and tcomp are

time(sec) per each operation defined in Section 5

The most expensive communication operations are in lines 3 and 5 , where the order is

0(Ns,13) . So, the communication scales as 0(Ns ,13) while computation scales as

0(Ns,14) . This algorithm may perform well on supercomputers. However, on clusters

where each communication operation is 10 times more expensive than computing one

integral quartet, one wiIl obtain poor performance due to the communication overhead.

There are many possibIe solutions. One is to work with large blocks of data. The

extreme case occurs when the size of a block is equal to N,h/N,. So each time one shell is

requested from a remote processor, all shells fiom the remote processor are copied to a

local buffer on the compute server. Then, the latency is offset by moving Iarge blocks of

data and the “effective” bandwidth improves significantly. But in this case, six buffers:

Di, Dj, Dk, F;, Fj, F k have to be allocated on each processor, where the size of each buffer

45

is Nsh/ N, This effectively increases local storage requirements by a factor of 6 . This

measure is justified only for large massively parallel processor platforms (MPPs).

A second approach is to calculate integral quartets only on the processor that has

the k block on its local data server. Then, the communication cost scaIes as O(N,,t2) vs.

computation 0(N,, ,4) . The communication overhead drops significantly, but the

computation of integra1 quartets is then based on a static distribution of density and Fock

matrices. This algorithm has poor load balance, because:

- Time to compute integral quartets greatly depends on the angular momentum of

the basis Eunctions, on the integral package and on the basis set used.

Distribution of integral quartets to be calculated is not constant among processors.

Figure 4 iIlustrates this load balancing problem for the simple case of &-,=20 and Np=20

from it simulation of our application. Then, Njnt is the total number of (ijlkl) integral

quartets calculated on processor p. An integral quartet is calculated on processor p only if

index (ijlkl) integral quartet index k = p, so that the Dk block from Figure 3 is local. The

data is obtained from simulation of code and holds for much larger values of Nsh and N,.

-

46

__

Integral contributions versus processor number.

Nint

1 3 5 7 9 11 13 15 17 19
p (processor number)

Figure 4. Distribution of integral quartets to be calculated over processors

Due to the reasons listed above, the wall clock time for the SCF step for the

problem illustrated in Figure 4 averaged over all nodes scales perfectly, but there is a

significant discrepancy in wall clock time among different nodes. The wall clock time on

the last and first nodes tends to be much smaller than on other nodes because of the nature

of the index k. It is possible to balance computation time by introducing shell and integral

quartet weights, determined by predicting how much time each shell will require to

calculate integrals. Once this information is available, the shells are distributed in such a

way that each processor spends equal time. The weight for each shell may be calculated

from Figure 5. To account for the diversity in integral calculations, the calculation time

for each integral quartet can be estimated based on the type of shell. However, this type of

prediction is unreliable, since it depends greatly on the specific integral package, and

47

leads to asymmetric distribution of both matrices. Further, the implementation is

complicated.

A composite algorithm is needed to achieve reasonable performance and good

scaling. Good performance should be achieved by preserving communication scaling as

O(ZVs,r2) and good scaling via dynamic load balancing. .

Since both density and Fock matrices are symmetric, in the original replicated

data algorithm we addressed only the lower triangles. The key to achieving dynamic load

balancing is to store the entire symmetric matrix. The kl element in the lower triangle is

equal to the lk element in the upper triangle, but they belong to different nodes unless 1

and k shells are on the same processor. This is rare if one is using more than a few

processors.

48

K shell

1
Processor 0 ... 1 ,.. P ... Np-1 ...

0

1

Kshell p+

J shell

I shell ’ *
N, -1

NP

Figure 5. Distributed square matrix

The access pattern to I, J, and K shells is demonstrated in Fig. 5. Processor p has

the whole K she11 (KL block) that is located in the lower triangle. At the same time,

processors with index < p have part of the R shell (LK block) located in the upper

triangle. This creates the basis for dynamic load balancing. The workload is balanced

between a processor that has the KL block and a processor that has the LK block. This

approach, which distributes the workload by taking advantage of the symmetric property

of density and Fock matrices, is called pair-wise dynamic Ioad balancing. The K and L

indices are frequently changed inside the four loops, providing good average load

balancing demonstrated in Figure 6.

49

time,
sec

processor

Figure 6. Time to complete one SCF iteration on 16 processors. The tested system is described in
Section 6

In conventional dynamic Ioad balancing a local counter on each processor is

incremented for all task values and compared with a global counter; the global counter is

increased via message passing. In the pair-wise dynamic load balancing scheme, only

processors that have the local K or L shells compare the local counter with the global

counter. Since the dynamic load balancer is located inside four loops, fine-grained load

balancing is achieved. The price for such a load balancer is the communication overhead

associated with incrementing the global counter, since this may affect the scalability of

the algorithm on a system with a large number ofprocessors.

50

DO I=l,Nsh
DO J=l,I

DO K=l,I
L-H=K
IF (K.EQ.1) L-H=J
DO L=l ,L-H

IF K or L is local then
Pair-wise Dynamic Load Balancer

END IF
END DO

END DO
END DO

END DO

Figure 7. Pseudocode of final version of DDSCF

Figure 7 presents the final version of the DDSCF algorithm. Both density and

Fock matrices are distributed evenly among the processors. The distribution is done over

shells since integral quartets are evaluated over shells. All communication calls are placed

inside the four loops to dynamically load balance them. DDDI operations are called only

when the outer loop counter has been incremented. This is also a scheme for enhancing

the overlap of communication with computation since a node only does communication

when it has received a task to compute that can be enhanced further if we would use non

blocking GET and ACC operations.

The DDSCF algorithm can be improved further if communication between local

computation and data-server processes becomes a bottleneck. A copy of the local portions

of F and D matrices, held simultaneously by the data-server process, is placed in the

51

innermost loop shown above. This additional improvement provides true scalability of

both data and work loads on commodity hardware such as PC clusters at the expense of a

four-fold redundancy in data storage.

Note that the access pattern to density elements is different from the access pattern

to Fock elements. Each time, when a new integral quartet is calculated, the whole set of

Fock elements is updated:

The partial contributions in the lower and upper triangles of the Fock matrix are summed

on each processor at the end of each iteration.

The next two sections consider the performance model and results that

mathematically and experimentally illustrate that DDSCF is an efficient and scalable

algorithm.

5. Performance models

The quality of the DDSCF paraIlel algorithm shown schematically in Figure 7, is

estimated in this section by two important performance models [27,28,29,30]. The first is

the ratio of computation time to communication time. The second model addresses

52

communication efficiency. These two models use estimates of computation and

communication times that are calculated below.

The total number of integral quartets is given by

The actual number is usually less than the theoretical number, since factors such

as the molecular symmetry, basis set, and integral screening can significantly reduce Nint.

Some of these factors are included in a “scale factor” a that ranges from 0 to 1. So the

computation time on Np processors is :

where tcomp is the average time required to calculate integral quartet.

From Figure 3, the total number of communication operations N,,,, is the sum of

Get (Neomm-geJ and ACC (Ncomm-acc) operations from I and J loops:

For simplicity we assume that bandwidth (3W) and latency (tlatency) of Get and Acc

operations are same. The time required to perform one communication operation, bomml is

the sum of the latency time and the transmission time (ttmnsm):

The transmission time is caIculated from the bandwidth obtained from the formula:

where Nbfpsh is number of basis fbnctions per shel1.

53

Thus, the total communication time on Np processors is:

The total execution time on N, processors is:

K x e c = Kornp + r,Of,l , lI

The first performance model measures the ratio of computation time to communication

time (Tratio):

After substitution of appropriate values taken from Tables 2 and 3, Trati0 is in the range

where

Nsh ranges from 1000 to 10000

Nbfpsh=4

tcomp =6'10a5 sec (6-3 IG** basis set)

-4
t]a[c"cy= 1 * 10 sec

BW = 9 Mblsec

The second performance model addresses the communication efficiency (Efcomm)

of DDSCF; this is the ratio of computational time (eq. 9) to the total execution time (eq.

19) :

After substitution of same constants as in Tratio:

54

Such high Tratio and Efcomm suggest that in the algorithm presented in Figure 7,

communication time is negIigible compared to computation time. This means the CPU

utiIization will be high on each processor, resulting in good performance of DDSCF.

Since these two models don't include the sparsity factor that arises from the molecular

geometry and basis set, there can be significant variation between results of performance

analysis and actual calculations. It is clear that the DDSCF algorithm will perform best

for dense molecules and large basis sets because of improved T,,,, over T,,,,.

These two performance models demonstrate that for a sensibly chosen problem,

the DDSCF algorithm is very efficient. One can expect that DDSCF wilI have good

scalability on a large number of processors, as well as good performance relative to a

replicated data SCF algorithm. In the next section, the results of test calculations are

shown that are consistent with results of the performance analysis.

55

6. Results

To test the scalability and overall performance of the DDSCF algorithm two

molecules are chosen. The first molecule is calphostin [3 11, a potential anti-cancer drug

[32,33]. The optimized structure is illustrated in Figure 8 (a). The second molecule is

luciferin [34], whose equlibrium structure is shown in Figure 8 (b). Luciferin’s

fluorescent properties are responsible, for example, for the light emitted by fireflies. The

basis sets used for calphostin and luciferin are the split-valence basis sets [35] 6-31G (d)

and 6-3 IG (p,d,i), respectively. The choice of molecules and basis sets was determined to

design computationally demanding calculations that produce reliable benchmarking

results, such that all arrays fit in the memory of a singIe node of a PC cluster [16].

