Extrapolation of supersymmetry-breaking parameters to high energy scales

PDF Version Also Available for Download.

Description

The author studies how well one can extrapolate the values of supersymmetry-breaking parameters to very high energy scales using future data from the Large Hadron Collider and an e{sup +}e{sup -} linear collider. He considers tests of the unification of squark and slepton masses in supergravity-inspired models. In gauge-mediated supersymmetry breaking models, he assess the ability to measure the mass scales associated with supersymmetry breaking. He also shows that it is possible to get good constraints on a scalar cubic stop-stop-Higgs couplings near the high scale. Different assumptions with varying levels of optimism about the accuracy of input parameter measurements ... continued below

Physical Description

413 Kilobytes pages

Creation Information

Martin, Stephen P November 7, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The author studies how well one can extrapolate the values of supersymmetry-breaking parameters to very high energy scales using future data from the Large Hadron Collider and an e{sup +}e{sup -} linear collider. He considers tests of the unification of squark and slepton masses in supergravity-inspired models. In gauge-mediated supersymmetry breaking models, he assess the ability to measure the mass scales associated with supersymmetry breaking. He also shows that it is possible to get good constraints on a scalar cubic stop-stop-Higgs couplings near the high scale. Different assumptions with varying levels of optimism about the accuracy of input parameter measurements are made, and their impact on the extrapolated results is documented.

Physical Description

413 Kilobytes pages

Source

  • Snowmass 2001, Snowmass CO (US), 07/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-01/312-T
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 804170
  • Archival Resource Key: ark:/67531/metadc736378

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 7, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 1, 2016, 4:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Martin, Stephen P. Extrapolation of supersymmetry-breaking parameters to high energy scales, article, November 7, 2002; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc736378/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.