American National Standard

M. K. Shaeffer, S. C. Keeton

This article was submitted to American National Standard 2000 Winter Meeting
Washington, DC
November 12-16, 2000

June 13, 2000

Approved for public release; further dissemination unlimited
American National Standard ANSI/ANS-8.12-1987 was approved for use on September 11, 1987. The history of the development of the standard is discussed in Ref. 2. The first version of this standard, which included subcritical limits only on homogeneous plutonium-uranium fuel mixtures, was approved July 17, 1978. The current version was revised to add limits on heterogeneous systems (Ref. 3). This paper provides additional information on the limits presented in the standard.

As stated in its forward, the standard "... provides guidance for the prevention of criticality accidents in the handling, storing, processing, and transporting of plutonium-uranium fuel mixtures outside reactors and is applicable to all operations involving mixtures of plutonium and natural uranium." It constitutes an extension of the American National Standard for Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors, ANSI/ANS-8.1-1983 (Ref. 4).

The standard includes subcritical limits\(^1\) for both homogeneous mixtures and heterogeneous lattices of plutonium and uranium. The uranium is assumed to be natural or depleted. Limits are provided for a variety of mixtures, including aqueous solutions, dry \([H/(Pu+U) = 0]\) mixed oxides at theoretical density, and damp \([H/(Pu+U) < 0.45]\) mixed oxides at both theoretical and one-half

\(^1\)The limiting value assigned to a controlled parameter that results in a system known to be subcritical, provided the limiting value of no other controlled parameter of the system is violated. The subcritical limit allows for uncertainties in the calculations used in its derivation, but not for
theoretical density. The limits for homogeneous mixtures shown in Table I cover four different plutonium contents (3, 8, 15, and 30 wt% PuO₂ in PuO₂ + UO₂) and three different isotopic compositions (²⁴⁰Pu > ²⁴¹Pu; ²⁴⁰Pu ≥ 15 wt% and ²⁴¹Pu ≤ 6 wt%; ²⁴⁰Pu ≥ 25 wt% and ²⁴¹Pu ≤ 15 wt%).

Heterogeneous lattice limits for mass, spherical volume, cylinder diameter, and slab thickness are also presented in the standard. Figure 1 shows one such set of limits: the limiting slab thickness curves for heterogeneous systems. Anomalous behavior was noted for the heterogeneous cases with 30 wt% plutonium in PuO₂ + UO₂ with 25 wt% ²⁴⁰Pu and 15 wt% ²⁴¹Pu. For these cases, the minima calculated for the lattices were greater than the minima for dry theoretical oxide. The lattice minima occurred with very small rod diameters, and it was believed that the resonance absorption treatment employed could not adequately handle the unusual geometry (Ref 5). Thus, the standard does not extrapolate beyond 15 wt% plutonium in the mixed oxide for the isotopic mixture of 25 wt% ²⁴⁰Pu and 15 wt% ²⁴¹Pu.

The current version of the standard has now been available for 13 years. The last reaffirmation was on February 17, 1993. The standard has been extended until 2001. For the past several years a working group has been examining the subcritical limits using current codes and cross section libraries. A decision to reaffirm this standard is anticipated within the next year. Following this action the working group will assess whether the standard should be revised to include other subcritical limits or isotopic compositions.

contingencies, e.g., double batching or failure of analytical techniques to yield accurate values of process variables.

TABLE I
Subcritical Limits for Uniform Aqueous Mixtures of the Oxides
of Plutonium and Natural Uranium*

<table>
<thead>
<tr>
<th>PuO₂ in (PuO₂ + UO₂), wt%</th>
<th>3</th>
<th>8</th>
<th>15</th>
<th>30a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plutonium Composition</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
</tr>
<tr>
<td>Isotopic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass of plutonium in oxide mixture, kg</td>
<td>0.73</td>
<td>1.35</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>Mass of (PuO₂ + UO₂), kg</td>
<td>27.5</td>
<td>51.3</td>
<td>75.9</td>
<td>8.6</td>
</tr>
<tr>
<td>Diameter of infinite cylinder (cm)</td>
<td>24.3</td>
<td>30.8</td>
<td>34.8</td>
<td>19.8</td>
</tr>
<tr>
<td>Thickness of infinite slab (cm)</td>
<td>11.0</td>
<td>14.9</td>
<td>17.4</td>
<td>8.2</td>
</tr>
<tr>
<td>Volume of oxide mixture (l)</td>
<td>23.5</td>
<td>44.8</td>
<td>63.4</td>
<td>14.0</td>
</tr>
<tr>
<td>Concentration of plutonium, g Pu/liter</td>
<td>6.8</td>
<td>8.1</td>
<td>9.3</td>
<td>6.9</td>
</tr>
<tr>
<td>Concentration of oxides, g(PuO₂ + UO₂)/liter</td>
<td>257c</td>
<td>305</td>
<td>351</td>
<td>97.3</td>
</tr>
<tr>
<td>H:Pu atomic ratio</td>
<td>3780</td>
<td>3203</td>
<td>2780</td>
<td>3780</td>
</tr>
<tr>
<td>Areal density of plutonium, gPu/cm²</td>
<td>0.27</td>
<td>0.38</td>
<td>0.47</td>
<td>0.25</td>
</tr>
<tr>
<td>Areal density of oxides, g(PuO₂ + UO₂)/cm²</td>
<td>10.2</td>
<td>14.4</td>
<td>17.7</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* All values are upper limits except atomic ratios which are lower limits.

a Dimensional and volume limits do not apply for isotopic composition II and III unless, for II, the concentration of oxides is < 5700 g/l and, for III, < 4500 g/l.

b Plutonium isotopic composition: I — ²⁴⁰Pu>²⁴¹Pu, II — ²⁴⁰Pu≥ 15 wt% and ²⁴¹Pu≤ 6 wt%, III — ²⁴⁰Pu≥ 25 wt% and ²⁴¹Pu≤ 15 wt%.

c This concentration is not applicable to oxide mixtures in which the PuO₂/(PuO₂ + UO₂) ratio is < 3 wt% because of the increased relative importance of ²³⁵U in high-bearing materials.
Figure 9. Limiting Thickness of Slabs Containing Heterogeneous Mixtures of the Oxides of Plutonium and Natural Uranium in Water as a Function of the Plutonium Oxide Content.

Isotopic Composition of Plutonium

- Curve I: $^{240}\text{Pu} > ^{241}\text{Pu}$
- Curve II: $^{240}\text{Pu} \geq 15 \text{ wt}\%$ and $^{241}\text{Pu} \leq 6 \text{ wt}\%$
- Curve III: $^{240}\text{Pu} \geq 25 \text{ wt}\%$ and $^{241}\text{Pu} \leq 15 \text{ wt}\%$

Process specifications shall incorporate margins to protect against uncertainties in process variables and against a limit being accidentally exceeded.

Do not extrapolate, see caution page 3