56

Figure 8. Calphostin (946 basis functions) on the top (a) and Luciferin (498 basis functions)
on the bottom @)

57

Calphostin Luciferin

Table 4. Speedup and wall clock time (see) of the Fock builder in the first RDSCF iteration on a 16
node PC cluster

Table 5. Speedup, wall clock time, Comm time, and Comm% of Fock builder in first DDSCF
iteration on a 16 node PC cluster; times in seconds

In Tables 4 and 5 the wall clock time is measured on the compute server, while

communication (Comm) time is measured on the data server. Since all communication

operations are synchronous, the communication time on the data server provides a good

estimate of the ratio of communication time to computation time on the compute server.

The communication time for calphostin is bigger than that predicted by our performance

model. This can be explained by DLB overhead or inefficient work of the data server.

First, compare the performance of the RDSCF and DDSCF algorithms. In Tables

4 and 5, the waIl clock times for calphostin and luciferin are presented for different

numbers of nodes [14]. The wall dock time is almost identical for RDSCF and DDSCF

58

algorithms. As expected, even though the density and Fock matrices are distributed in the

DDSCF algorithm, communication time does not contribute significantly to the overall

timing.

The relative speedup data of DDSCF is demonstrated in Table 5. Calphostin and

luciferin scale very well, but there is a small loss in scalability on 16 processors. The loss

in scalability is mainIy due to communication operations between computational and data

servers. In Table 5 , the Cornm columns present the time spent to perform message

passing by each data server. The percentage (Comm%) wall clock time on computational

server to Comm clock time on data server is demonstrated in TabIe 5. Up to 10 % of the

Comm time is consumed by communication operations such as GET, ACC, and message

passing operations to update the global counter for the dynamic load balancer.

The overall performance of DDSCF is good as expected from the performance

model analysis. For much bigger molecules, the speedup data is likely to improve, since

the number of computational operations grows much faster than the number of

communication operations in the DDSCF algorithm.

7. Conclusions

We have successfully developed an efficient, scalabIe distributed data algorithm

that solves a major bottleneck in SCF caIculations on distributed memory platforms. A

new dynamic load balancing technique for symmetric matrices is developed. This

technique allows us to significantly improve the ratio of computation time to

communication time, and to achieve excellent load balancing. The performance models

and results demonstrate the high efficiency and scalability of the DDSCF algorithm.

59

The cluster solution for supercomputing is an attractive alternative to large

massively paralleI processor platforms due to a good performance/price ratio. The slow

speed interconnection between nodes on clusters is the source of poor performance and

scalability of algorithms developed for MPPs. Typically, in distributed data quantum

chemistry algorithms, bulk data is moved between processors. This means that to achieve

good performance and scalability high bandwidth is required. Bulk data movement is

designed to hide the need for low latency network.

Acknowledgement

Authors are thankhl to Mike Schmidt and Graham Fletcher for useful discussions

and support. We also want to thank Robert Harrison for his advice on earlier stages of

work.

A11 calculations were performed on a PC cluster that was funded by the

Fundamental Interactions program of the Ames Laboratory, supported by the US-DOE

Basic Energy Sciences Division.

60

References

1. http://www.beowulf.org (Data accessed: November 26,2002)

2. W. Gropp, S. Huss-Ldeman, A. Lumsdaine, E. Lusk, B. Nitzburg, W. Saphir, M.

Shir, MIT Press, 1998

3. R. Chandra , L. Dagum, D, Kohr, D. Maydan, J. McDonald, R. Menon, Morgan

Kaufmann Publishers, 2000

4. hfAp://www.scl.ameslab.gov/Projects/IBMCluster (Data accessed: November 26,

2002)

5. hfAp://www.scl.ameslab.gov/Projects/IBMCluster/Bench~arks.html (Data accessed:

November 26,2002)

6. http://cmp.ameslab.gov/MP_Lite (Data accessed: November 26,2002)

7. G. D. Fletcher, M. W. Schmidt, B. M. Bode, andM. S . Gordon, Computational

Physics Communications, 1999

8. http://www,nersc.gov/research/ftg/via (Data accessed: November 26,2002)

9. http://www.nersc.gov/research/ftg/mvich (Data accessed: November 26,2002)

10. http://oss.sgi.com/projects/stp (Data accessed: November 26,2002)

11. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen,

S . Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L Windus, M. Dupuis, J.A.

Montgomery, 5. Computational Chemistry, 14 (1993) 1347-1363.

12. G.D. Fletcher, M.W. Schmidt, M.S. Gordon, Advances in Chemical Physics, Vol.

1 10, 1999 John Wiley & Sons, Inc.

13. Thomas R. Furlani and Hary F. King, Spencer, France, 1996

http://www.beowulf.org
http://cmp.ameslab.gov/MP_Lite
http://www,nersc.gov/research/ftg/via
http://www.nersc.gov/research/ftg/mvich
http://oss.sgi.com/projects/stp

61

14. R.J. Harrison, R.A. Kendall, R.J. Littlefield, I.T. Foster, J.L. Tilson, A. F. Wagner,

R.L. Shepard, Journal of Computational Chemistry, Vol. 17, No. 1, 109-123, 1996

15. R.J. Harrison, M.F. Guest, R.A. Kendall, D.E. Bernholdt, A.T. Wong, M. Stave, J.L

Anchell, A.C. Hess, R.J. Littlefield, G.L. Fann, J. Neiplocha, G.S. Thomas,

D. Elwood, J.L. Tilson, R.L. Shepard, A.F. Wagner, I.T. Foster, E. Lusk, R. Stevens,

Journal of Computational Chemistry, Vol. 17, No. 1,124-1 32,1996

16. http://www.rnsg.ameslab,gov (Data accessed: November 26,2002)

17. H. Dachsel, J. Nieplocha, R. Harrison, in the Proceedings of SC 1998

18. W. Gropp, E. Lusk, R. Thakur, MIT Press, 2000

19. J. Nieplocha, B. Carpenter, Proc. 3rd Workshop on Runtime Systems for Parallel

Programming (RTSPP) of International Parallel Processing Symposium IPPS/SPDP '99,

San Juan, Puerto Rico, April 1999, in (1) J. Rolim eat al. (eds.) Parallel and Distributed

Processing, Springer Verlag LNCS 1586, and (2) IPPS/SDP'99 CDROM, 1999.

20. K. Parzyszek, J. Nieplocha, R.A. Kendall, Las Vegas, Nevada, November 2000, pp.

401-406. IASTED, Calgary (2000)

21. J. Nieplocha, R.J. Harrison, and R.J. Littlefield, Proc. Supercomputing'94, pages 340-

349,1994.

22. J. Nieplocha, R.J. Harrison, and R.J. Littlefield, The Journal of Supercomputing,

1 0: 197-220, 1996.

23. J.A. Pople, W.J. Hehre, 3. Comput. Phys. 27, 161-168(1978)

24. H.F. King, M. Dupuis, J. Comput. Phys. 21,144(1976)

25, A. Szabo, N.S. Ostlund, Dover Publications, Inc., 1996

26. J. AImlof, European Summer School in Quantum Chemistry, pages 1-90, Spnng-

Vedag BerIin Heidelberg, 1994

http://www.rnsg.ameslab,gov

i

62

27. I. Foster., Addison-Wesley, 1995

[28] Adolfy Hoisie, Harvey Wasserman, Tutorial Notes, SC 1999

29. D.A. Bader et al., Tutorial Notes, SC 2000

30. Thomas H. Cormen and others, The MIT press, McGraw-Hill, 1999

31. A. Datta, P. Bandyopadhyay, J. Wen, J. Petrich, M.S. Gordon, The Journal of Phys.

Chem. A, Vol 105, Number 6, pages 1057-1060,2001

32. N. Duran, P.S. Song, Photochem. PhotobioI. 1986,43,677-680

33. G.A. Kraus, W. Zhang, M.J. Fehr, J.W. Petrich, Y. Wannenmuehler, S. Carpenter,

Chem. Rev. 1996,96,523-535

34. E.H. White, F. Capra, W.D. McElroy, J. Am. Chem. SOC. 83,2402-3(1961)

35. M.S., Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro, W.J. Hehre, J. Am. Chem. SOC.,

1982, 104,2797-2803.

63

CHAPTER 4: A DISTRIBUTED DATA PARALLEL

CPHF ALGORITHM FOR ANALYTIC HESSIANS

A paper to be submitted for pubIication to

Journal of Computational Chemistv

Yuri Alexeev, Michael W. Schmidt,

Theresa Windus, Mark S. Gordon

Abstract:

One of the most commonly used operations to study potential energy surfaces of reactions

and chemical systems is the Hessian calculation. The most accurate analytic Hessian is

cornputationally and memory demanding. A new highly scalable, efficient, distnbuted

data analytical Hessian algorithm is presented. Features of the distributed data parallel

CPHF are (a) columns of density-like and Fock-like matrices are distributed among

processors, (b) an efficient static load balancer scheme was developed to achieve good

work load distribution among processors, (c) network communication time is minimized,

(d) numerous performance improvements in analytic Hessian steps. As result, the new

code has excelIent performance. The performance of the code is demonstrated via

calcuIations on large biological systems.

64

Keywords:

Quantum chemistry, Cluster Computing, Couple Perturbed Hartree Fock, CPHF,

Distributed Data Interface, DDI, Nonuniform Memory Access, Dynamic Load Balancing,

Static Load Balancing,

Introduction

An important advance in theoretical chemistry is the development of new.methods

and algorithms for calculating large chemical systems. The need for new parallel

algorithms arises because many important quantum chemistry methods such as second

order perturbation theory (MP2) El], coupled cluster theory (CCSD(T)) [2] , hull

configuration interaction (FCI) [3], complete active space self-consistent field (CASSCF)

[4], and analpica1 Hessian calculations 151 are bounded not only by CPU power but by

the amount of the memory and disk on a computer as well. Thus, the sizes of systems that

can be studied by such methods often limit their usefulness to the scientific community.

An important direction in quantum chemistry is developing algorithms so that both

computation and memory are scalable.

