ICONE
Conference Paper

American Society of Mechanical Engineers (ASME) owns all copyright and publication subject to this requirement: “Verbatim reproduction of this paper by anyone will be permitted by ASME provided appropriate credit is given to the author(s) and ASME.”
APPLICATION OF SEISMIC ISOLATION TO THE STAR-LM REACTOR

B. Yoo
Korea Atomic Energy Research Institute
Taejon, South Korea
E-mail: byoo@kaeri.re.kr

R. F. Kulak
Argonne National Laboratory
Argonne, IL, USA
E-mail: rfkulak@anl.gov

Keywords: Base Isolation, 2D-3D Seismic Isolation, Advanced Reactor, Generation IV, Heavy Liquid Metal Coolant

ABSTRACT

This paper presents findings from our initial work in developing a seismic isolation system for the STAR-LM reactor design. Research and development was carried out to determine the characteristics of the isolator device. The heavy weight and small footprint presented a challenge in bearing design and bearing placement. Results are also presented from a study on the use of three-dimensional seismic isolation devices to the full-scale reactor. Both two-dimensional (i.e., one device for horizontal isolation only) and integral (i.e., one device for horizontal and vertical) concepts were explored. The seismic analysis responses of the two-dimensional and the three-dimensional isolation systems for the STAR-LM are compared with that of the conventional fixed base system. Finally, results are presented from a study on the effects of the levels of vertical and horizontal damping on the seismic response of STAR-LM.

INTRODUCTION

The next generation of nuclear energy systems will be the result of the Generation IV program, which has the following goals: sustainability, safety and reliability, and economics. Because Gen IV reactor plants will be deployed worldwide, some plants will be located in seismically active regions as well as seismically active countries. Thus, one of the major challenges faced before the designers of Gen IV plants is to design the plants not only to survive seismic events but also to continue to provide power during and after earthquakes. Passive seismic isolation is the leading candidate for achieving this goal.

Several designs, which use liquid metal coolants, have been proposed as part of the Generation IV program: STAR-LM (300-400 MWth), ENHS (125 MWth), KALIMER (150-330 MWe) and S-PRISM (1000 MWth). STAR-LM and ENHS use a lead-bismuth eutectic as the coolant, and KALIMER and S-PRISM use liquid sodium as the coolant. The use of lead-bismuth eutectic (1) results in plant simplification, (2) improves cost competitiveness, (3) increases inherent/passive safety, and (4) provides achievable proliferation resistance measures. However, lead coolant is ten times heavier than sodium coolant and this present a challenge to designers of the seismic isolation systems that will be used with these heavy liquid metal reactors.

Seismic isolation systems have been fully developed and designed for the sodium cooled KALIMER and S-PRISM concepts. Much research was performed on their isolation systems (1) to quantify elastomer response characteristics, (2) to identify optimal mounting methods and (3) to determine system and isolator design parameters. There has not been any work done on the lead cooled designs.

This paper presents findings from our initial work in developing a seismic isolation system for the STAR-LM reactor design. Research and development was carried out to determine the characteristics of the isolator device. The heavy weight and small footprint presented a challenge in bearing design and bearing placement. Results are also presented from a study on the use of three-dimensional seismic isolation devices to the full-scale reactor. Both two-dimensional (with one device for horizontal isolation only) and three-dimensional (with one integral device for both horizontal and vertical isolation) concepts were explored. The seismic analysis responses of the two-dimensional and the three-dimensional isolation systems for the STAR-LM are compared with that of the conventional fixed base system.
PHYSICAL CHARACTERISTICS OF STAR-LM

