Willis Library will be without power on Tuesday, August 20, 2019 from 5:00-7:00 AM CDT. All websites and web services will be down during this period.

Innovative Measurement Diagnostics for Analysis of Jet Interactions in Rotating Flowfields

PDF Version Also Available for Download.

Description

The present document summarizes the experimental efforts of a three-year study funded under the Laboratory Directed Research and Development program of Sandia National Laboratories. The Innovative Diagnostics LDRD project was designed to develop new measurement capabilities to examine the interaction of a propulsive spin jet in a transonic freestream for a model in a wind tunnel. The project motivation was the type of jet/fin interactions commonly occurring during deployment of weapon systems. In particular, the two phenomena of interest were the interaction of the propulsive spin jet with the freestream in the vicinity of the nozzle and the impact of ... continued below

Physical Description

66 pages

Creation Information

AMATUCCI, VINCENT A.; BERESH, STEVEN J.; HENFLING, JOHN F.; ERVEN, ROCKY J. & BOURDON, CHRIS J. January 1, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The present document summarizes the experimental efforts of a three-year study funded under the Laboratory Directed Research and Development program of Sandia National Laboratories. The Innovative Diagnostics LDRD project was designed to develop new measurement capabilities to examine the interaction of a propulsive spin jet in a transonic freestream for a model in a wind tunnel. The project motivation was the type of jet/fin interactions commonly occurring during deployment of weapon systems. In particular, the two phenomena of interest were the interaction of the propulsive spin jet with the freestream in the vicinity of the nozzle and the impact of the spin rocket plume and its vortices on the downstream fins. The main thrust of the technical developments was to incorporate small-size, Lagrangian sensors for pressure and roll-rate on a scale model and include data acquisition, transmission, and power circuitry onboard. FY01 was the final year of the three-year LDRD project and the team accomplished much of the project goals including use of micron-scale pressure sensors, an onboard telemetry system for data acquisition and transfer, onboard jet exhaust, and roll-rate measurements. A new wind tunnel model was designed, fabricated, and tested for the program which incorporated the ability to house multiple MEMS-based pressure sensors, interchangeable vehicle fins with pressure instrumentation, an onboard multiple-channel telemetry data package, and a high-pressure jet exhaust simulating a spin rocket motor plume. Experiments were conducted for a variety of MEMS-based pressure sensors to determine performance and sensitivity in order to select pressure transducers for use. The data acquisition and analysis path was most successful by using multiple, 16-channel data processors with telemetry capability to a receiver outside the wind tunnel. The development of the various instrumentation paths led to the fabrication and installation of a new wind tunnel model for baseline non-rotating experiments to validate the durability of the technologies and techniques. The program successfully investigated a wide variety of instrumentation and experimental techniques and ended with basic experiments for a non-rotating model with jet-on with the onboard jets operating and both rotating and non-rotating model conditions.

Physical Description

66 pages

Source

  • Other Information: PBD: 1 Jan 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2001-3996
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/792872 | External Link
  • Office of Scientific & Technical Information Report Number: 792872
  • Archival Resource Key: ark:/67531/metadc736278

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 11, 2016, 6:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

AMATUCCI, VINCENT A.; BERESH, STEVEN J.; HENFLING, JOHN F.; ERVEN, ROCKY J. & BOURDON, CHRIS J. Innovative Measurement Diagnostics for Analysis of Jet Interactions in Rotating Flowfields, report, January 1, 2002; Albuquerque, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc736278/: accessed August 20, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.