To study potential energy surfaces of reactions and chemical systems two

operations are performed most often: energy + gradient calculations and Hessian

calculations. The Hessian is the second derivative matrix of the total energy with respect

to geometric coordinates. The diagonalized Hessian provides harmonic normal modes and

corresponding vibrational frequencies. Transition states and minima are indicated by one

and no imaginary mode, respectively. So, a Hessian calculation is useful both for

providing vibrational frequencies and as a diagnostic for the nature of a stationary point.

65

There are two types of Hessian calculations: numerical using a finite difference

method [6] and analytic [7]. The computational and memory requirements are rather

different for these two methods. The analytic approach is usually preferable due to the

accuracy of calculated vibrational frequencies and considerable time savings.

The coupled perturbed Hartree-Fock (CPHF) approach for computing analytic

second derivatives was developed by many authors including Pople et al. [SI, since 1968

when it was introduced by Gerrat and Mills [7]. The first implementations used a

molecular orbital (MO) based approach in which the orbital Hessian used in the CPHF

was computed via two electron MO integrals. This approach requires a four index

transfornation of atomic orbital (AO) integrals and therefore storage of the huge

intermediate orbital Hessian matrix. Osamura et al. [SI suggested an A 0 based approach

to solve the CPHF equations. Later Head-Gordon et al. [103 developed a “direct CPHF”

method to avoid the four index integral transformation and storing the orbital Hessian

matrix. This approach is used in the present paper.

The CPHF step is one of the most computationally demanding steps in the

analytic Bessian code. Further, the memory requirements of the CPHF step are the largest

in analytic Hessian calculations. This limits the size of chemical systems that can be

studying using this method, The current bottleneck in the replicated data CPHF algorithm

that .is implemented in GAMESS [l l] is that the density-like (D) and Fock-like (F)

matrices which scale as Ow3) , where N is the size of the atomic basis set, are replicated

on each node. Both matrices are three dimensional matrices, so CPHT calculations are

limited to relatively small chemical systems if all matrices are replicated.

There have been severaI other efforts to parallelize the CPHF step in Hessian

calcuIations. Windus et al. [12] developed a “small scale parallel algorithm” for first and

second derivatives of the integrals. In their implementation, the orbital Hessian used in

66

the CPHF step was computed via MO integrals. Both the four index transformation of A 0

integrals and the CPHF step were carried out sequentially. Marquez et al. [13]

implemented parallel second derivatives of the integrals, four index transformation of the

A 0 integrals, and the CPHF step in BOND0 [14]. However, in their implementation the

MO integrals were saved to the disk. The product, orbital Hessian with response matrix,

is directly computed from saved MO integrals. As result, on 8 CPUs a relative speedup of

only four is achieved. Sosa et al. [15,161 parallelized a LCdirectyy implementation of CPHF.

The relative speedup is 13 on 16 CPUs, using is a - Pinene and the 6-31G(d) basis set on

a Cray T3E 600. The main disadvantage of all these algorithms is that all arrays are

duplicated. So the largest system that can be calculated is limited by the maximum

-memory on a single CPU. Recently Prakashan et al. [17] reported a simple “direct”

parallel implementation of CPHF [lX], in which both computation and memory are

distributed among all CPUs. The parallelization is done via responses that are evenly

divided among the CPUs. Subsequently, each CPU runs a sequential CPHF within a

given subset of responses. Thus, memory and computation are distributed. This is a very

appealing approach because of simplicity of implementation. There are however, a few

drawbacks to this approach: (a) the computation of integrals is replicated on each CPU,

(b) the work load balancing is not addressed: some of the responses usually converge

earlier than others (the average CPU time reported may differ from the real time), (c)

possibly slower convergence depending on the converger: next trial responses are

obtained within a subset of responses on each CPU [19]. The replication of the integral

computation is a fundamental limitation due to Amdahl’s law scalability of this

algorithm. The relative speedup of C24H50, using the 6-3 lGh basis set on an IBM SP is 12

on 16 CPUs.

67

The purpose of the present paper is to present a distributed data coupled perturbed

Hartree-Fock (DDCPHF) algorithm. The algorithm uses recently developed algorithms

and libraries to achieve good scalability of both computation and memory among

available CPUs. The “direct” approach pioneered by Head-Gordon [lo] is used to avoid

storage of the orbital Hessian. To solve multiple sets of linear CPHF equations a fast

preconditioned conjugate gradient procedure is used [20]. The memory is distributed via

the distributed data interface (DDI) [21]. The novel DDCPHF aIgorithm presented here

uses an approach originally developed for parallelization of the self consistent field SCF

method [22]. Hence, the algorithm is efficient and scalable. This is demonstrated by

benchmark timings presented in the Results section. The code is developed for closed

shell wavefunction, but can be easily extended to UHF and ROHF wavefunctions.

Tools and platforms

Beowulf-class clusters [23] are popular since smaIl research groups and

departments usually don’t have sufficient resources to purchase large computer systems.

Currently, the most common types of clusters are workstations connected by a

commodity network such as Fast Ethernet or Gigabit Ethernet. The DDI codes in

GAMESS have been developed and tested on an IBM pSeries cluster [24]. This cluster

consists of 32 IBM RS/6000 pSeries p640 servers connected by dual Fast Ethernet and

dual Gigabit Ethernet. Each p640 has 4 Power311 processors running at 375MHz, with 16

GB of memory and 73 GB local disk. The aggregate system has 512 GB of RAM and is

capable of 192 GFLOPs peak performance.

68

Complex scientific applications, such as many quantum chemistry methods

including CPHF, often require a sophisticated distribution of data with irregular access

patterns. The complexity of programming within the limits of a classical message-passing

model [25] can be too high for such applications. An alternative is a model based on the

global memory access model. The globaI memory access model is implemented in

GAMESS in the DDI library. At present, DDI uses only simple distributed memory

operations based on the point to point messages presented in Table 1.

Table 1. Distributed memory operations

DDI - CREATE I Create distributed matrix
DDI-DESTROY Destroy distributed matrix
DDI - DISTRIB Obtain distributed matrix distribution

DDI-GET I Get patch of distributed matrix I
DDI - PUT

DDI-ACC

Put patch of distributed matrix

Accumulate patch of distributed matrix

Brief review of CPHF theory

There are two methods for computing Hessians: analytic and numerical. A

numerical Hessian calculation has a modest N2 (N is the total number of basis functions)

memory requirement, but is computationally ineffective because it scales as Nxp*P*Niter

(where N,, is the total number of atoms in the system multiplied by three and Niter is the

number of iterations) and frequently does not predict accurate vibrationa1 frequencies.

69

The analytic Hessian method presented in this paper has N2*N,, memory requirements

and Nite,*N computational requirements. 4

One of the most computational and memory consuming steps of analytic Hessian

calculations is the CPHF step. The CPHF equation is:

((4[ij Ikl]-[ik~l]-[il~k])-(~, - ~ ,) 6 , 6 , >Ui,=
k l

=T (S; (2 [ij Ikll- [ikb 13 +S;E -F;)
k I

where i,k represent virtual MO orbitals, and j,l represent occupied MO orbitals. Therefore

[ijlkl], etc. are two electron integrals over MO, E, are the orbital energies, U is the

response matrix, Sa is the derivative of the overlap matrix, F" is the active Fock matrix,

One can rewrite equation [11 in the more compact form

where A is called the orbital Hessian and B is referred to as the inhomogeneity. All

matrices are formed in the molecular orbital (MO) space. To avoid calculations of the

large A matrix, Aij,klUk? and Bija and are calculated directly from A 0 integrals. GAMESS

uses two integral packages. For fast evaluation of integral quartets consisting of s and p

atomic orbitals, the Pople-Hehre [26] integral package is used. For all higher angular

momentum integrals, the Rys polynomial code [27] is used. Since the integrals are

evaluated in shell integral quartets this explains the loop structure shown in Figure 4

below. The computation is converted to a series of Fock -like builds from density - like

matrices with dimension N2*N,,. The A 0 integrals required by the CPHF are calculated

in exactly the same way as in the Fock builder. The only difference is that each unique

70

integral quartet multiplies up to 6*NxF density - like matrix elements to update up to

6*N,, Fock - like matrices:

FkliXF+Dijixyz (ijlkl) -> FklixYz

F~/XYZ+J-J~~W (ijlkl) -> FjliXw

-..

As a result, the computation to communication ratio is even smaller for CPHF than for

the Fock builder because communication requirements have grown more than

computation requirements.

After Ai,JJkt and Bija are formed, the multiple set of h e a r equations

CCA,. Ua -Ba=O
k l 9 ,kl M 11 (3)

is solved using a preconditioned conjugate gradient procedure.

Distributed data CPHF algorithm

To explain clearly the strategy used to parallelize the CPHF aIgorithm and how it

is implemented, this chapter is divided into subsections that clearly explain each step.

The goals of the DDCPHF paralldization scheme are

1. Distribute evenly the computation and largest Fock - like and density - like

matrices among available processors. The code should have both computational

and data scalability.

2. Minimize communication and other overheads. The code is supposed to have

comparable performance to replicated data CPHF. It is often possible to design a

code that has good scalability but poor performance.

71

A few techniques can be applied to parallelize the CPHF code and satisfy the goals listed

above. These techniques are discussed in detail in the next four sections.

1. A blocking technique

In the commonly used blocking technique small computational tasks are grouped

into larger tasks. If the computational tasks are grouped then the necessary data needed to

get or accumulate is grouped too. This will increase the network bandwidth for

communication operations if the size of the data block before grouping is less than -3 M B

(the actual number depends on network type, operating system, etc). A typical bandwidth

graph is shown in Figure 1 . The graph will look different for different MPI

implementations and other factors [ZSJ. However, the typical change is decreasing

bandwidth and shift of the curve to the right which will make blocking of data even more

justified.