The Secure, Transportable, Autonomous Reactor-Liquid Metal (STAR-LM), which is described in [1-4], is a small reactor module for steam supply of 300 MWth using lead-bismuth as a heavy liquid metal coolant. The reactor structure for STAR-LM includes a reactor module, four steam generators, a coolant module and a guard vessel and is shown in Figure 1. The reactor module consists of the integral core assembly, steel shielding and reflector structures, and the reactor vessel. The module is suspended and sealed into the coolant module from its top head and a welded stainless steel. The outside diameter of the reactor module is 2.8m, and the length and the thickness of the module are assumed to be 12.65m and 5.0cm, respectively. The coolant module consists of the coolant vessel, coolant vessel liner, internal structures for positioning the reactor and steam generator modules, top head penetrations for inserting and sealing the reactor and SG modules, and piping. The coolant vessel, which is a welded structure of stainless steel, has the following overall dimensions: 5.5m outside diameter, 14m height and 5cm thickness. The coolant vessel is contained in a guard vessel with the following dimensions: 5.85m outside diameter, 14.2m length and 2.5cm thickness. The total weight of the reactor structure without and with the coolant inside of the coolant module are about 400 tons and 3100 tons, respectively.

SEISMIC BASE ISOLATION SYSTEMS FOR STAR-LM

The nuclear island in which the reactor structure is contained is designed to be a seismically base isolated reactor building with Safe Shutdown Earthquake (SSE) of 0.3g in horizontal direction and 0.2g in the vertical direction, respectively. However the reactor building is not conceptually designed yet. In this paper it is assumed that all reactor structures are supported on the concrete basemat as a part of the nuclear island. The diameter of the basemat is taken to be 20m and the thickness is taken to be 1.5m. The basemat is supported on the seismic base isolation system. The total weight of the basemat including reactor structure with the coolant is about 4200 tons.

Two cases were considered for the base isolation systems of the STAR-LM concept: one for a two-dimensional seismic isolation system using horizontal laminated rubber bearings and the other for a three-dimensional seismic isolation system. The seismic responses for the seismic base isolation systems are compared with that of the conventional fixed base system.

In the two-dimensional seismic isolation system, high damping laminated rubber bearings [5], similar to that in PRISM [6] and in KALIMER [7,8] are used. The vertical design load is selected to be 320 tons and the horizontal isolation frequency and the vertical frequency were determined to be 0.5 Hz and 21 Hz respectively. Design displacement in the horizontal direction is 27.8cm. The design quantities for the isolators are 120cm outside diameter and 50cm overall height, 29 rubber layers alternating with 28 layers of steel, and 27.8cm total rubber height. The design targets for the isolators are 12% above the damping coefficient and 300% above the maximum shear displacement.

In the three-dimensional seismic isolation system, the three-dimensional isolator [9] shown in Figure 2 is used in which the high damping laminated rubber bearing adapted to isolate horizontal seismic loadings cooperates with a vertical isolation device employing a series of disc springs effective for isolating vertical seismic loadings. The three-dimensional isolator is
effective to reduce both vertical and horizontal seismic loadings to
insure the structural integrity of the reactor structure enhancing
structural safety margin as well as the economic competitiveness.
The vertical design load and the horizontal isolation frequency are
320 tons and 0.5 Hz respectively as same as the two-dimensional
isolator. But the vertical isolation frequency is determined to be
1.1 Hz such that the amplification factor in the vertical design
response spectra at 5 % damping factor of NRC RG 1.60 is not
greater than the maximum vertical ground acceleration. The
vertical design displacement is 18.3 cm.

The isolator consists of the series of disc springs located on the
top of the upper end plate of the laminated rubber bearing (LRB),
the isolation cylinder fixed to the base mat, and a number of
groups of steel balls being disposed within a space formed between
the perimeter of the upper end plate of LRB and the interior wall
of the isolation cylinder. The balls are facilitating the guide for the
relative vertical movement between the upper end plate and the
isolation cylinder. The lateral seismic loads are transmitted to the
basemat thru LRB, balls, and isolation cylinder. The design
quantities for the disc spring for the three-dimensional isolator is
100 cm outside diameter by 50 cm inside diameter with 4.83 cm
thickness and 2.29 cm cone height. The disc springs with 2 parallel
and 18 series are used for the vertical isolation.

