Establishing a Quantitative Functional Relationship between Capillary Pressure Saturation and Interfacial Area

PDF Version Also Available for Download.

Description

We propose to continue our collaborative research focused on advanced technologies for subsurface contamination problems. Our approach combines new multi-phase flow theory, novel laboratory experiments, and non-traditional computational simulators to investigate practical approaches to include interfacial areas in descriptions of subsurface contaminant transport and remediation. Because all inter-phase mass transfer occurs at fluid-fluid interfaces, and it is this inter-phase mass transfer that leads to the difficult, long-term ground-water contamination problems, it is critical to include interfacial behavior in the problem description. This is currently lacking in all standard models of complex ground-water contamination problems. In our earlier project, we developed ... continued below

Physical Description

vp.

Creation Information

Montemagno, Carlo April 23, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We propose to continue our collaborative research focused on advanced technologies for subsurface contamination problems. Our approach combines new multi-phase flow theory, novel laboratory experiments, and non-traditional computational simulators to investigate practical approaches to include interfacial areas in descriptions of subsurface contaminant transport and remediation. Because all inter-phase mass transfer occurs at fluid-fluid interfaces, and it is this inter-phase mass transfer that leads to the difficult, long-term ground-water contamination problems, it is critical to include interfacial behavior in the problem description. This is currently lacking in all standard models of complex ground-water contamination problems. In our earlier project, we developed tools appropriate for inclusion of interfacial areas under equilibrium conditions. These include advanced laboratory techniques and targeted computational experiments that validated certain key theoretical conjecture s. However, it has become clear that to include interfacial behavior fully into a description of the multi-phase flow and contamination problems, the fully dynamic case must be considered. Therefore, we need to develop both experimental and computational tools that can capture the dynamic nature of interfacial movements. Development and application of such tools will allow the theory to be evaluated, and will lead to significant improvements in our understanding of complex subsurface contamination problems, thereby allowing us to develop and evaluate improved remediation technologies.

Physical Description

vp.

Notes

INIS; OSTI as DE00796249

Source

  • Other Information: PBD: 23 Apr 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/14703
  • Grant Number: FG07-96ER14703
  • DOI: 10.2172/796249 | External Link
  • Office of Scientific & Technical Information Report Number: 796249
  • Archival Resource Key: ark:/67531/metadc736299

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 23, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Jan. 3, 2017, 6:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 10

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Montemagno, Carlo. Establishing a Quantitative Functional Relationship between Capillary Pressure Saturation and Interfacial Area, report, April 23, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc736299/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.