1000
900
800

2 700
600

B

$.- 500
4 400
5 300

m q;1
0

1.EtO0 I.E+02 1.E1-04 I.E+06 1.E.108
Messagesize, bits

Figure 1. TCP/IP sendlreceive performance on the IBM RS/6000

In GAMESS, A 0 integrals are computed in shell blocks. Therefore every D(1,J) element

is accessed as a block of data D(l:N%@shI,l:NbfpshJ) where NbfpshI and NbfpshJ are

72

number of basis functions per corresponding 1. and J shell, This approach can be extended

further to compute integrals over atom blocks [29,30]. In the DDCPHF algorithm a more

effective strategy was employed to block data. Note that the six Fock-like update

operations can each be divided into three groups, as shown in Figure 2.

Djixyr block contains:

FjixF bIock contains:
D j ~ x y z , Djlixy2

FjkixF, FjliXF

DkiXYZ block contains:

FixYz block contains:
DkliXYZ

FkliXF

Figure 2. Grouped update operations and corresponding block structures

The idea is to access, for example, a line DiixF in a 3 dimensional density - like or Fock -

like matrix every time Dij'"", DikixF, DiliXF are needed. The density - like matrix is shown

in Figure 3. The access to the Fock - like matrix is performed in the same way.

Y V

Figure 3. Density like matrix D; Di block is a blue box

73

For large target systems the size of each block is estimated to be -3-10 MB which is

beyond the 3MB threshold. Therefore, operations GET and ACC in the DDCPHF

algorithm operate on the optimal size of the data.

2. A localized data access technique

Dynamic load balancing (DLB) is ofiten used when an even distribution of

computations is desirable. The disadvantages of DLB are that there is communication

overhead associated with distributing jobs on the master CPU and there is irregular access

to the data. The irregular access often implies that if data is not local then it must be

fetched from remote CPUs. The cost of fetching data can easily surpass the time required

to compute a task, especially if small tasks are utilized. Therefore, DLB is best suited for

replicated data/computationally driven algorithms. The alternative approach is to utilize a

static work distribution. In this data distribution driven paradigm, the computation of a

task is performed only if the data is local. This is the approach used in the DDCPHF

algorithm. In the proposed DDCPHF algorithm in Figure 4, an integral is computed only

if shell J or K is local.

DO I=l ,Nsh
1. GET D(I) shell

DO J= 1 ,I
DO K=l,J

DO L=l,K
IF J or K is Local

Compute (IJIKL)

Update Fock elements
END DO

Cost Number of operations

1- tcornnl Nsh

END DO
END DO

74

END DO
4. ACC F(1) shell

END DO
4. ~,omrn

Figure 4. DDCPHF algorithm with performance analysis of time consuming steps;
tCollllll i s the time to getlacc one shelI, fcolnpl is the time to calculate two electron integral block,

t conlpz is the time to to update up to six Fock elements

Up to six elements of the Fock matrix are updated from up to six elements of the density

matrix. All CPUs execute the GET D(1) shell so that all CPUs have Dij, Dik, Dil elements.

After the integrals are computed the F(1) shell is accumulated to the distributed matrix F

so that the Fij, Fik, Fil elements are updated. Other elements are fetched and updated based

on whether she11 J or shell R is local. If shell J is local Djk and Djl elements are available

and F j k and Fjl elements can be updated in array F(1) which will be accumulated at the end

of the cycle:

Update array F(1):

F(I,K)= F(1,K)-D(J,L)*(IJIKL)

F(I,L)= F(I,L)-D(J,K)*(IJIECL)

Update local F(J):

F(J,K)= F(J,K)-D(I,L)*(IJIIuL)

F(J,L)= F(J,L)-D(I,K)*(IJlKL)

If K shell is local Dkl element is avaiIable and Fkl element can be updated:

Update array F(1):

F(I,J)= F(1,J)-D(K,L)*(IJIKL)

Update local F(K):

F(K,L)= F(K,L)-D(I,J)*(IJlKL)

75

3. Self consistent work distribution

The advantage of using a static work distribution is clear from Figure 4. This

aIgorithm has a large computation cost to communication cost ratio:

5 Computation - Ns,l
Communication Nsh

--- Ratio = - NSh4 (4)

The reason that DDCPHF is such a communication conservative algorithm is that tcomm>>

tcornp1 where bompl is defined in Figure 4.

In the new DDCPHF algorithm the computation of integral quartets is then based

on a static distribution of density and Fock matrices. The work load per CPU is affected

by the following factors:

1. The time required to compute integral quartets greatly depends on the angular

momentum of the basis functions, on the integral package and on the basis set

used.

2. The disbibution of integral quartets to be calcuIated is not constant among

processors (This is explained in detail in [22]).

3. The time required to compute integral quartets depends on distances between

atoms in a chemical system or how many integrals are screened out.

To solve the workload imbalance note that CPHJ? has an iterative nature as do

many quantum chemistry algorithms. The responses are unknown, and it takes 10-15

iterations to converge. Initially, shells are distributed evenIy among CPUs for the D and F

matrices. After each iteration, the time to compute the integrals associated with a given

shell is estimated based on the wall clock time required to finish the CPHF step on one

CPU divided by the number of shells per CPU. The distribution of shells is adjusted,

based on this information on the next iteration. Typically, the self consistent work

76

distribution converges within 3-5 iterations if the convergence criterion is 10%

imbalance. After the self consistent work distribution converges the shell distribution is

locked and CPHF proceeds further until responses are found. The work distribution is self

consistent because redistribution of the shells affects the time associated with the

computation per shell. Since wall clock timings are used, at convergence, all factors such

as molecule properties, network performance, heterogeneity of a cluster are taken into

account to achieve good work load distribution.

To demonstrate the performance of the self consistent work distribution scheme

the cAMP molecuk [31] was chosen. CAMP is the second messenger that carries signals

from a cell surface to proteins within the cell, and is found widely in eukaryotes. cAMP

also frequently acts to stimulate protein kinases. The basis set used for CAMP calculations

is 6-31G (d,p). On the first iteration 122 shells are distributed evenly on 8 CPUs as shown

in Figure 5. This results in an uneven work load distribution which is a direct result of

using the localized data access technique discussed in the previous section. The weight or

workload associated with a shell is estimated by using wall clock timings. This

information is used to redistribute shells in the D and F matrices. After four iterations

good workload is achieved. The green line is an optimal workload. The final workload

imbalance is an acceptable 8%.

77

"i1 300
200
100
0

o 20 40 eo 80 loo
L

1" Iteration

15% znd Iteration

Td iteration

4'" Iteration

Percent Imbalance

-- 29%
B i ~
300
200
100

0
0 20 40 BO BO 100

1

I I

16%

Figure 5. Workload and shells distribution of CAMP in the first four CPHF iterations;
Shell number is the x axis and wall clock time is y axis

4. Cache optimization technique

Cache optimization is often underestimated or not taken into account in

parallelization of code. A code running on a cluster of computers can potentially utilize

cache on each CPU, vs. a sequential code for which only one cache is available. As the

number of CPUs grows the data is partitioned so that it fits completely into the cache on

78

each CPU. In such a case a super linear speedup may be observed. This was achieved in

the algorithm, developed by Korambath et al. [171.

In the DDCPHF code it is hard to achieve super linear speedup due to the manner

in which parallelization is organized. Parallelization is implemented in the same way as

SCF for which no cache optimization approach exists to achieve super linear scalability.

There is currently underway an effort to cache optimize the code for a replicated

data parallel CPHF code. This will improve the performance of sequential CPHF and

DDCPHF codes as well. The “copy method” [32] will be utilized to insure conflict misses

are minimized. The density, Fock blocks, and integrals will be grouped in a unified block

to increase data reuse and reduce possibility of cache conflicts. This method will be

implemented via reorganizing the internal loop in Figure 4.

Results

The moIecule calphostin C was chosen to test the scalability and overall

performance of the DDCPHF algorithms. Calphostin C is a widely-used inhibitor of

protein kinase C [33]. The basis set used for the calphostin C calculations is 6-31G (d,p).

The choice of molecule and basis set was determined to design computationally

demanding calculations that produce reliable benchmarking results.

79

Calphostin C

14
13
12
11
10

a 8 m

Q 5

3
2
1

A

:9

Y "
' " 4

Analytical Hessian, hrs Numerical Hessian, hrs
50 41 1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

p (processors)

Figure 6. DDCPHF speedup; Tested system is caiphostin C (1060 basis functions, 96 atoms)

Table 2. Time to complete different types of Hessian calcdations

The speedup in Figure 6 and performance data in Table 2 are calculated based on

wall clock time measured on the compute server. The longest wall clock time among all

processors is used to compute each point in Figure 6. The DDCP€F code shows good

scalability. The overall scalability of the Hessian is certainly not perfect. It may be

possible to deveIop more sophisticated techniques to distribute the workload by

redistributing shells in D and F. An advantage of the new algorithm does not have a built

in scalability limit due to the network overhead. This is usually a common factor defining

the scalability of an algorithm.

The advantage of using the new distributed data analytic Hessian code rather than

a conventional numerical Hessian code is clear from Table 2. In the DDCPHF algorithm

the ratio of computation time to communication time (4) is approximately four, the result

of careful analysis of data flow. The algorithms were designed to minimize

80

communication overhead that often prevents scalability. The difference between

performance of analytic and numerical Hessians should become even bigger as the size of

system is increased.

Conclusions

An efficient and scalable distributed data algorithm has been developed that

solves a major bottleneck in analyhc Hessian calculations on distributed memory

platforms. This novel algorithm has an excellent ratio of computation time to

communication time and achieves good load balancing. The performance results

demonstrate the good efficiency and scalability of the DDCPW algorithm. Calculations

on big chemical systems are now possible not only on large supercomputers but on

Beowulf-class clusters where communication overhead is often a bottleneck.

