Vortices in dense self-assembled hole arrays.

PDF Version Also Available for Download.

Description

We present a study of the upper critical field and pinning strength from the resistivity and magnetization of a Nb film containing a dense array of 45 nm diameter holes on a hexagonal lattice with a spacing of 101 nm. The holes were formed by self-assembly in anodic aluminum oxide (AAO) using an electrochemical procedure. Confinement effects and Little-Parks oscillations are seen above 6 K, and strong pinning with matching field effects is seen below 6 K. Above the first matching field interstitial vortices coexist with vortices trapped in the hole array. Pinning in the Nb films with hole arrays ... continued below

Physical Description

vp.

Creation Information

Crabtree, G. W.; Welp, U.; Xiao, Z. L.; Jiang, J. S.; Vlasko-Vlasov, V. K.; Bader, S. D. et al. October 9, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present a study of the upper critical field and pinning strength from the resistivity and magnetization of a Nb film containing a dense array of 45 nm diameter holes on a hexagonal lattice with a spacing of 101 nm. The holes were formed by self-assembly in anodic aluminum oxide (AAO) using an electrochemical procedure. Confinement effects and Little-Parks oscillations are seen above 6 K, and strong pinning with matching field effects is seen below 6 K. Above the first matching field interstitial vortices coexist with vortices trapped in the hole array. Pinning in the Nb films with hole arrays is enhanced by two orders of magnitude over that in continuous Nb films. At low temperature, flux avalanches are observed and imaged using the magneto-optical Faraday effect.

Physical Description

vp.

Source

  • 3rd Polish-US Workshop on Magnetism and Superconductivity of Advanced Materials (to be published in Physica C), Ladek Zdroj (PL), 07/14/2002--07/19/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/MSD/CP-108830
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 803879
  • Archival Resource Key: ark:/67531/metadc736202

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 9, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 29, 2016, 3:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Crabtree, G. W.; Welp, U.; Xiao, Z. L.; Jiang, J. S.; Vlasko-Vlasov, V. K.; Bader, S. D. et al. Vortices in dense self-assembled hole arrays., article, October 9, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc736202/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.