SEISMIC RESPONSE ANALYSES

The coolant vessel including the lead-bismuth coolant is modeled
by a lumped mass beam model. For this preliminary study, the
heavy metal coolant is lumped at the bottom of the coolant vessel,
the concrete base mat is modeled as a lumped mass, and the two-
dimensional and the three-dimensional isolation systems are
properly modeled by the equivalent stiffness and the equivalent
viscous damping to represent mechanical properties of the
isolators. The input motions used for the time history analyses are
three components of the artificial time history, which are
compatible with the USNRC RG 1.60 design response spectra.
The vertical input motion has a minimum and maximum
acceleration of 2.22 ~ 1.95 m/sec², a duration of 76 seconds with
time step of 0.01 second, and the horizontal input motions have
3.07 ~ 2.94 m/sec² and 3.14 ~ 2.94 m/sec², respectively, the duration of 80
seconds with time step of 0.01 second. The analyses were
performed using SAP2000 v7.4.

Table 1 shows the calculated natural frequencies for the fixed
base, the two-dimensional and the three-dimensional isolation
case. Natural frequencies of the fixed base are 2.9 Hz in the Y and
Z horizontal directions and 11.9 Hz in the X vertical direction,
respectively. The isolation frequency of the two-dimensional isolation case is 0.5 Hz in the Y and Z horizontal directions and the
first structural frequencies are 5.1 Hz in the Y and Z horizontal directions and 10.7 Hz in the X vertical direction. For the three-
dimensional case, the isolation frequencies are 0.5 Hz in the Y and
Z horizontal directions, which are the same as the two-dimensional isolation case, and 1.1 Hz in the X vertical direction. The first
structural frequencies are 5.1 Hz in the Y and Z horizontal
directions and 20.5 Hz in the X vertical direction, respectively.

Figures 3 and 4 compare the acceleration floor response spectra
at a damping value of 5% at the upper basemat and the bottom of
the coolant vessel for the three cases when subjected to the same
input motions. In the horizontal direction, the floor accelerations
for the two-dimensional and the three-dimensional isolation cases
come much lower than those of the fixed base case such that
reductions from 9.3 m/sec² to 2.3 m/sec² are obtained at the upper
basemat and from 49.54 m/sec² to 2.31 m/sec² at the bottom of
the coolant vessel, respectively. In the vertical direction, the floor
acceleration of the three-dimensional case is reduced much lower
than those of the two-dimensional and the fixed base cases. The floor accelerations for the two-dimensional case are slightly
amplified over those of the fixed base case. The reduction of the

Copyright ©2002 by ASME
floor accelerations of the three-dimensional isolation system is from 6.7m/sec2 of the fixed base, and 6.92m/sec2 of the two-dimensional isolation case, to 2.93m/sec2 at the upper basemat, and from 16.34m/sec2 of the fixed case, and 16.61m/sec2 of the two-dimensional isolation case, to 2.23m/sec2 at the bottom of the coolant vessel, respectively. The calculated seismic responses of the acceleration time history and the isolator displacement for the three cases are summarized in Table 2.

For the two- and the three-dimensional isolation systems, the shear displacements at the LRB are calculated as the same values as a minimum and maximum of \tilde{u}18.67~19.97cm, which is equivalent to the shear strain of 109%, in the Y horizontal direction, and \tilde{u}15.01~16.76cm, in the Z horizontal direction, respectively. For both the two-dimensional isolation system and the fixed base case, there is little relative motion in the vertical direction. In contrast for the three-dimensional isolation system, the relative displacement at the vertical disc springs is calculated as a minimum and maximum of \tilde{u}4.39~2.94cm in the X vertical direction, which is within the design requirement value of 18.3cm.