The cluster solution for supercomputing is an attractive alternative to large

massively parallel processor platforms due to a good performance/price ratio. The slow

speed interconnection between nodes on clusters can be a source of poor performance and

scalability of algorithms developed for MPPs. Typically, in distributed data quantum

chemistry algorithms, bulk data is moved between processors. This means that to achieve

good performance and scalability high bandwidth is required. It also means that new

algorithms like that presented in this paper are required to efficiently utilize a cluster’s

potential.

Acknowledgement

81

The calculations in this work were performed on an IBM workstation cluster made

possible by grants fiom IBM in the form of a Shared University Research grant, the

Department of Energy, and a DUIUP grant from the Air Force Office of Scientific

Research,

The research reported here was made possible by a grant CHSSI from the Air

Force Office of Scientific Research.

Theresa L. Windus was funded by the Office of Biological and Environmental

Research in the US. Department of Energy. PNNL is operated by BatteIle for the US.

Department of Energy under contract DE-AC06-76RLO 1830,

References

1. C. Moler, M.S. Plesset, Phys. Rev. 1934,46,618.

2. T.D. Crawford, H.F. Schaefer ID, 1996, VoI. 14, pp. 33-136.

3. J. Ivanic, K. Ruedenberg, Theor. Chem. Accounts, 106, 339-35 1 (2001)

4. M.T.B. Lam, S. T. Elbert, K. Ruedenberg , Intern. J. Quantum Chem. 31,489-505

(1987).

5 . M.J. Frisch, M. Head-Gordon, J.A. Pople, 1990, Chem. Phys., 141, 189.

6. P. Pulay, 1969, Molec. Phys., 17, 197.

7. J. Gerrat, I.M. Mills, 1968, J. chem. Phys., 49, 1719.

8. J. A. Pople, R. Krishnan, H.B. Schelegel, J.S. Binkley, 1979, Intl J. Quantum. Chem.

Symp., 13,225.

9. Y . Osamura, Y. Yamaguchi, H.F. Schaefer 111, 1982,J. chern. Phys., 77,383,

10. M.J. Frisch, M. Head-Gordon, J.A. Pople, 1990, Chem. Phys., 141, 189.

82

11. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.B. Jensen, S.

Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L Windus, M. Dupuis, J.A. Montgomery,

J. Computational Chemistry, 14 (1993) 1347-1363.

12. T.L. Windus, M.W. Schmidt, M.S. Gordon, Chem. Phys. Lett., 216,375 (1993).

13. A. M. M6rquez, J. Oviedo, J. F. Sanz, M. Dupuis, J. Computational Chemistry,

Volume 18, Issue 2, (1997) 159-168.

14. M. Dupuis, J..Watts, H. Villar, G.Hurst, 1988, HONDO: Version 7.0 Documentation,

IBM Kingston Technical Report KGN-169, and Quantum Chemistry Program Exchange

Bulletin 8:2.

15. C.P. Sosa, J. Ochterski, J. Carpenter, M.J. Frisch, 1998.5. Comput. Chem., 19, 1053.

16. Gaussian 98 (Revision A.lx), M.3. Frisch, et all., Gaussian, Inc., Pittsburgh PA,

2001.

17. P.P. Korambath, J. Kong , T.R. FurIani, M. Head-Gordon, J. Molecular Physics,

Volume 100, Number 1 l/June 10, (2002) 1755 - 1761.

18.9. Kong, et al., J. Comput. Chern. (2000) 21 , 1532-1548.

19. J.A. Pople et. a1 Quantum Chemistry Symposium 13,225-241 (1979).

20. P.E.S.Wormer, F.Visser, 5. Paldus, 5. Comput. Phys. 48, 23-44(1982).

21. M.W. Schmidt, G.D. Fletcher, B.M. Bode and M.S. Gordon, Computer Physics

Communications, 128, 190 (2000).

22. Y. Alexeev, R.A. Kendall, M.S. Gordon, Computer Physics Commun., 143, 69

(2002).

23. http://www.beowulf.org (Data accessed: November 26,2002)

24. http://www.scl.arneslab.gov/Projects/pCluster/ (Data accessed: November 26,2002)

http://www.beowulf.org
http://www.scl.arneslab.gov/Projects/pCluster

83

25. W. Gropp, S. Huss-Ldeman, A. Lumsdaine, E. Lusk, 13. Nitzburg, W. Saphir, M.

Shir, MIT Press, 1498

26. J.A. Pople, W.J. Hehre, J. Comput. Phys. 27, 161-168 (1978)

27. H.F. King, M. Dupuis, J.Comput. Phys. 21, 144 (1976)

28. http://www.scl.ameslab.gov/Projects/lBMCluster/Benchmarks.html (Data accessed:

November 26,2002)

29. R. J. Hamson, R.A. Kendall, R.J. Littlefield, I.T. Foster, 5. E. Tilson, A. F. Wagner,

R. L. Shepard, Journal of Computational Chemistry, Vol. 17, No. 1, 109-123, 1996

30. R.J. Harrison, M. 1;. Guest, R.A. Kendall, D.E. Bernholdt, A.T. Wong, M. Stave, J.L.

Anchell, A.C. Hess, R.J. Littlefield, G.L. Fann, J. Neiplocha, G.S. Thomas, D. Elwood,

J.L. Tilson, R.L. Shepard, A.F. Wagner, I.T. Foster, E. Lusk, R. Stevens,

Journal of Computational Chemistry, Vol. 17, No. 1 , 124- 132,1996

3 1. A. Kolb, S. Busby, H. BUC, S. Garges, S. Adhya, Annu. Rev. Biochem. 62, 749-795,

(1 993)

32. (a) S. Chatterjee, S. Sen, Proceedings of the 6th International Symposium on High-

Perforniance Computer Architecture , Toulouse, France, January 2000, pages 195-205.;

(b) S. Sen S. Chatterjee, Proceedings of the Eleventh Annual ACM-SLAM Symposium

on Discrete Algorithms, San Francisco, CAY January 2000, pages 829-838.

33. M.Y. Berridge, AS . Tan, C. BiochemicaI and Biophysical Research Communications

185: 806-11 (1992).

http://www.scl.ameslab.gov/Projects/lBMCluster/Benchmarks.html

84

CHAPTER 5: A DISTRIBUTED DATA PAFtALLEL

CASSCF ALGORITHM

A paper to be submitted for publication to

Journal of Computational Chemistry

Yuri Aiexeev, Zhenting Gan, Michael W. Schmidt, Mark S. Gordon

Abstract:

A new parallelifization scheme for the complete active space self consistent field

(CASSCF) method is developed. The purpose is to have a highly scalable, distributed

data CASSCF to perform computations on large chemical systems. The approach uses

recently developed algorithms to achieve excellent scalability. The following codes are

utilized: a highly scalable two-electron integral transformation code, a parallel full

configuration interaction (FCI) code, and a second order self consistent field (SOSCF)

code. The preliminary results are demonstrated with calculations on a moderate size

system.

Keywords:

85

Quantum chemistry, complete active space self consistent field, CASSCF, full

configuration interaction, FCI, second order self consistent field, SOSCF , DDI,

Nonuniform Memory Access, Dynamic Load Balancing, Static Load Balancing.

Introduction

Computational quantum chemistry is a useful tool for providing reliable

predictions of the structures and various properties of chemical compounds. A

particularly important case is the study of chemical reactions in which bonds are forming

and breaking. Another interesting case is the electronic excitation of an atom or molecule.

In such cases, the wavefunction often has multiconfigurational character which requires

multiconfgurational ab initio methods such as full configuration interaction (FCI) [11 or

multiconhguration self consistent field (MCSCF) [2] for a correct description of the

electronic structure. Even for small systems, the FCI can be extremely expensive to

calculate. MCSCF is usually a more computationally feasible method. The most

commonly used version of MCSCF is the complete active space SCF (CASSCF) method

[3]. In CASSCF the most chemically important orbitals and electrons are selected. They

are usualIy referred as active orbitals and active electrons correspondingly. All possible

configurations are generated by distributing active electrons in the active orbitals.

CASSCF calculations consist of muItiple steps: A 0 integral transformation, FCI

computation within the active space, orbital optimization step. Each of these steps can

become a computational andor memory bottleneck.

There have been several other efforts to parallelize MCSCF. Dupuis et al.

implemented a parallel first order MCSCF. The A 0 integral transfornation was

86

parallelized, but the FCI computation and orbital optimization step were not parallelized.

Therefore, this code has very limited scalability. Windus et al. developed a parallel

algorithm for the integral transformations and GUGA based FCI in GAMESS [4]. The

code has limited scalability on a small number of CPUs; this will be demonstrated in

Section 4.

The purpose of this paper is to present a distributed data CASSCF (DDCASSCF)

algorithm. To achieve excellent scalability and efficiency, recently developed state of the

art algorithms and libraries were employed. The goal of DDCASSCF is to perform

computations on large chemical systems. The code has been implemented in the ab initio

quantum chemistry program GAMESS [5] .

Tools and platforms

Beowulf-class clusters are an attractive option for small research groups and

departments that usually have insufficient resources to purchase large computer systems.

Currently, the most common types of clusters are workstations connected by a

commodity network such as Fast Ethernet or Gigabit Ethernet. The DDI codes in

GAMESS have been deveIoped and tested on an IBM pSeries cluster [6]. This cluster

consists of 32 IBM RS/6000 pSeries p640 servers connected by dual Fast Ethernet and

dual Gigabit Ethernet. Each p640 has 4 Power311 processors running at 375MHz, 16 GB

of memory, 73 GB local disk. The aggregate system has 512 GB of RAM and is capable

of 192 GFLOPs peak performance.

A model based on the global memory access model is a convenient model for

algorithms that require a sophisticated distribution of data with irregular access patterns.

87

DDT-CREATE
DDI-DESTROY

The global memory access model is implemented in GAMESS in the DDI library [7]. At

present, DDI uses only simple distributed memory operations based on point to point

messages. In the DDCPH3 algorithm the largest arrays are distributed and accessed via

the DDI operations presented in Table 1.

Create distributed matrix
Destroy distributed matrix

DDI-DISTRIB

DDI-GET
DDI-PUT

DDI-ACC

Obtain distributed matrix distribution

Get patch of distributed matrix
Put patch of distributed matrix

Accumulate patch of distributed matrix

Review of CASSCF theory

The complete active space SCF (CASSCF) method is the most widely used

version of MCSCF. In CASSCF the most chemically important orbitals and electrons are

selected. These are called active orbitals and electrons, respectively. A11 possible

determinants are generated by distributing the active electrons in the active orbitals in all

possible ways. Thus, one of the CASSCF steps is the FCI method.

The total CASSCF wavefunction yl,,,,,f is an antisymmetrized product of

molecular orbitals (MO) 4 which can be represented by Slater determinants Yk :

Y.,=;{qm.)

88

where Ak are the CI coefficients,

Each molecular orbitals #i is expanded in an atomic basis set x, :

,
where CPiare the MO expansion coefficients. Both Ak and Cpi coefficients are

variationally optimized. The orbitals #i can be divided into several subsets: core, active,

and virtual MO orbitals. The following notation will be used to label different types of

orbitals:

i, j, k, I - core MO orbitals
a, by cy d - virtual MO orbitals
t,u,v,w-active MO orbitals
p , q, Y,S - general MO orbitals
p , v , A , ~ - A 0 orbitals

The energy expression for a CASSCF wavehnction is

where hP4 and (pq Irs) are one and two electron integrals respectively; y,, and rprlrs are

one and two body density matrices.

To minimize the energy (4) with respect to both Ak and C, coefficients, the

frequently used “unfolded, two step” approach is employed in GAMESS. In the first step,

8E
the Hamiltonian is constructed and energy minimization - = 0 leads to CI coefficients

8 4

A k . On the second step given A , , the orbital improvement scheme generates Cfli

coefficients with fixed coefficients A,. The procedure is repeated until convergence is

achieved.

89

One of the most advantageous orbital improvement schemes is the approximate

second order Newton-Raphson method:

x = -B-'g (5)

where x is a vector of independent rotational parameters, I3 is the orbital Hessian of the

energy matrix, g is the orbital gradient of the energy vector. The independent rotational

parameters x were utilized since not all MO expansion coefficients Cpi are independent

variables. It is desirable to preserve orthogonality of the starting,MO orbitals without

introducing Lagrange multipliers. So the orthogonal matrix U is constructed fiom vector

x elements. The orthogonal matrix U can be written as the exponential of an

antysymmetric matrix x:

1 U = e x p (T) = I + T + - T 2 + ...
2

where T is

T = [O --x "1 0 (7)

In the current implementation expansion exp(T) (6) is truncated at the first order.

The improved MO orbital coefficient matrix C,,, is obtained iteratively fkom Cold and U:

C,,,," = C0,P (8)

The orbital Hessian matrix B is a large matrix. In the approximate second order Newton-

Raphson method only the diagonal elements are calculated [SI. The inverse orbital

Hessian is updated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [9].

The gradient formula needed to compute x is derived fiom the Lagrangian formula

(generalized Fock operator):

i

90

Core

The Lagrangian formula can be derived from the minimization of the energy expression

0 Loreactive Lore-virtual

for a CASSCF wavefunction (4) subject to orthonormalization constrains.

The Lagrangian is the matrix which has the following arrangement:

Core Active Virtual

Active

Virtual

symmetric at convergence. Eliminating Lcore-vifiual and Lactive-vimal at convergence means

that the single excitation element is zero. This is simply the Brillouin theorem [10,11,12].

There is also another Brillouin-Levy-Berththier theorem that states that at convergence

gcore-active= Lorn-active- X-activc-core=O

The detailed formulas for the gradients are

where Fore and F" are defined as

91

The gradient is always computed exactly because this is the convergence criteria of

MCSCF. Note that to calculate the gradient vector g the following classes of MO

integraIs are needed:

where "a" is an active orbital, "c" is core orbital, "v" is a virtual orbital.

However, the orbital Hessian B [13] can be approximated. Chaban et al. [14]

suggested to approximate the diagonal of matrix B to avoid computation of the MO

integrals other than those needed for gradient computation. The approximate diagonal

Hessian elements are

Active-virtual: B,a,,a = 2~,~4,:,'~@ - Z~y, , ,FJ , :" ' - 2 ~ F , u v , v (B J uw) + 2y,,4zd (16)
I I IIUlY

U UUlV

Note that to calculate both g and B, only Fore, FC', and (pu uw) are needed. Fare and

F"' can be calculated from A 0 integrals and via a similarity transformation which

transforms Fore and P"' into appropriate MO space. The product of two body density and

MO integrals r l r r u a (p I uw) needed in (1 1) and (12) can be calculated from the half
U,U, lV

transformed integrals (p v I ow) :

92

CPU
2-e A 0 integrals
Integral transf.

FCI
DM

SOSCF
Total time

Therefore, only two types of integrals are needed for the whole CASSCF macroiteration:

All active MO integrals: (tu I OW)

Half transformed integrals: (P I ow)

1 4 16
366(363) 662(407) 895(373)
348(344) 625(250) 1667(126)

8574(8573) lOOOl(8654) 8953(8933)
11 86(1185) . 1193(1191) 14031 1192)

78(77) 534(99) 21 02(99)
10559(10550) 1 1828(10608) 15026(10728)

CASSCF parallelization strategy

Currently, CASSCF is partially parallelized. Only the integral transformation step

is parallelized by Windus et al. which is based on HONDO’s code [15]. The current FCI

determinant code is not parallel. The molecule stilbene was chosen to test the

performance of the current code on one macro iteration. The input file parameters are

basis set: 6-311(dYp) (338 bf), group=C~, number of core orbitals ncore41, number of

active orbitals nact=l4, number of active electrons nels=14. The performance and

scalability of the code is demonstrated in Table 2.

Table 2. CASSCF waIl clock timings for one macroiteration on 1,4, and 16 CPUs;

improvement scheme described in the previous section
CPU time in parenthesis, DM i s computation of CL density matrix, SOSCF is orbital

The overall performance of the code is not satisfactory. There are a few reasons that

contribute to poor performance. The computation of 2-e A 0 integrals in the first step is

replicated because all A 0 integrals on each CPU are needed for integral transformation in

the current code. A 0 integrals, MO integrals, CI density matrix, and half transformed

93

integrals are stored on hard disk to reduce RAM memory requirements per CPU. This

strategy is hardly applicable to clusters of S M F workstations because the YO performance

is often not addressed there. On the IBM workstation cluster where the code was tested,

each box consists of four CPUs, two Gigabit Ethernet cards, and one Ultra SCSI I/O

controller. This particular Ultra SCSI I/O controller (one of the best available) can sustain

bandwidth 80 MB/sec or 20 MB/sec per CPU. The network bandwidth is approximately

40 MEUsec per CPU. For comparison, the internal memory bandwidth for IBM Power3

series is 275 MB/sec per CPU. The f a k e of this approach can be clearly seen in integral

transformation step. CPU timing has descent scaling, whereas wall clock time increased

five times because of I/O on 16 CPUs compared to performance on one CPU. The

distributed data algorithms including those used in parallelization of CASSCF have

minimum HD VO and network bandwidth requirements. The data in the large arrays is

recomputed, if it is too expensive to recompute then data is stored in distributed data

arrays.

In the DDCASSCF algorithm, new recentIy developed aIgorithms and new

parallelization schemes are employed to achieve good scalability and performance. The

proposed DDCASSCF algorithm is reviewed step by step below.

1. Generate the following MO integrals distributed among nodes using the integral

transformation adopted from the DDMP2 code written by Fletcher et al.:

(tu I uw) : for the FCI step and orbital Hessian Equations (1 6), (1 7)

(p v I ow) : the gradients in Equations (1 l), (12) are computed from half transformed

integrals (pv I uw)

2. Compute Fare from A 0 integrals. pore is needed not onIy in calculations of g and B

but in the FCI step too

94

CPU
Integral transf.

Fore
FCI
DM

SOSCF
Total time

3. Generate CI coefficients Ak using the DDFCI code E161 where the CI vectors are

distributed among nodes

4. Generate ypr, and rprjrs , respectively one and two body CI density matrices from CI

coefficients Ak

5. Parallel orbital optimization step SOSCF generates Cpi coeficients

The most time consuming operations by far in SOSCF are computation of F““

and Pcf from A 0 integrals. They are essentially Fock builds with different density

matrices which have to be transformed into appropriate MO space via a similarity

transformation. F””” matrix is needed for FCI step so it is calculated in the step 2. The

A 0 integrals are computed and written to disk. Fcr is computed directly fiom stored A 0

integrals. Both steps are scaling as good as SCF which is almost‘perfect up to 32 CPWs.

The estimated performance and scalability of code is demonstrated in Table 3 on

the same molecule stilbene with the same input parameters as at the beginning of this

section.

1 4 16
2635(2619) 674(665) 203(181)
366(363) 92(91) 23(22)

4460(4460) 1 199(1115) 3 63(3 3 8)
1186(1185) 297(296) 89(89)

8725 (8704) 2282(2187) 684(636)
78677) ZO(20) 6(6)

The integral transformation step in Table 3 is the time to compute the distributed

data MO integrals (oojoo). The code is adopted from the distributed data MP2 code. Since

the code was originally developed for MP2 the unnecessary MO integrals (cclcc) are

95

computed too which is responsible for the difference in time to transform integrals on one

CPU .in Table 2 and Table 3. The code will be modified firther to generate only the

necessary MO integrals (aalaa) and the half-transformed integrals. Thus, it will decrease

the time required for the integral transformation step significantly. computation of F

matrix in Table 3 is the time to build the Fock matrix from A 0 integrals which are saved

to disk. Timings for distributed data parallel FCI and DM steps are provided by Z. Gan.