EFFECTS OF DAMPING ON SEISMIC RESPONSE

The effects of damping on the seismic responses of three dimensional isolation system are investigated using time history analyses and varying the damping values of the isolation system. The following damping values were used in the analyses: 12, 24, 36, 48 and 60% in the horizontal direction, and 8, 16, 24, 32 and 40% in the vertical direction.

The maximum peak accelerations at both the reactor upper mat and at the bottom of the coolant vessel were gradually reduced in all three directions, as the damping value of the isolation system is increased. Similarly, the maximum shear displacement is reduced as the damping value increases. Table 3 shows the effects of the value for horizontal damping on the peak acceleration and maximum shear strain. It is seen that at 12% horizontal damping the peak acceleration is 3.940 m/sec2 and the maximum shear displacement is 19.97 cm. At 60% damping, the peak acceleration reduces to 3.333 m/sec2 and the maximum shear displacement reduces to 9.29 cm. Table 4 shows the reductions in the vertical response as the damping values increase.

The relative displacement between the upper mat and the bottom of the coolant vessel is very small: 5.9 mm for 12% damping in the horizontal direction and 0.3 mm for 8% damping in the vertical direction, which shows the rigid body motion of the primary reactor is maintained during the earthquake excitation. The relative displacement between the upper mat and the bottom of the coolant vessel is reduced to 2.32 mm from 5.9 mm in the horizontal direction and from 0.3 mm to 0.2 mm in the vertical direction, as the damping is increased to 60% in the horizontal direction and 40% in the vertical direction. These small relative displacements between the shutdown rod and the core fuel assemblies and the rigid body motion of the reactor can be very important for the safety insertion of shutdown rod into the reactor core and to reduce the change of reactivity worth by reducing the compaction of the core fuel assemblies.

Figure 5 shows that increasing the damping of the isolators increases the floor accelerations to some extent in the frequency range of 1.5 Hz to 5 Hz. For the case with 60% damping in the horizontal direction and 40% damping in the vertical direction, a maximum acceleration of 3.4 m/s2 occurs at a frequency of 2 Hz.

CONCLUSION

The effectiveness of the application of the isolation systems to the STAR-LM Generation IV reactor is presented by comparing the seismic responses subjected to the artificial time histories among the fixed base, the two-dimensional isolation system using LRB, and the three-dimensional isolation system using the integral isolators. The following are the conclusions from the study.

4 Copyright ©2002 by ASME
When compared with the conventional fixed base design, the two-dimensional and the three-dimensional isolation systems can reduce the floor accelerations in the horizontal direction by a factor of 4 at the upper basement and a factor of 20 at the bottom of the coolant vessel. The three-dimensional isolation system can reduce the floor accelerations in the vertical direction by a factor of 2.4 at the upper basement, and a factor of 7.4 at the bottom of the coolant vessel, when compared to the fixed base and the two-dimensional system.

The maximum shear displacement for the two and the three-dimensional systems is calculated as 19.97 cm, equivalent to 109% shear strain, which is well within the maximum shear failure limit of 300%. The maximum relative displacement in the vertical direction for the three-dimensional isolation system is calculated as 4.39 cm, which is also well within the design limit of 18.3 cm.

The application of seismic isolation to the STAR-LM reactor results in the reduction of the horizontal floor accelerations at the upper basement with the two-dimensional LRB, and in the reduction of the horizontal as well as vertical floor accelerations at the upper basement with the three-dimensional isolators. This could provide a safety margin for the structural integrity and the economic designs for the reactor structures for the STAR-LM.

Increasing the damping values of the isolators can result in reducing the clearances between the isolated reactor system and the surrounding non-isolated structures but increases the floor accelerations to some extent in the frequency range of 1.5 Hz to 5 Hz. Through further design of the STAR-LM concept, the dynamic characteristics of the safety related components attached to the reactor upper mat and the detail analyses of the isolated primary reactor will help to determine the optimal damping of the three dimensional system for the seismic design of STAR-LM.

Further studies are needed to verify the performance of the full-scale three-dimensional isolation system subjected to the design and the beyond design basis earthquakes and to solve the potential rocking issue of the three-dimensional isolation system.