The code will be further improved in the computation of CI density matrix (DM step)

because the time to compute the CI density matrix is too large. The most expensive

operation in SOSCF is computation of PCr which is computed directly from stored A 0

integrals. This step has same scaling as computation of a Fock matrix from stored A 0

integrals.

Conclusions

A new efficient and scalable distributed data CASSCF algorithm is under

development using recently developed highly scalable codes and parallelization schemes.

The largest arrays such as CI vectors and half transformed integrals are distributed among

nodes. Therefore, DDCASSCF will be able to perform calculations on big chemical

systems. This is the major problem of the currently employed CASSCF method.

DDCASSCF wilI have excellent performance. Further improvements of code

performance are under way,

Acknowledgement

96

The calculations in this work were performed on an IBM workstation cluster made

possible by grants from IBM in the form of a Shared University Research grant, the

Department of Energy, and a DUMP grant from the Air Force Office of Scientific

Research.

The research reported here was made possibIe by a SciDAC grant to the Ames

LaboratoIy from the Department of Energy.

References

1. JJvanic, KXuedenberg Theoret.Chem.Acc. 106,339-35 l(2001).

2. M.W. Schmidt and M.S. Gordon, Ann. Rev. Phys. Chem. 49,233 (1 998).

3. B.O.Roos, in “Advances in Chemical Physics”, vo1.69, edited by K.P.Lawley, Wiley

Interscience, New York, 1987, pp 339-445.

4. T.L. Windus, M.W. Schmidt, and M.S. Gordon, Theor. Chim. Acta, 89,77 (1994).

5 . M. W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S.

Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A.

Montgomery, Jr., J. Comp. Chem., 14, 1347 (1993).

6. http://www.scl.arneslab.gov/Projects/pCluster/ (Data accessed: November 26,2002)

7. M.W. Schmidt, G.D. Fletcher, B.M. Bode and M.S. Gordon, Computer Physics

Communications, 128, 190 (2000).

8. T.H. Fischer, J.E. Almlof (1992) J Phys Chem 96: 9768

9. R. Fletcher, “Practical methods of optimization”, vol. I . Wiley, New York (1980)

10. B. Levy, G. Berthier, Int. J. Quantum Chem. 2: 307 (1969); Int. J. Quantum Chem. 3:

247 (1 969)

http://www.scl.arneslab.gov/Projects/pCluster

97

1 1 . K. Ruedenberg, L.M. Cheung, S.T. Elbert Inl. J. Quantum Chem. 16: 1069 (1979)

12.3.0. Roos. Int. J. Quantum Chern. S14: 175 (1980)

13. P. Siegbahn, A. Heiberg, B. Roos, 13. Levy Physica Scripta 21: 323 (1980)

14. G. Chaban, M.W. Schmidt, and M.S. Gordon, Theor. Chem. Accts., 97,88 (1997).

15. M. Dupuis, S. Chin, A. Marquez (1994) In: G.L. Malli (ed) M. Dupuis, S . Chin, A.

Marquez (1 994) In: G.L. Malli (ed). Plenum Press, New York, p 3 15

16. 2. Gan, Y. Alexeev, R. Kendall, J. Ivanic, M.W. Schmidt, M.S. Gordon, in

preparation

98

CHAPTER 6: GENERAL CONCLUSIONS

All papers presented in the thesis have conclusions. Therefore, only general

conclusions will be presented in chapter 6 .

In the second chapter, titanium chloride (11) is investigated as a potential catalyst for

the bis-silylation reaction. This paper falls into line with other papers recently published in

the Gordon group that demonstrates the effectiveness of titanium as a catalyst. Ti is an

electron deficient atom, so Ti readily forms additional bonds beyond the “usual” four. In the

studied reactions, Ti in the initial steps binds with a n: donor reactant which results in large

energy decrease. This large energy decrease ensures that the activation barriers for all

subsequent steps are below the energy of the reactants. In the transition states of subsequent

steps Ti typically forms more than four bonds which result in relatively small activation

barriers compared to the energy of the reactants. We conclude that divalent Ti has the

potential to become an important industrial catalyst for silylation reactions. The mechanism

of bis-silylation reactions was studied in detail. The investigation of Pt as an effective

catalyst for bis-silylation reactions is underway.

In this thesis, parallelization of different quantum chemistry methods is presented.

The parallelization of code is becoming important aspect of quantum chemistry code

development. Two trends contribute to it: the overall desire to study large chemical systems

and the desire to employ highly correlated methods which are usually computationally and

memory expensive. Ab initio methods can provide reliable energetics and molecular

properties for chemical reactions. In recent years because of that, quantum chemistry is

becoming a valuable tool to study important biological reactions that result in better

99

understanding about how nature works. It may ultimately lead to finding better drugs to cure

people, prolong people’s Iives and other applications. The main obstacle is the typical size of

biologically important molecules. The quantum chemistry methods that can be applied are

usually very simple methods such as RHF and DFT. The highly accurate methods such as

CASSCF, MP2 and others are not applicable. Ths problem is addressed in the thesis. The

presented distributed data SCF increases the size of chemical systems that can be calculated

by using RHF and DFT. The important ab initio method to study bond formation and

breaking as well as excited molecules is CASSCF. The presented distributed data CASSCF

algorithm can significantly decrease computational time and memory requirements per node,

Therefore, large CASSCF computations can be performed. The most time consuming

operation to study potential energy surfaces of reactions and chemical systems is Hessian

calculations. The distributed data parallelization of CPHF will allow scientists carry out large

analytic Hessian calculations. The parallelization of other quantum chemistry methods is

undenvay.

100

APPENDIX: SUPPLEMENTARY MATERIALS

Table S1. MP2 total energies with ZPE corrections in Hartrees

101

Table SZ. The Cartesian coordinates of each stationary point in A

Structure
R
C2H2
C
H
H
C
H
H
SizC16
SI
S [
CL
CL
CL
CL
CL
CL
Tic12
CL
TI

. CL
M1
Tic& CzH2
TI
CL
CL
C
C
H
H
H
H
M2
SI
CL
CL
CL
TI
CL
CL
CL
SI
CL
CL
C
C
H

14
14
17
17
17
17
17
17

17
22
17

22
17
17
6
6
1
1
1
1

14
17
17
17
22
17
17
17
14
17
17
6
6
I

Cartesian coordinates

2.51 0704 0.70891 2 3.26861 7
2.3028 1.769408 3.266477

2.00058 0.112671 4.01 1646
3.358135 0.161058 2.394191
3.868259 0.757346 1.651 159

3.56607 -0.89943 2.396284

0.094767

1.640207
-0.10036

-0.44212
-1.66785
-1.64751
1.658365
0.443124

-0.1 0908
0.121383
0.909694

4.37633
-1.721 13

-0.89064
-1.36917
1.732963

-1.16864
1.169473
1.9241 04
2.01 135
I .603596
-1.92621
-1.60202
-2.00884

-0.84389 0 -2.14549
0.047493 0 -0.01989
0.938856 0 2.105719

-0.42276
-2.37642
0.877375

0.59122
0.201 957
1.675436

0.492072

-0.1 1568

-0.981 23

0.45664
1.6126

'! .34414
0.39562

-1.44832
-3.1472

-0.93347
-2.56331
-1.691 46
-1.391 86
-2.84409
-1.4574

-0.31454
-0.33542

2.1 1 719 1
I .453937
1.168644
4.126405
3.371 178
3.450499
3.321452
4.71 5883
4.584973

0.25742

0.40249
2.1 8085
3.87206
3.04965
3.4885

-0.85709

-0.71 885
-0.71678
-2.64838
0.27672
5.91 327
5.30889
5.26692

-0.49764
0.329696
-2.03 146
-0.3 163

0.752935
1.764437
0.699286

-0.026
-1.091 75

-0.76333
0.54024

0.09714

0.2731 I

0.92946

-2.59577

-0.91 826

-3.05804

-0.92058
-1.55245
-2.28401
-0.63962
0.05362
1.13974

102

H
H
H
H
TS 1
SI
CL
CL
CL
CL
SI
CL
CL
CL
TI
CL
C
H
H
C
H
H
M3
Si
CI
CI
CI
CI
Si
CI
CI
CI
Ti
CI
C
H
H
C
H
H
H
M4
SI
CL
CL
CL
CL
SI
CL
CL
CL

1 0.67847 5.46965 -0.35873
1 -2.2882 6.2786 -0.0433
I -1.26869 6.4876 -1.54206
1 -1.26869 6.4876 -1,54206

14
17
17
17
17
14
17
17
17
22
17
6
1
1
6
1
1

$4
17
17
17
17
74
17
17
17
22
17
6
1
1
6
1

' 1
1

14
17
17
17
17
14
17
17
17

0.71 669

2.659266
0.755848

-0.26255
-1.671

-0.31 584
1.256577

1.62113
-1.26552

-0.45683
-2.346

-0.71767
0.24471 4
-1.36875
-I .28046
-2.35574
-0.74253

0.85033
0.72846
2.84197

-0.06714
-1.89897
-0.46608
1.07013

1.64414
-1.3899

-0.31 529
-2.28215
-0.738 73
0.28619
-1.3407

-1.271 38
-2.3 7 334
-0.68647
-0.68647

0.944844
0.772916
2.95636

0.037576
-2.27424
-0.32327
0.50321 9
0.684631
1 .647236

-1.26645
-1.08996
-1.42655
-3.00832
-0.70744
0.426045
0.86 1445
2.253735

1.030207

1.771 69 1
1.98421 7
1.114546
2.694442
2.73251 7
3.602738

I .888691

-0.24569

-1.48356
-0.98751
-1.74052
-3.30901
-0.29654
0.681 31
1.27199
2.49616
1.78692
0.72023