ACKNOWLEDGMENTS

The work was performed under the auspices of the U.S. department of Energy, Technology Support Programs, under Contract W-31-109-Eng-38. The first author was partially supported by the Korea Ministry of Science and Technology.

REFERENCES

Table 1. Frequency Analysis Results of STAR-LM Structure Models

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fixed Base</th>
<th>2-D Isolation</th>
<th>3-D Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Modal</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>(Hz)</td>
<td>Participation</td>
<td>(Hz)</td>
</tr>
<tr>
<td>Horizontal Isolation (Y & Z)</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Vertical Isolation (X)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1st Y Structural</td>
<td>2.9</td>
<td>98.22</td>
<td>5.1</td>
</tr>
<tr>
<td>1st Z Structural</td>
<td>2.9</td>
<td>98.22</td>
<td>5.1</td>
</tr>
<tr>
<td>1st X Structural</td>
<td>11.9</td>
<td>99.66</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Table 2. Comparison of STAR-LM Seismic Responses for Fixed Base, 2D-Isolation and 3D-Isolation

<table>
<thead>
<tr>
<th></th>
<th>Fixed Base</th>
<th>2D Isolation</th>
<th>3D Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td></td>
<td>(Y)</td>
<td>(X)</td>
<td>(Y)</td>
</tr>
<tr>
<td>Upper Basemat Peak Acceleration (m/sec²)</td>
<td>-3.073~</td>
<td>-2.221~</td>
<td>-3.68~</td>
</tr>
<tr>
<td></td>
<td>2.94</td>
<td>1.953</td>
<td>3.94</td>
</tr>
<tr>
<td>Coolant Vessel Bottom Peak Acceleration (m/sec²)</td>
<td>-9.086~</td>
<td>-2.535~</td>
<td>3.742~</td>
</tr>
<tr>
<td></td>
<td>9.118</td>
<td>2.456</td>
<td>4.129</td>
</tr>
<tr>
<td>Isolator Displacement (cm)</td>
<td>-</td>
<td>-</td>
<td>-18.67~</td>
</tr>
<tr>
<td></td>
<td>19.97</td>
<td>0.019</td>
<td>19.97</td>
</tr>
</tbody>
</table>

(Subjected to SSE: 0.3g in the horizontal direction and 0.2g in the vertical direction, 1.0g = 9.8m/sec²)
Table 3. Effects of Horizontal Damping on Peak Acceleration and Maximum Shear Strain

<table>
<thead>
<tr>
<th>Horizontal Damping (%)</th>
<th>Peak Horizontal Acceleration (m/sec²)</th>
<th>Maximum Shear Displacement (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3.940</td>
<td>19.97</td>
</tr>
<tr>
<td>24</td>
<td>3.868</td>
<td>14.44</td>
</tr>
<tr>
<td>36</td>
<td>3.686</td>
<td>12.05</td>
</tr>
<tr>
<td>48</td>
<td>3.497</td>
<td>10.47</td>
</tr>
<tr>
<td>60</td>
<td>3.333</td>
<td>9.29</td>
</tr>
</tbody>
</table>

Table 4. Effects of Vertical Damping on Peak Acceleration and Maximum Vertical Displacement

<table>
<thead>
<tr>
<th>Vertical Damping (%)</th>
<th>Peak Vertical Acceleration (m/sec²)</th>
<th>Maximum Vertical Displacement (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2.980</td>
<td>4.39</td>
</tr>
<tr>
<td>16</td>
<td>2.723</td>
<td>3.51</td>
</tr>
<tr>
<td>24</td>
<td>2.499</td>
<td>2.958</td>
</tr>
<tr>
<td>32</td>
<td>2.318</td>
<td>2.598</td>
</tr>
<tr>
<td>40</td>
<td>2.169</td>
<td>2.347</td>
</tr>
</tbody>
</table>