-0.33002
I .a0658
1.90226
1.02509
2.68246
2.62459
3.50177
3.50177

-1 A9742
-1.85959
-1.57006
-3.1 21 96
I .61768

1.261 865
0.072752
3.084875
1.377278

0.22361 7
2.322236
-0.38865
-0.20243
-2.50848
-1.48235
-2.71 21 9
-1.04123
0.808931
1.207624
1.077524
3.194591
3.646886
3.760439
2.264976
2.129906
2.0 1 680 1

0.48456
2.61 177
0.02993
0.22901

-2.80437
-1.69532
-3.00347
-0.89608

0,81467

3.18595

3.62988

0.69072

0.95942

3.51 855

2.30397
2.07927
I .go793
1.90793

0.1 55723
2.36296

-0.23595
-0.70615
-1.61 31 1
-0.93982
-2.47358
-1.14684
2.048599

103

TI
CL
C
H
H
C
H
H
1x2
Si
CI
CI
Ct
Ct
Si
CI
CI
CI
Ti
CI
C
H
H
C
H
H
H
M5
SI
CL
CL
CL
CL
SI
CL
CL
CL
TI
CL
C
H
H
C
H
H
M6
C
H
H
Ti
CI

22 -0.21845
17 -2.22762
6 -1.49821
1 -2.35803
1 -0.7263
6 -1.43618
1 -0.61651
I -2.24992

14
17
17
17
17
14
17
17
17
22
17
6
1
I
6
1
I
1

14
17
17
17
17
14
17
17
17
22
17
6
1
1
6
1
1

4.00439
I. 12943
2.92545
0.12465

-2.281 76
-0.34613
0.13467
0.95067
1.36947

-0.33817
-2.1237

-1.05901
-1.39679
-0.095 74
-1.85717
"I 57534
-2.84745
-2.84745

I SI1796
1.46944

0.07306
2.82084

-2.22208
-0.33088
0.04551
1.07039
I .I 5568

-0.42618
-2.08753
-0.98387
-1 .I 3305
-0.08326
-1.92656
-1.82867
-2.85259

0.289189
-0.65134
2.709662
2.546777
3.376848
2.j 72304
2.405068
1.5741 03

-1.52631
-2.2 7424
-1.22964
-3.02712
1.88835
1.21 686

2.84526
1.20427
0.42026

3.16514
3.51 736
3.50976
2.38996
2.12493
2.11022
2.11022

-0.03901

-0.8087

-1.53281
-2.52844
-1.01 629
-2.944 1 4
2.00402
1 .I 94 12

2.73407
1.06387

-0.0873

0.48479
-0.8269
3.27456
3.63882

2.52517

2.27441

3.58134

2.24806

1.524645
1 .402166
1.691436
,056668

1.333471
2.9321 75
3.599397
3.320365

0.36736
2.34209
-0.3219

-0.73956
-1.54695
-1.07954
-2.6598

-1.281 05
2.58237

1.4389
1.71 724
1.431 98
0.46999
1.78036
2.201 14
3.21 506
1.86821
1.86821

0.5029
2.28389

-0.37869
-0.681 52
-1.60347
-1.15617
-2.73553
-1.33985

2.7943
1.40049
1.88014
1.35539
0.35129

1.8699
I .96991
3.01405
1.46795

6 3.33648 0.17176 -0.32291
1 3.98836 -0.12372 0.49127
1 3.33982 -0.44745 -1.21 097

22 1.18232 -0.67268 0.58644
17 1.29937 -0.74209 2.7523

104

CI
Si
c1
CI
CI
Si
CI
CI
CI
C
H
H
H
TS3
C
H
H
Ti
CI
CI
Si
CI
CI
CI
Si
c1
c1
CI
C
H
H
H
&I7
C
H
H
TI
CL
CL
SI
CL
CL
CL
SI
CL
CL
CL
C
H
H
M 8

17
14
17
17
17
14
17
17
17
6
1
1
1

6
I
1

22
17
17
14
17
17
17
14
17
17
17
6
1
1
1

6
1
1

22
17
17
14
17
17
17
14
17
17
17
6
I
1

1.85 136
-1.17257
-1.74357
-2.84437
0.26405

-0.03202
-1.72504
1.21 327

2.65826
2.76781
2.09544
2.09544

-0.56003

2.89277
3.66973
3.12383

1.2607
1.34868
I 39817

-1 .I3945
-1.90975
-2.6732
0.33292
0.06528

-1.59994
1.16408

-0.66525
I ,93488
2.1591 1
1.43364
1.43364

2.227296
2.87831

2.777445
0.887433
0.9081 81
2.006123
-1.28559
-1 301 98
-3.17325
-0.08063
0.625798

1.495592

1.79719
2.645753
1.256274

-0.84097

-0.33822

-2.71223
-1.03862
-2.974 1 6
0.1 0887

-0.4091 I
1.7349

1.50896
2.91626
3.01417
1.34838
2.01 903
I .70118
1.701 18

0.44928
0.47904

-0.1 0079
-0.7975 1
-0.68766
-2.84269
-0.88843
-2.80303

I .ai 767

0.32447
-0.79312

1.22631
2.86385
3.22649
1 A9324
2.39534
1.65676
1.65676

0.677983
0.729726
0.159947
-0.88247
-1.01 148
-2.67082
-1.70028
-3.57499
-0.84973
-0.52782
2.782787
1.28281 5
3.056486
4.495 149
2.066055
2.742324
2.01 0709

-0.00627
-0.35977
-0.793 1 6
-0.67016
-1.89053
1.14085
2.34383
2.37086

-0.42905
-0.28531
0.55361

-1.13878
-I .I 3878

-0.18593
0.5692

0.45937
2.63933
0.07729

-1.09564

-0.39786
-0.35907
-1.03137
-2.02514
1 . I 1277
2.22974
2.55025

-0.22851
-0.25833
0.29782

-1.20413
-1 204 1 3

0.1 13923
0.995277

0.703131

0.097217

-0.67863

2.a99019

-0.42572
-1.26392
-0.42279
-I ,82561
0.895208
1 .I 16224
2.728675
0.31 7625
-0.35354
-0.49727
-1.30071

105

C
H
H
TI
CL
CL
St
CL
CL
CL
SI
CL
CL
CL
C
H
H
M9
C
n
H
TI
CL

. CL
SI
CL
CL
CL
SI
CL
CL
CL
C
H
H
M10
CL
SI
CL
CL
C
H
H
C
H
H
CL
CL
SI
CL
TI

6
I
1

22
17
17
14
17
17
17
14
17
17
17
6
4
1

6
1
1

22
17
17
14
17
17
17
14
77
77
17
6
1
1

17
14
17
17
6
1
I
6
1
1

17
17
14
17
22

0.129437
1.102431

0.601 307

2.626604

-0.28026

-0.94995

-0.41 547
-0.39452
-2.40046
0.585985

-0.0384
-1.31397
1.367684
I .038726
-0.84732
-1.19417
-1.73852

1.36226 1
1.458953
2.1 30025
-0.14975
-2.18645
0.461423

1.41 7407
-0.2787

-1.77563
-0.82239
0.706324
0.614954
1.760131

1.62661 2
2.683552
1.443692

-1.19277

1.38 1678
0.855777

1.675289
1.490905
2.552781
1.01 6308
1.358035
1.785861
1.925077

-1.j9488

-1.49683
-0.09224
-0.33923
-1.3778

-0.41 368

0.958676
I .412524
0.587862
-0.61 11 8
-1 .I3635
-1.43604
-2.1 6748
-4.17097
-1.64209
-2.00704
2.914255
3.50142

4 585978
4.51 6203
1.963718
2.699026
1.465707

0.3461 23
0.425735
-0.36177
-3.1271

-3.71883
-3.06025
-0.54651
-3.62234
0.197548

3.207079
3.1 7860 1
4.880649
3.360955
1.69771 2
1.951616
1.636327

-0.23543

0.986477
2.070077
2.25461 1
3.951 172
1.22671 1
1.4801 19
I .717828
-0.30249
-0.80131
-0.66322
-0.07 921
-3.0 1564
-1.041 54
-1.35093
-3.835 88

-0.60775
-0.84204
-1.54812
0.7292 1 4
2.196706
0.601 378
-1.091 04
-0.54921
-1.46379
-2.91 022
1 .418972
2.903879
2.272842
0.734318
0.030909

0.42005
-0.70296

0.526789
1.61 2463
0.1 99207
0.625278
0.1 57881
2.71 2448
0.197403

1.437253

0.472954
2.5301 39

-0.80296

-1.79039

-0.1 1501
-0.291 57
-0,15722
-0.03627
-1.23224

2.291924
0.633065
0.568529

0.73579
-0.9206

-0.96996
-1.77301
-1.00713
-0.1 3395
-1.87089
-2.59023
-1.91737
-1.25831
0.528673
0.609791

106

CL 17 1.720284 -3.31 196 1.359398
CL 17 -2.28349 -5.17626 0.535566
P
Sic13 C2&SiC13
CL 17 0.83278 1.14018 2.48915
SI 14 0.66578 2.40854 0.56363

' CL 17 1.80143 4.0788 0.8928
CL 17 -1.24961 3.00187 0.15594

C 6 1.46938 1.46481 -0.85001
H I 2.53324 1.69746 -0.75569
H 1 1.12814 1.95096 -1.76757
C 6 1.32183 -0.061 55 -0.94898
H I 1.7344 -0.56796 -0.07417
H 1 1.9571 3 -0.41615 -1.76822
CL 17 -1 .I5735 0.3068 -2.98894
CL 17 -0.25873 -2.74408 -1.92651
SI 14 -0.38635 -0.77414 -1.42503
CL 17 -1.71823 -0.55551 0.16483

